Girsanov formula for Markov Jump Processes

1 Introduction

Good references but beyond the needs of the present course for Markov jump processes are chapter 9 of [3] and
appendix 1 of [2]. Gardiner [1] in chapter 3 treats Markov jump processes as a special case of Markov processes
and derives the master equation for their probability evolution. Before doing so here we will give as in [3] a brief
description of pathwise realizations of jump processes.

2 Jump process
Let S a finite state space, and &; is a jump Markov process

R xQ— S (2.1)
The paths of a jump Markov process can be written (see e.g. [3]) as
(o]
& =&+ (aliy(Tn) (22)
n=1
where

1. 1 denotes the characteristic function

1 r e A
La(z) = (2.3)
0 x ¢ A
2.1t =T,
n
&, =&+ G 2.4)
i=1
3. {Tn}ff:l is a sequence of random variables with increments 7,, := T;,1 — T},, Tp = 0 distributed if {77, = x
according to
o L r(x) e M) gy (2.5)
4. if we posit £, = x then
<n+1 = anJrl - ng = £Tn+l RS (2'6)
takes the value
Cnt1 = x' —x (2.7



with probability depending only upon x

i1 2 p(x'|x) = {kg}({!;{)} - (2.8)

5. We interpret the (,,’s as jump amplitudes occurring at random times 7;,. Self-consistency of the interpretation
requires

P(x|x) = 0 (2.9)
6. The pair (¢, T},) is an inhomogeneous Markov chain on S x R, with conditional probability
P (7, =%t <Tpp1 <t +dt|éq, =x,T,=1t) =p (¥]x) r(x) e T OEDHE 1)  (2.10)
The interpretation is as follows. The sequence of random increments { AT}, },~; paves the time horizon [0, Too] € R

Let w be the event in the sample space (2 specifying a realization of the sequence { AT}, (w)} 2. Let 0 <t < T be
the time at which we observe the process. Then there is an n; € N such that

ne ’ntJrl
Tpo=Y 7 <t < Y 7h:=Tnp1 2.11)
n=0 n=0

Such n; counts the number of jumps occurring during the interval [0, t] C [0, T'x]. The size of each jump is specified
by {Zk}z*:o

3 Poisson process as a special case of Markov jump process
A special case of (2.2) corresponds to the choice
(=1 Vn (3.1

The general jump process reduces to the Poisson process starting from &p:
oo
G=%+Y Tpg(Tw) € &+N (32)
n=1

In particular, for §; = 0 and t = T,, we have

§r, =n (3.3)

We can compute the probability distribution using (2.5) and the independence of the jumps. To that goal let us first
compute the probability density of

T, = Zn: 7 (3.4)
i=1

This is most conveniently done by inverting the characteristic function

o oot et [ 82 et gney
t: . 1T E 1T [ - 1T E 1TT 3.5
pr.t) = [ gretBesh = [ S et geen) 3.3



where

Eet®™ — / dtre Ttttz — " (3.6)
0

r—1x

The anti-Fourier transform can be performed using Cauchy theorem

B dr r™et®t B r(rt)”_l e Tt
pr.(f) = /R Srr—ity T G-D

In order to compare this result with the Poisson process as we defined it in the previous lecture, we observe that
probability that the system has performed n jumps at time ¢ is

P(#t:n):P(Tngt,Tn+1 >t):

t t
/ P(s < T,<s+dsThi1 >1t)= / dsP (Ty41 > t|T, = s) pr,(s) (3.8)
0 0

We used here the short hand notation

#: := number of jumps at time ¢ 3.9)
Then we have
[o¢]
P(Thy1>t|Th=5)=P(mpp1>t—T,|T,=5s)= / dure " (3.10)
t—s
so that
t r (7, S)n—l e TS
P(Tp <t Tyss > ) = / dse =8 e (3.11)
0 I'(n)

which allows us to recover

n ,—rt n ,—rt
P(#=n)= (;afn - (H)me (3.12)

4 Averaging
Let F' any bounded measurable function
F: (SxR.)"—R (4.1)
Let also {¢;}"_; an ordered R -valued n-tuple
t <ty <tz <t,=t < T 4.2)

Suppose we need to evaluate the expectation value with respect to a Markov jump process {{;,0 <t < T}

F:=EF(&, . t1,... .6, 1) (4.3)

Let us observe that

o0
0<t<Tw = Y Lpm,t)=1 (4.4)
n=0



Using (4.4) the expectation value reduces to the form

(o]
F=>F (4.52)
i=0
Fy =BF (&, ,t1,... &, )L 1, () (4.5b)
Taking into account that 7,1 = T}, + 7,+1 and the mutual independence of the 7;,’s we have the identity
L7, i) () = Lo (L) L(t-T,1,00) (Tt 1) (4.6)
whence we can write
E =K {F(gtl atl PRI )fT ) ) - fT ) (t_Tn)jl[O,t) (ﬂ)} (47)

