Girsanov formula for Markov Jump Processes

1 Introduction

Good references but beyond the needs of the present course for Markov jump processes are chapter 9 of [3] and appendix 1 of [2]. Gardiner [1] in chapter 3 treats Markov jump processes as a special case of Markov processes and derives the master equation for their probability evolution. Before doing so here we will give as in [3] a brief description of pathwise realizations of jump processes.

2 Jump process

Let \mathcal{S} a finite state space, and ξ_{t} is a jump Markov process

$$
\begin{equation*}
\xi_{t}: \mathbb{R}_{+} \times \Omega \mapsto \mathcal{S} \tag{2.1}
\end{equation*}
$$

The paths of a jump Markov process can be written (see e.g. [3]) as

$$
\begin{equation*}
\xi_{t}=\xi_{o}+\sum_{n=1}^{\infty} \zeta_{n} \mathbb{1}_{[0, t]}\left(T_{n}\right) \tag{2.2}
\end{equation*}
$$

where

1. \mathbb{I} denotes the characteristic function

$$
\mathbb{1}_{A}(x)= \begin{cases}1 & x \in A \tag{2.3}\\ 0 & x \notin A\end{cases}
$$

2. if $t=T_{n}$

$$
\begin{equation*}
\xi_{T_{n}}=\xi_{0}+\sum_{i=1}^{n} \zeta_{n} \tag{2.4}
\end{equation*}
$$

3. $\left\{T_{n}\right\}_{n=1}^{\infty}$ is a sequence of random variables with increments $\tau_{n}:=T_{n+1}-T_{n}, T_{0}=0$ distributed if $\xi_{T_{n}}=\mathrm{x}$ according to

$$
\begin{equation*}
\tau_{n} \stackrel{d}{=} \mathrm{r}(\mathrm{x}) e^{-\mathrm{r}(\mathrm{x}) t} d t \tag{2.5}
\end{equation*}
$$

4. if we posit $\xi_{T_{n}}=\mathrm{x}$ then

$$
\begin{equation*}
\zeta_{n+1}:=\xi_{T_{n+1}}-\xi_{T_{n}} \equiv \xi_{T_{n+1}}-\mathrm{x} \tag{2.6}
\end{equation*}
$$

takes the value

$$
\begin{equation*}
\zeta_{n+1}=x^{\prime}-x \tag{2.7}
\end{equation*}
$$

with probability depending only upon x

$$
\begin{equation*}
\zeta_{n+1} \stackrel{d}{=} \mathrm{p}\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)=\left\{\frac{\mathrm{k}\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)}{\mathrm{r}(\mathrm{x})}\right\}_{\mathrm{x}^{\prime} \in \mathcal{S}} \tag{2.8}
\end{equation*}
$$

5. We interpret the ζ_{n} 's as jump amplitudes occurring at random times T_{n}. Self-consistency of the interpretation requires

$$
\begin{equation*}
\mathrm{P}(\mathrm{x} \mid \mathrm{x})=0 \tag{2.9}
\end{equation*}
$$

6. The pair $\left(\zeta_{n}, T_{n}\right)$ is an inhomogeneous Markov chain on $\mathbb{S} \times \mathbb{R}_{+}$with conditional probability

$$
\begin{equation*}
\mathrm{P}\left(\xi_{T_{n+1}}=\mathrm{x}^{\prime}, t^{\prime}<T_{n+1} \leq t^{\prime}+d t \mid \xi_{T_{n}}=\mathrm{x}, T_{n}=t\right)=\mathrm{p}\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right) \mathrm{r}(\mathrm{x}) e^{-\mathrm{r}(\mathrm{x})\left(t^{\prime}-t\right)} H\left(t^{\prime}-t\right) \tag{2.10}
\end{equation*}
$$

The interpretation is as follows. The sequence of random increments $\left\{\Delta T_{k}\right\}_{k=0}^{\infty}$ paves the time horizon $\left[0, T_{\infty}\right] \subseteq \mathbb{R}_{+}$. Let ω be the event in the sample space Ω specifying a realization of the sequence $\left\{\Delta T_{k}(\omega)\right\}_{k=0}^{\infty}$. Let $0 \leq t \leq T_{\infty}$ be the time at which we observe the process. Then there is an $n_{t} \in \mathbb{N}$ such that

$$
\begin{equation*}
T_{n_{t}}:=\sum_{n=0}^{n_{t}} \tau_{k} \leq t<\sum_{n=0}^{n_{t}+1} \tau_{k}:=T_{n_{t}+1} \tag{2.11}
\end{equation*}
$$

Such n_{t} counts the number of jumps occurring during the interval $[0, t] \subseteq\left[0, T_{\infty}\right]$. The size of each jump is specified by $\left\{Z_{k}\right\}_{k=0}^{n_{*}}$.