The advantage of this writing is that each therm appearing in the series now contains only a finite number jumps,
specifically ¢ for F;. Note that we can now iterate the procedure for &, _, in order to finally arrive to an expression
amenable to an elementary expression in terms of the transition probability (2.10)

5 Mean forward derivative of Markov jump process

We define the mean forward derivative of a Markov jump process as

o Strdt — &t
Dé; ._ll%E&{ v (5.1)

Let us preliminarily observe that for any f depending upon the Markov jump process we can write any conditional
expectation as the series

Be 0 = 3 Lin, 0y, £C) (52)
1=0
Hence we need only to evaluate
Eep, {(&trae —é1,)} = Z Ee, {(&n, = &0) Lim 1) (E+ dE) } (5.3)
k=0

Since t + dt > t we can restrict the focus to addends satisfying Ty, > 7;, and k > n:

B¢, (Svar — E1,) = i Eep, {(ér, — &) Lim 1 ) (E+ dt) } (5.4)
k=n
or equivalently
Ee (Sovar —E1,) = i Eep, {61, — &1.) Limy men ) (84 dE) } (5.5)
k=n
As the addend for k£ = n vanishes we only need to evaluate
Xin(t) == Bey, {(én, —&m) Lm0y (E+ dt) } (5.6)
for k > nandfor7,, < t < T,41. By virtue of (4.6) we have
Xien(t) := Egp,, {(ka — &p,,) e " (En ) E+=T, L0 srag (Th) 1 [Tn,Tn+1)(t)} 5.7

We may distinguish two situations.



e k=n+1
Xny1n(t) = Eep,, {an+1 e " (6 )(EHdt=Tnrs) Lo,t+dt) (Tnt1) ]l[Tn,Tn.H)(t)}
= B¢, {ﬁTnH ¢ (g ) (Ht=Tns) Lj0,4de) (Trt1) Lio,7,] (1) Lit,00) (Tn+1)} (5.8)
The constraints imposed by the set characteristic functions yield
Lj0,4d) (Trnt1) Lit,o0) (Tnt1) = L rar)(Tot1) = Lp—1, ovde—1) (Tnt1) (5.9)
We know explicitly, the probability density of the “time” increment variable
Tui1 L1 (&) e H(E) (5.10)

which yields

1,) e )T = dir (g7,) eTEW) T L O(r?)  (5.11)

n

t+dt—Tn,
/ ds ¢80 ) (HA=Tas), (¢
t—Tn

whence we obtain

The remaining average factorizes in

Eep. {(ngH - T) e~ r(&r,) (t=Tn) Lo 4 (Tn)} —

Ee, {(é1,00 — €1.)} Eep, {e‘?”(anW—Tn) o4 (Tn)} (5.13)
where
Ee;, (€041 — &1) = Z(X —&r,) p (x[¢7,) (5.14a)
x€S

Bey, {7 €m) 0T 10, ()} = P (# = nlén,) = Lz, 1) (8 (5.14b)

We therefore proved that
Xnotn = dtr (é1,_,) Loy (®) > xD (xlér,_,) + O(dt?) (5.15)

x€S

2 If k > n+ 1. In such a case it is expedient to define

k
Tin= Y 7 (5.16)

l=n+2

so that
an(t) _ Eng {ng 6—r(£Tk)(t+dt—Tn+1—Tk,n) jl[o,t—i-dt} (Tn+1 -+ Tk,n) Il[TanH) (t)}

— Ean {é—Tk e—r(ng ) (t+dt—Tn+l —Tk,n) 1 [O,t—&-dt] (Tn+1 + Tn’n) 1 [Oﬂ (Tn> 1T [t,oo] (Tn+1) } (5 17)
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We observe
Lio,eat) (Tnt1 + Thon) Litoo) (Tnt1) = Lo gpat—1y0] (Tnt1) Lty (Tns1)
= 10,00 (D) Lt trat—15.0] (Tn+1) = Ljo,ag(Thn) Lit—1,, t4dt—Tn—Ty 0] (Tnt1) (5.18)
We can couch the last equality in to the form

an(t) =
Eng {ka e—r(ﬁTk)(t+dt—T7z—Tn+1—Tk,n)]]_[Oﬂ (T},) L1044 (Tk,n) L1, ,t+dt*Tn*Tk,n](Tn+1)} (5.19)

whence we see that we are taking the expectation of a quantity containing the product of two characteristic
functions of sets having support of linear size O(dt). The conclusion is

X (t) = O(dt?) (5.20)

Gleaning the above information we have shown that

N dtr (En, ) gy 1)) Yopes(x = &n,) p (x[é, ) + O(dt?)
At dt

(5.21)

or equivalently

DG =) (x— &)k (xl&) (5.22)

xE€S

6 Stochastic Equation satisfied by a Markov Jump process

The mean forward derivative suggests us that a Markov jump process may pathwise pathwise a stochastic equation of
the form

dé; = dt D& + dyy 6.1)

From the definition of mean forward derivative we must have

E¢,dpy =0 (6.2)
for any ¢. If (6.1) holds true, then we can write
t t
b6~ [ dDg+ [ du (63)
0 0
As &, is constant between jumps
t 100
/ dt D& =Y Dér, (tATop1 —t A T,) (6.4)
0 n=0
where
1 i1 < ta
t1 Nty = (6.5)
to t1 > to