3 Poisson process as a special case of Markov jump process

A special case of (2.2) corresponds to the choice

$$
\begin{equation*}
\zeta_{n}=1 \quad \forall n \tag{3.1}
\end{equation*}
$$

The general jump process reduces to the Poisson process starting from ξ_{0} :

$$
\begin{equation*}
\xi_{t}=\xi_{0}+\sum_{n=1}^{\infty} \mathbb{1}_{[0, t]}\left(T_{n}\right) \in \xi_{0}+\mathbb{N} \tag{3.2}
\end{equation*}
$$

In particular, for $\xi_{0}=0$ and $t=T_{n}$ we have

$$
\begin{equation*}
\xi_{T_{n}}=n \tag{3.3}
\end{equation*}
$$

We can compute the probability distribution using (2.5) and the independence of the jumps. To that goal let us first compute the probability density of

$$
\begin{equation*}
T_{n}=\sum_{i=1}^{n} \tau_{i} \tag{3.4}
\end{equation*}
$$

This is most conveniently done by inverting the characteristic function

$$
\begin{equation*}
\mathrm{p}_{T_{n}}(t)=\int_{\mathbb{R}} \frac{d x}{2 \pi} e^{-\imath x t} \mathrm{E} e^{\imath x T_{n}}=\int_{\mathbb{R}} \frac{d x}{2 \pi} e^{-\imath x t}\left(\mathrm{E} e^{\imath x \tau}\right)^{n} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{E} e^{\imath x \tau}=\int_{0}^{\infty} d t r e^{-r t+\imath t x}=\frac{r}{r-\imath x} \tag{3.6}
\end{equation*}
$$

The anti-Fourier transform can be performed using Cauchy theorem

$$
\begin{equation*}
p_{T_{n}}(t)=\int_{\mathbb{R}} \frac{d x}{2 \pi} \frac{r^{n} e^{\imath x t}}{(r-\imath t)^{n}}=\frac{r(r t)^{n-1} e^{-r t}}{\Gamma(n)} \tag{3.7}
\end{equation*}
$$

In order to compare this result with the Poisson process as we defined it in the previous lecture, we observe that probability that the system has performed n jumps at time t is

$$
\begin{align*}
& \mathrm{P}\left(\#_{t}=n\right)=\mathrm{P}\left(T_{n} \leq t, T_{n+1}>t\right)= \\
& \qquad \int_{0}^{t} \mathrm{P}\left(s<T_{n} \leq s+d s, T_{n+1}>t\right)=\int_{0}^{t} d s \mathrm{P}\left(T_{n+1}>t \mid T_{n}=s\right) \mathrm{p}_{T_{n}}(s) \tag{3.8}
\end{align*}
$$

We used here the short hand notation

$$
\begin{equation*}
\#_{t}:=\text { number of jumps at time } t \tag{3.9}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\mathrm{P}\left(T_{n+1}>t \mid T_{n}=s\right)=\mathrm{P}\left(\tau_{n+1}>t-T_{n} \mid T_{n}=s\right)=\int_{t-s}^{\infty} d u r e^{-r u} \tag{3.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mathrm{P}\left(T_{n} \leq t, T_{n+1}>t\right)=\int_{0}^{t} d s e^{-r(t-s)} \frac{r(r s)^{n-1} e^{-r s}}{\Gamma(n)} \tag{3.11}
\end{equation*}
$$

which allows us to recover

$$
\begin{equation*}
\mathrm{P}\left(\#_{t}=n\right)=\frac{(r t)^{n} e^{-r t}}{\Gamma(n+1)} \equiv \frac{(r t)^{n} e^{-r t}}{n!} \tag{3.12}
\end{equation*}
$$

4 Averaging

Let F any bounded measurable function

$$
\begin{equation*}
F:\left(\mathbb{S} \times \mathbb{R}_{+}\right)^{n} \mapsto \mathbb{R} \tag{4.1}
\end{equation*}
$$

Let also $\left\{t_{i}\right\}_{i=1}^{n}$ an ordered \mathbb{R}_{+}-valued n-tuple

$$
\begin{equation*}
t_{1} \leq t_{2} \leq t_{3} \cdots \leq t_{n}=t<T_{\infty} \tag{4.2}
\end{equation*}
$$

Suppose we need to evaluate the expectation value with respect to a Markov jump process $\left\{\xi_{t}, 0 \leq t<T_{\infty}\right\}$

$$
\begin{equation*}
\bar{F}:=\mathrm{E} F\left(\xi_{t_{1}}, t_{1}, \ldots, \xi_{t}, t\right) \tag{4.3}
\end{equation*}
$$

Let us observe that

$$
\begin{equation*}
0 \leq t \leq T_{\infty} \quad \Rightarrow \quad \sum_{n=0}^{\infty} \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t)=1 \tag{4.4}
\end{equation*}
$$

Using (4.4) the expectation value reduces to the form

$$
\begin{gather*}
\bar{F}=\sum_{i=0}^{\infty} \bar{F}_{i} \tag{4.5a}\\
\bar{F}_{i}=\mathrm{E} F\left(\xi_{t_{1}}, t_{1}, \ldots, \xi_{t}, t\right) \mathbb{1}_{\left[T_{i}, T_{i+1}\right)}(t) \tag{4.5b}
\end{gather*}
$$

Taking into account that $T_{n+1}=T_{n}+\tau_{n+1}$ and the mutual independence of the τ_{n} 's we have the identity

$$
\begin{equation*}
\mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t)=\mathbb{1}_{[0, t]}\left(T_{n}\right) \mathbb{1}_{\left(t-T_{n}, \infty\right)}\left(\tau_{n+1}\right) \tag{4.6}
\end{equation*}
$$

whence we can write

$$
\begin{equation*}
\bar{F}_{i}=\mathrm{E}\left\{F\left(\xi_{t_{1}}, t_{1}, \ldots, \xi_{T_{i}}, t\right) e^{-r\left(\xi_{T_{i}}\right)\left(t-T_{n}\right)} \mathbb{1}_{[0, t)}\left(T_{i}\right)\right\} \tag{4.7}
\end{equation*}
$$

The advantage of this writing is that each therm appearing in the series now contains only a finite number jumps, specifically i for \bar{F}_{i}. Note that we can now iterate the procedure for $\xi_{t_{n-1}}$ in order to finally arrive to an expression amenable to an elementary expression in terms of the transition probability (2.10)

5 Mean forward derivative of Markov jump process

We define the mean forward derivative of a Markov jump process as

$$
\begin{equation*}
D \xi_{t}:=\lim _{d t \downarrow 0} \mathrm{E}_{\xi_{t}}\left\{\frac{\xi_{t+d t}-\xi_{t}}{d t}\right\} \tag{5.1}
\end{equation*}
$$

Let us preliminarily observe that for any f depending upon the Markov jump process we can write any conditional expectation as the series

$$
\begin{equation*}
\mathrm{E}_{\xi_{t}} f(\cdot)=\sum_{i=0}^{\infty} \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t) \mathrm{E}_{\xi_{T_{n}}} f(\cdot) \tag{5.2}
\end{equation*}
$$

Hence we need only to evaluate

$$
\begin{equation*}
\mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{t+d t}-\xi_{T_{n}}\right)\right\}=\sum_{k=0}^{\infty} \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{k}}-\xi_{T_{n}}\right) \mathbb{1}_{\left[T_{k}, T_{k+1}\right)}(t+d t)\right\} \tag{5.3}
\end{equation*}
$$

Since $t+d t>t$ we can restrict the focus to addends satisfying $T_{k} \geq T_{n}$ and $k \geq n$:

$$
\begin{equation*}
\mathrm{E}_{\xi_{T_{n}}}\left(\xi_{t+d t}-\xi_{T_{n}}\right)=\sum_{k=n}^{\infty} \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{k}}-\xi_{T_{n}}\right) \mathbb{1}_{\left[T_{k}, T_{k+1}\right)}(t+d t)\right\} \tag{5.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{E}_{\xi_{T_{n}}}\left(\xi_{t+d t}-\xi_{T_{n}}\right)=\sum_{k=n}^{\infty} \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{k}}-\xi_{T_{n}}\right) \mathbb{1}_{\left[T_{k}, T_{k+1}\right)}(t+d t)\right\} \tag{5.5}
\end{equation*}
$$

As the addend for $k=n$ vanishes we only need to evaluate

$$
\begin{equation*}
X_{k n}(t):=\mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{k}}-\xi_{T_{n}}\right) \mathbb{1}_{\left[T_{k}, T_{k+1}\right)}(t+d t)\right\} \tag{5.6}
\end{equation*}
$$

for $k>n$ and for $T_{n} \leq t<T_{n+1}$. By virtue of (4.6) we have

$$
\begin{equation*}
X_{k n}(t):=\mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{k}}-\xi_{T_{n}}\right) e^{-r\left(\xi_{T_{k}}\right)\left(t+d t-T_{k}\right)} \mathbb{1}_{[0, t+d t]}\left(T_{k}\right) \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t)\right\} \tag{5.7}
\end{equation*}
$$

We may distinguish two situations.

- $k=n+1$

$$
\begin{align*}
& X_{n+1 n}(t)=\mathrm{E}_{\xi_{T_{n}}}\left\{\xi_{T_{n+1}} e^{-r\left(\xi_{T_{n+1}}\right)\left(t+d t-T_{n+1}\right)} \mathbb{1}_{[0, t+d t)}\left(T_{n+1}\right) \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t)\right\} \\
& \quad=\mathrm{E}_{\xi_{T_{n}}}\left\{\xi_{T_{n+1}} e^{-r\left(\xi_{T_{n+1}}\right)\left(t+d t-T_{n+1}\right)} \mathbb{1}_{[0, t+d t]}\left(T_{n+1}\right) \mathbb{1}_{\left[0, T_{n}\right]}(t) \mathbb{1}_{[t, \infty)}\left(T_{n+1}\right)\right\} \tag{5.8}
\end{align*}
$$