Note that in (6.4) when t < T,

tATh1 —tANT, =0 (6.6)
Thus we have for pg =0
oo
pe="5—% — Y Dér, (tATup1 —t A Ty) (6.7)
n=0

It is possible to prove [3] that if the probability of having very large jumps is “sufficiently” small the process exists i
and is a martingale.
7 Generator description
Let
f:S—R (7.1)

a bounded, measurable function. We define the generator of a jump Markov process acting on f

(L) ()= Y [F() = FO) (%) = Y F(=) k(x|%) = f(x) 7(x) (7.2)
x'eS x'eS
for x', x € S, k(x'|x). The nullspace N (£) of the generator £ consists in general of constant functions over S:
Y kEHI|x) f-r(x)f=0  Vf (7.3)
x'eS

If the state of the system at time ¢ is described by a probability distribution m

m: S x Ry — [0,1] (7.4)
we obtain
d / /
TBf = k() [f() = f()] m(x,t) (7.5)
x,x'eS
If we then choose
f(x) =dxy (7.6)

we recover the evolution equation for the measure
dm(y,t
D) Syl mie, 1) — kGaly)m(y 0] = S [k(vl) 7 (3) du] mCs, ) (.70

x€S x€S

m(y,to) = mo(y) (7.7b)



8 Girsanov formula: explicit expression of the Radon-Nikodym derivative

Let us consider two Markov chains &; = {5 1.t € T} and Ey = {52;1& ,t e T} on the same countable space S with
probability measures Pz, and Pz,. The probability measure Pz, is absolutely continuous with respect to Pz, up to
a time ¢ if the allowed jumps are the same. This means that for every € S the sets

{x € S|pz, (z|z') £ 0} = {x € S|pz, (z|z') £ 0} (8.1)

Proposition 8.1. The Radon-Nikodym derivative restricted to F; is given by the formula

e € =om [[dsln(e) —raie)) - Gl 82
Proof. The assumption
Pz, (z|x) = p=, (z|z) =0 (8.3)
ensures that
pE1(§2;s|§2;s—) = paE, : -)=0 (8.4)

everywhere but at the jumps. In particular with probability one the sum ) __, reduces to a finite sum. To prove the
claim we proceed in two steps.

i1 Letus fixann € N and

n
i=1
For any bounded measurable function
F:(SxRy)"—R (8.6)

we have

Eple (£T17T17€T27T27 s aéTnaTn) = Z H / d81+1

x1,...,2n €S 0<i<n—1

X pe, (Tit1]Ts) m1 () e (@) sit1 F(x1,51,%2,81 + 82, ., &, S1+ -+ + Sp) 8.7

Dividing and multiplying by the measure of Z5 we can couch the right hand side into the form

EPglF (£T17T17£T27T27° .. 7£Tn7Tn) - Z H / ds’H—l

x1,...,2n €S 0<i<n—1

dPz=

X p=, ($i+1’mi) Tg(wl') €_r2(mi)8i+l de(an)F(wl, $1,&2,81 +82,...,Ln, 81+ -+ Sn)(883)
=2
dPg P (Tig1[20) T1(Ti) () (@) —ra(@0)] s
—(z7, e : Vs (8.8b)
Pz, ) <1:[ pa; (Tiva|®i) ra(@:)



Since the factors are strictly positive definite we can also write

dPz, p=, (®iv1|x:) ri(z;)
—=L(z9y) = expq — r(x;) — ro(x;)] 8541 + In (8.9
apz, @) o e mnelant 2L b ()

By definition 7; = ¢; and the process E5 is constant in between jumps. Hence

Pz, o i pe (e ) e, )
o) = (= [ dsin(e) nEE 2 e ) (¢10

and therefore
Eple (57'17 1’€T1+727T1 + 72, ’£Tn7Tn) =

dP
EP...2 dP (£Tn) (57‘177—1757'1-1-7-277—1 +727“’ 7£Tn7Tn) (811)

ii Let us now consider an ordered n-tuple (t; <ty < ...t, = t). We can write

EP—- F (£t1>t17£t27t27 s 7£t7t) =
Z Epg F (&,,t1, €00t -, &qy o tn) Lim, Ty (En) (8.12)

Acting with (4.4) on all element of the n-tuple we arrive to an expression of the form

EP— F (€t17t17€t27t27 s 7€t7t) =
Z EP-— ETI ) tla ETQ ) t27 R ET,,ﬂ tn) e_r(ng)(t_Tn) Il-[tn,oo) (Tn) (813)

for some {Fy,}. On each term of the series we can now act as in step ¢. Since in the time interval (7,,, t] no
jump occurs, the only correction to the formula previously found comes from the exponential factor in (8.13).
We can therefore write

dP" _ ! o P=E, £s|Es ) ( s~ )
oo € e = [l —n@))+ 3 R (®.14

O]
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