The constraints imposed by the set characteristic functions yield

$$
\begin{equation*}
\mathbb{1}_{[0, t+d t]}\left(T_{n+1}\right) \mathbb{1}_{[t, \infty)}\left(T_{n+1}\right)=\mathbb{1}_{[t, t+d t)}\left(T_{n+1}\right)=\mathbb{1}_{\left[t-T_{n}, t+d t-T_{n}\right)}\left(\tau_{n+1}\right) \tag{5.9}
\end{equation*}
$$

We know explicitly, the probability density of the "time" increment variable

$$
\begin{equation*}
\tau_{n+1} \stackrel{d}{=} r\left(\xi_{T_{n}}\right) e^{-r\left(\xi_{T_{n}}\right) t} H(t) \tag{5.10}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\int_{t-T_{n}}^{t+d t-T_{n}} d s e^{-r\left(\xi_{T_{n+1}}\right)\left(t+d t-T_{n}-s\right)} r\left(\xi_{T_{n}}\right) e^{-r\left(\xi_{T_{n}}\right) s}=d t r\left(\xi_{T_{n}}\right) e^{-r\left(\xi_{T_{n}}\right)\left(t-T_{n}\right)}+O\left(d t^{2}\right) \tag{5.11}
\end{equation*}
$$

whence we obtain

$$
\begin{equation*}
X_{n+1 n}=d t r\left(\xi_{T_{n}}\right) \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{n+1}}-\xi_{T_{n}}\right) e^{-r\left(\xi_{T_{n}}\right)\left(t-T_{n}\right)} \mathbb{1}_{[0, t]}\left(T_{n}\right)\right\}+O\left(d t^{2}\right) \tag{5.12}
\end{equation*}
$$

The remaining average factorizes in

$$
\begin{align*}
& \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{n+1}}-T_{n}\right) e^{-r\left(\xi_{T_{n}}\right)\left(t-T_{n}\right)} \mathbb{1}_{[0, t]}\left(T_{n}\right)\right\}= \\
& \quad \mathrm{E}_{\xi_{T_{n}}}\left\{\left(\xi_{T_{n+1}}-\xi_{T_{n}}\right)\right\} \mathrm{E}_{\xi_{T_{n}}}\left\{e^{-r\left(\xi_{T_{n}}\right)\left(t-T_{n}\right)} \mathbb{1}_{[0, t]}\left(T_{n}\right)\right\} \tag{5.13}
\end{align*}
$$

where

$$
\begin{gather*}
\mathrm{E}_{\xi_{T_{n}}}\left(\xi_{T_{n+1}}-\xi_{T_{n}}\right)=\sum_{\mathrm{x} \in \mathbb{S}}\left(\mathrm{x}-\xi_{T_{n}}\right) \mathrm{p}\left(\mathrm{x} \mid \xi_{T_{n}}\right) \tag{5.14a}\\
\mathrm{E}_{\xi_{T_{n}}}\left\{e^{-r\left(\xi_{T_{n}}\right)\left(t-T_{n}\right)} \mathbb{1}_{[0, t]}\left(T_{n}\right)\right\}=\mathrm{P}\left(\#_{t}=n \mid \xi_{T_{n}}\right)=\mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t) \tag{5.14b}
\end{gather*}
$$

We therefore proved that

$$
\begin{equation*}
X_{n-1 n}=d t r\left(\xi_{T_{n-1}}\right) \mathbb{1}_{\left[T_{n-1}, T_{n}\right)}(t) \sum_{\mathrm{x} \in \mathbb{S}} \mathrm{xp}\left(\mathrm{x} \mid \xi_{T_{n-1}}\right)+O\left(d t^{2}\right) \tag{5.15}
\end{equation*}
$$

2 If $k>n+1$. In such a case it is expedient to define

$$
\begin{equation*}
\tilde{T}_{k, n}=\sum_{l=n+2}^{k} \tau_{l} \tag{5.16}
\end{equation*}
$$

so that

$$
\begin{align*}
& X_{k n}(t)=\mathrm{E}_{\xi_{T_{n}}}\left\{\xi_{T_{k}} e^{-r\left(\xi_{T_{k}}\right)\left(t+d t-T_{n+1}-\tilde{T}_{k, n}\right)} \mathbb{1}_{[0, t+d t]}\left(T_{n+1}+\tilde{T}_{k, n}\right) \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}(t)\right\} \\
& \quad=\mathrm{E}_{\xi_{T_{n}}}\left\{\xi_{T_{k}} e^{-r\left(\xi_{T_{k}}\right)\left(t+d t-T_{n+1}-\tilde{T}_{k, n}\right)} \mathbb{1}_{[0, t+d t]}\left(T_{n+1}+\tilde{T}_{n, n}\right) \mathbb{1}_{[0, t]}\left(T_{n}\right) \mathbb{1}_{[t, \infty]}\left(T_{n+1}\right)\right\} \tag{5.17}
\end{align*}
$$

We observe

$$
\begin{align*}
& \mathbb{1}_{[0, t+d t]}\left(T_{n+1}+\tilde{T}_{k, n}\right) \mathbb{1}_{[t, \infty]}\left(T_{n+1}\right)=\mathbb{1}_{\left[0, t+d t-T_{k, n}\right]}\left(T_{n+1}\right) \mathbb{1}_{[t, \infty]}\left(T_{n+1}\right) \\
& \quad=\mathbb{1}_{[0, d t]}\left(\tilde{T}_{k, n}\right) \mathbb{1}_{\left[t, t+d t-T_{k, n}\right]}\left(T_{n+1}\right)=\mathbb{1}_{[0, d t]}\left(\tilde{T}_{k, n}\right) \mathbb{1}_{\left[t-T_{n}, t+d t-T_{n}-T_{k, n}\right]}\left(T_{n+1}\right) \tag{5.18}
\end{align*}
$$

We can couch the last equality in to the form

$$
\begin{align*}
& X_{k n}(t)= \\
& \mathrm{E}_{\xi_{T_{n}}}\left\{\xi_{T_{k}} e^{-r\left(\xi_{T_{k}}\right)\left(t+d t-T_{n}-\tau_{n+1}-\tilde{T}_{k, n}\right)} \mathbb{1}_{[0, t]}\left(T_{n}\right) \mathbb{1}_{[0, d t]}\left(\tilde{T}_{k, n}\right) \mathbb{1}_{\left[t-T_{n}, t+d t-T_{n}-T_{k, n}\right]}\left(\tau_{n+1}\right)\right\} \tag{5.19}
\end{align*}
$$

whence we see that we are taking the expectation of a quantity containing the product of two characteristic functions of sets having support of linear size $O(d t)$. The conclusion is

$$
\begin{equation*}
X_{k n}(t)=O\left(d t^{2}\right) \tag{5.20}
\end{equation*}
$$

Gleaning the above information we have shown that

$$
\begin{equation*}
D \xi_{t}=\lim _{d t \downarrow 0} \sum_{n=1}^{\infty} \frac{d t r\left(\xi_{T_{n-1}}\right) \mathbb{1}_{\left[T_{n-1}, T_{n}\right)}(t) \sum_{\mathrm{x} \in \mathbb{S}}\left(\mathrm{x}-\xi_{T_{n}}\right) \mathrm{p}\left(\mathrm{x} \mid \xi_{T_{n-1}}\right)+O\left(d t^{2}\right)}{d t} \tag{5.21}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D \xi_{t}=\sum_{\mathrm{x} \in \mathbb{S}}\left(\mathrm{x}-\xi_{t}\right) \mathrm{k}\left(\mathrm{x} \mid \xi_{t}\right) \tag{5.22}
\end{equation*}
$$

6 Stochastic Equation satisfied by a Markov Jump process

The mean forward derivative suggests us that a Markov jump process may pathwise pathwise a stochastic equation of the form

$$
\begin{equation*}
d \xi_{t}=d t D \xi_{t}+d \mu_{t} \tag{6.1}
\end{equation*}
$$

From the definition of mean forward derivative we must have

$$
\begin{equation*}
\mathrm{E}_{\xi_{t}} d \mu_{t}=0 \tag{6.2}
\end{equation*}
$$

for any t. If (6.1) holds true, then we can write

$$
\begin{equation*}
\xi_{t}-\xi_{0}=\int_{0}^{t} d t D \xi_{t}+\int_{0}^{t} d \mu_{t} \tag{6.3}
\end{equation*}
$$

As ξ_{t} is constant between jumps

$$
\begin{equation*}
\int_{0}^{t} d t D \xi_{t}=\sum_{n=0}^{1 \infty} D \xi_{T_{n}}\left(t \wedge T_{n+1}-t \wedge T_{n}\right) \tag{6.4}
\end{equation*}
$$

where

$$
t_{1} \wedge t_{2}= \begin{cases}t_{1} & t_{1} \leq t_{2} \tag{6.5}\\ t_{2} & t_{1}>t_{2}\end{cases}
$$

Note that in (6.4) when $t \leq T_{n}$

$$
\begin{equation*}
t \wedge T_{n+1}-t \wedge T_{n}=0 \tag{6.6}
\end{equation*}
$$

Thus we have for $\mu_{0}=0$

$$
\begin{equation*}
\mu_{t}=\xi_{t}-\xi_{0}-\sum_{n=0}^{\infty} D \xi_{T_{n}}\left(t \wedge T_{n+1}-t \wedge T_{n}\right) \tag{6.7}
\end{equation*}
$$

It is possible to prove [3] that if the probability of having very large jumps is "sufficiently" small the process exists μ_{t} and is a martingale.

7 Generator description

Let

$$
\begin{equation*}
f: \mathcal{S} \mapsto \mathbb{R} \tag{7.1}
\end{equation*}
$$

a bounded, measurable function. We define the generator of a jump Markov process acting on f

$$
\begin{equation*}
(\mathrm{L} f)(\mathrm{x})=\sum_{\mathrm{x}^{\prime} \in \mathcal{S}}\left[f\left(\mathrm{x}^{\prime}\right)-f(\mathrm{x})\right] k\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)=\sum_{\mathrm{x}^{\prime} \in \mathcal{S}} f\left(\mathrm{x}^{\prime}\right) k\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)-f(\mathrm{x}) r(\mathrm{x}) \tag{7.2}
\end{equation*}
$$

for $\mathrm{x}^{\prime}, \mathrm{x} \in \mathcal{S}, k\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)$. The nullspace $\mathcal{N}(\mathfrak{L})$ of the generator \mathfrak{L} consists in general of constant functions over \mathcal{S} :

$$
\begin{equation*}
\sum_{\mathrm{x}^{\prime} \in \mathcal{S}} k\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right) f-r(\mathrm{x}) f=0 \quad \forall f \tag{7.3}
\end{equation*}
$$

If the state of the system at time t is described by a probability distribution m

$$
\begin{equation*}
m: \mathcal{S} \times \mathbb{R}_{+} \mapsto[0,1] \tag{7.4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{d}{d t} \mathrm{E} f=\sum_{\mathrm{x}, \mathrm{x}^{\prime} \in \mathcal{S}} k\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)\left[f\left(\mathrm{x}^{\prime}\right)-f(\mathrm{x})\right] m(\mathrm{x}, t) \tag{7.5}
\end{equation*}
$$

If we then choose

$$
\begin{equation*}
f(\mathrm{x})=\delta_{\mathrm{x}, \mathrm{y}} \tag{7.6}
\end{equation*}
$$

we recover the evolution equation for the measure

$$
\begin{gather*}
\frac{d m(\mathrm{y}, t)}{d t}=\sum_{\mathrm{x} \in \mathcal{S}}[k(\mathrm{y} \mid \mathrm{x}) m(\mathrm{x}, t)-k(\mathrm{x} \mid \mathrm{Y}) m(\mathrm{y}, t)]=\sum_{\mathrm{x} \in \mathcal{S}}\left[k(\mathrm{y} \mid \mathrm{x})-r(\mathrm{y}) \delta_{\mathrm{x} \mathrm{y}}\right] m(\mathrm{x}, t) \tag{7.7a}\\
m\left(\mathrm{y}, t_{o}\right)=m_{o}(\mathrm{y}) \tag{7.7b}
\end{gather*}
$$

8 Girsanov formula: explicit expression of the Radon-Nikodym derivative

Let us consider two Markov chains $\boldsymbol{\Xi}_{1}=\left\{\boldsymbol{\xi}_{1 ; t}, t \in T\right\}$ and $\boldsymbol{\Xi}_{2}=\left\{\boldsymbol{\xi}_{2 ; t}, t \in T\right\}$ on the same countable space \mathbb{S} with probability measures $\mathrm{P}_{\boldsymbol{\Xi}_{1}}$ and $\mathrm{P}_{\boldsymbol{\Xi}_{2}}$. The probability measure $\mathrm{P}_{\boldsymbol{\Xi}_{1}}$ is absolutely continuous with respect to $\mathrm{P}_{\boldsymbol{\Xi}_{2}}$ up to a time t if the allowed jumps are the same. This means that for every $\boldsymbol{x} \in \mathbb{S}$ the sets

$$
\begin{equation*}
\left\{\boldsymbol{x} \in \mathbb{S} \mid \mathrm{p}_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{x} \mid \boldsymbol{x}^{\prime}\right) \neq 0\right\}=\left\{\boldsymbol{x} \in \mathbb{S} \mid \mathrm{p}_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{x} \mid \boldsymbol{x}^{\prime}\right) \neq 0\right\} \tag{8.1}
\end{equation*}
$$

Proposition 8.1. The Radon-Nikodym derivative restricted to \mathcal{F}_{t} is given by the formula

$$
\begin{equation*}
\frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\mathbf{\Xi}_{2}}}\left(\boldsymbol{\xi}_{t}\right)=\exp \left\{\int_{0}^{t} d s\left[r_{1}\left(\boldsymbol{\xi}_{s}\right)-r_{2}\left(\boldsymbol{\xi}_{s}\right)\right]-\sum_{s \leq t} \ln \frac{r_{1}\left(\boldsymbol{\xi}_{s^{-}}\right) p_{\mathbf{\Xi}_{1}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right)}{r_{2}\left(\boldsymbol{\xi}_{s^{-}}\right) p_{\mathbf{\Xi}_{2}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right)}\right\} \tag{8.2}
\end{equation*}
$$

Proof. The assumption

$$
\begin{equation*}
\mathrm{p}_{\boldsymbol{\Xi}_{1}}(\boldsymbol{x} \mid \boldsymbol{x})=\mathrm{p}_{\boldsymbol{\Xi}_{2}}(\boldsymbol{x} \mid \boldsymbol{x})=0 \tag{8.3}
\end{equation*}
$$

ensures that

$$
\begin{equation*}
p_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{\xi}_{2 ; s} \mid \boldsymbol{\xi}_{2 ; s^{-}}\right)=p_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{\xi}_{2 ; s} \mid \boldsymbol{\xi}_{2 ; s^{-}}\right)=0 \tag{8.4}
\end{equation*}
$$

everywhere but at the jumps. In particular with probability one the sum $\sum_{s \leq t}$ reduces to a finite sum. To prove the claim we proceed in two steps.
i Let us fix an $n \in \mathbb{N}$ and

$$
\begin{equation*}
t=T_{n}=\sum_{i=1}^{n} \tau_{i} \tag{8.5}
\end{equation*}
$$

For any bounded measurable function

$$
\begin{equation*}
F:\left(\mathbb{S} \times \mathbb{R}_{+}\right)^{n} \mapsto \mathbb{R} \tag{8.6}
\end{equation*}
$$

we have

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}_{\boldsymbol{\Xi}_{1}}} F\left(\boldsymbol{\xi}_{T_{1}}, T_{1}, \boldsymbol{\xi}_{T_{2}}, T_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, T_{n}\right)=\sum_{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{S} 0 \leq i \leq n-1} \prod_{0} \int_{0}^{\infty} d s_{i+1} \\
& \quad \times p_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{1}\left(\boldsymbol{x}_{i}\right) e^{-r_{1}\left(\boldsymbol{x}_{i}\right) s_{i+1}} F\left(\boldsymbol{x}_{1}, s_{1}, \boldsymbol{x}_{2}, s_{1}+s_{2}, \ldots, \boldsymbol{x}_{n}, s_{1}+\cdots+s_{n}\right) \tag{8.7}
\end{align*}
$$

Dividing and multiplying by the measure of $\boldsymbol{\Xi}_{2}$ we can couch the right hand side into the form

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}_{\boldsymbol{\Xi}_{1}}} F\left(\boldsymbol{\xi}_{T_{1}}, T_{1}, \boldsymbol{\xi}_{T_{2}}, T_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, T_{n}\right)=\sum_{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{S}} \prod_{0 \leq i \leq n-1} \int_{0}^{\infty} d s_{i+1} \\
& \times p_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{2}\left(\boldsymbol{x}_{i}\right) e^{-r_{2}\left(\boldsymbol{x}_{i}\right) s_{i+1}} \frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\boldsymbol{\Xi}_{2}}}\left(\boldsymbol{x}_{T_{n}}\right) F\left(\boldsymbol{x}_{1}, s_{1}, \boldsymbol{x}_{2}, s_{1}+s_{2}, \ldots, \boldsymbol{x}_{n}, s_{1}+\cdots+s_{n}\right)(8 \tag{8.8a}\\
& \quad \frac{d \mathrm{P}_{\boldsymbol{\Xi}_{1}}}{d \mathrm{P}_{\boldsymbol{\Xi}_{2}}}\left(\boldsymbol{x}_{T_{n}}\right):=\prod_{0 \leq i \leq n-1} \frac{p_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{1}\left(\boldsymbol{x}_{i}\right)}{p_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{2}\left(\boldsymbol{x}_{i}\right)} e^{-\left[r_{1}\left(\boldsymbol{x}_{i}\right)-r_{2}\left(\boldsymbol{x}_{i}\right)\right] s_{i+1}} \tag{8.8b}
\end{align*}
$$

Since the factors are strictly positive definite we can also write

$$
\begin{equation*}
\frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\mathbf{\Xi}_{2}}}\left(\boldsymbol{x}_{2 ; t}\right)=\exp \left\{-\sum_{0 \leq i \leq n-1}\left[r_{1}\left(\boldsymbol{x}_{i}\right)-r_{2}\left(\boldsymbol{x}_{i}\right)\right] s_{i+1}+\sum_{0 \leq i \leq n-1} \ln \frac{p_{\mathbf{\Xi}_{1}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{1}\left(\boldsymbol{x}_{i}\right)}{p_{\mathbf{\Xi}_{2}}\left(\boldsymbol{x}_{i+1} \mid \boldsymbol{x}_{i}\right) r_{2}\left(\boldsymbol{x}_{i}\right)}\right\} \tag{8.9}
\end{equation*}
$$

By definition $\tau_{i}=t_{i}$ and the process $\boldsymbol{\Xi}_{2}$ is constant in between jumps. Hence

$$
\begin{equation*}
\frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\mathbf{\Xi}_{2}}}\left(\boldsymbol{\xi}_{T_{n}}\right):=\exp \left\{-\int_{0}^{T_{n}} d s\left[r_{1}\left(\boldsymbol{\xi}_{s}\right)-r_{2}\left(\boldsymbol{\xi}_{s}\right)\right]+\sum_{0 \leq s \leq T_{n}} \ln \frac{p_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right) r_{1}\left(\boldsymbol{\xi}_{s^{-}}\right)}{p_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right) r_{2}\left(\boldsymbol{\xi}_{s^{-}}\right)}\right\} \tag{8.10}
\end{equation*}
$$

and therefore

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}_{\mathbf{\Xi}_{1}}} F\left(\boldsymbol{\xi}_{\tau_{1}}, \tau_{1}, \boldsymbol{\xi}_{\tau_{1}+\tau_{2}}, \tau_{1}+\tau_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, T_{n}\right)= \\
& \quad \mathrm{E}_{\mathrm{P}_{\mathbf{\Xi}_{2}}} \frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\mathbf{\Xi}_{2}}}\left(\boldsymbol{\xi}_{T_{n}}\right) F\left(\boldsymbol{\xi}_{\tau_{1}}, \tau_{1}, \boldsymbol{\xi}_{\tau_{1}+\tau_{2}}, \tau_{1}+\tau_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, T_{n}\right) \tag{8.11}
\end{align*}
$$

ii Let us now consider an ordered n-tuple $\left(t_{1} \leq t_{2} \leq \ldots t_{n}=t\right)$. We can write

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}_{\boldsymbol{\Xi}_{1}}} F\left(\boldsymbol{\xi}_{t_{1}}, t_{1}, \boldsymbol{\xi}_{t_{2}}, t_{2}, \ldots, \boldsymbol{\xi}_{t}, t\right)= \\
& \quad \sum_{n=0}^{\infty} \mathrm{E}_{\mathrm{P}_{\Xi_{1}}} F\left(\boldsymbol{\xi}_{t_{1}}, t_{1}, \boldsymbol{\xi}_{t_{2}}, t_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, t_{n}\right) \mathbb{1}_{\left[T_{n}, T_{n+1}\right)}\left(t_{n}\right) \tag{8.12}
\end{align*}
$$

Acting with (4.4) on all element of the n-tuple we arrive to an expression of the form

$$
\begin{align*}
& \mathrm{E}_{\mathrm{P}_{\mathbf{\Xi}_{1}}} F\left(\boldsymbol{\xi}_{t_{1}}, t_{1}, \boldsymbol{\xi}_{t_{2}}, t_{2}, \ldots, \boldsymbol{\xi}_{t}, t\right)= \\
& \quad \sum_{\boldsymbol{n}} \mathrm{E}_{\mathrm{P}_{\mathbf{\Xi}_{1}}} F_{\boldsymbol{n}}\left(\boldsymbol{\xi}_{T_{1}}, t_{1}, \boldsymbol{\xi}_{T_{2}}, t_{2}, \ldots, \boldsymbol{\xi}_{T_{n}}, t_{n}\right) e^{-r\left(\boldsymbol{\xi}_{T_{n}}\right)\left(t-T_{n}\right)} \mathbb{1}_{\left[t_{n}, \infty\right)}\left(T_{n}\right) \tag{8.13}
\end{align*}
$$

for some $\left\{F_{\boldsymbol{n}}\right\}$. On each term of the series we can now act as in step i. Since in the time interval $\left(T_{n}, t\right]$ no jump occurs, the only correction to the formula previously found comes from the exponential factor in (8.13). We can therefore write

$$
\begin{equation*}
\frac{d \mathrm{P}_{\mathbf{\Xi}_{1}}}{d \mathrm{P}_{\boldsymbol{\Xi}_{2}}}\left(\boldsymbol{\xi}_{t}\right):=\exp \left\{-\int_{0}^{t} d s\left[r_{1}\left(\boldsymbol{\xi}_{s}\right)-r_{2}\left(\boldsymbol{\xi}_{s}\right)\right]+\sum_{0 \leq s \leq t} \ln \frac{p_{\boldsymbol{\Xi}_{1}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right) r_{1}\left(\boldsymbol{\xi}_{s^{-}}\right)}{p_{\boldsymbol{\Xi}_{2}}\left(\boldsymbol{\xi}_{s} \mid \boldsymbol{\xi}_{s^{-}}\right) r_{2}\left(\boldsymbol{\xi}_{s^{-}}\right)}\right\} \tag{8.14}
\end{equation*}
$$

References

[1] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sciences, volume 13 of Springer series in synergetics. Springer, 2 edition, 1994.
[2] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems. Number 320 in Grundlheren der Mathematischen Wissenschaften. Springer, 1999.
[3] F. C. Klebaner. Introduction to stochastic calculus with applications. Imperial College Press, 2 edition, 2005.
[4] E. Nelson. Dynamical Theories of Brownian Motion. Princeton University Press, second edition edition, 2001.

