
Girsanov formula for Markov Jump Processes

1 Introduction

Good references but beyond the needs of the present course for Markov jump processes are chapter 9 of [3] and
appendix 1 of [2]. Gardiner [1] in chapter 3 treats Markov jump processes as a special case of Markov processes
and derives the master equation for their probability evolution. Before doing so here we will give as in [3] a brief
description of pathwise realizations of jump processes.

2 Jump process

Let S a finite state space, and ξt is a jump Markov process

ξt : R+ × Ω 7→ S (2.1)

The paths of a jump Markov process can be written (see e.g. [3]) as

ξt = ξo +
∞∑
n=1

ζn 11[0,t](Tn) (2.2)

where

1. 11 denotes the characteristic function

11A(x) =

{
1 x ∈ A

0 x ∈/ A
(2.3)

2. if t = Tn

ξTn = ξ0 +
n∑
i=1

ζn (2.4)

3. {Tn}∞n=1 is a sequence of random variables with increments τn := Tn+1 − Tn, T0 = 0 distributed if ξTn = x
according to

τn
d
= r(x) e−r(x) tdt (2.5)

4. if we posit ξTn = x then

ζn+1 := ξTn+1 − ξTn ≡ ξTn+1 − x (2.6)

takes the value

ζn+1 = x′ − x (2.7)
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with probability depending only upon x

ζn+1
d
= p(x′|x) =

{
k(x′|x)

r(x)

}
x′∈S

(2.8)

5. We interpret the ζn’s as jump amplitudes occurring at random times Tn. Self-consistency of the interpretation
requires

P(x|x) = 0 (2.9)

6. The pair (ζn, Tn) is an inhomogeneous Markov chain on S× R+ with conditional probability

P
(
ξTn+1 = x′, t′ < Tn+1 ≤ t′ + dt | ξTn = x, Tn = t

)
= p

(
x′|x

)
r (x) e−r(x)(t′−t)H(t′ − t) (2.10)

The interpretation is as follows. The sequence of random increments {∆Tk}∞k=0 paves the time horizon [0, T∞] ⊆ R+.
Let ω be the event in the sample space Ω specifying a realization of the sequence {∆Tk(ω)}∞k=0. Let 0 ≤ t ≤ T∞ be
the time at which we observe the process. Then there is an nt ∈ N such that

Tnt :=

nt∑
n=0

τk ≤ t <

nt+1∑
n=0

τk := Tnt+1 (2.11)

Such nt counts the number of jumps occurring during the interval [0, t] ⊆ [0, T∞]. The size of each jump is specified
by {Zk}n∗k=0.

3 Poisson process as a special case of Markov jump process

A special case of (2.2) corresponds to the choice

ζn = 1 ∀n (3.1)

The general jump process reduces to the Poisson process starting from ξ0:

ξt = ξ0 +
∞∑
n=1

11[0,t](Tn) ∈ ξ0 + N (3.2)

In particular, for ξ0 = 0 and t = Tn we have

ξTn = n (3.3)

We can compute the probability distribution using (2.5) and the independence of the jumps. To that goal let us first
compute the probability density of

Tn =

n∑
i=1

τi (3.4)

This is most conveniently done by inverting the characteristic function

pTn(t) =

∫
R

dx

2π
e−ı x t E eı x Tn =

∫
R

dx

2π
e−ı x t (E eı x τ )n (3.5)
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where

E eı x τ =

∫ ∞
0

dt r e−r t+ı t x =
r

r − ı x
(3.6)

The anti-Fourier transform can be performed using Cauchy theorem

pTn(t) =

∫
R

dx

2π

rn eı x t

(r − ı t)n
=
r (r t)n−1 e−r t

Γ(n)
(3.7)

In order to compare this result with the Poisson process as we defined it in the previous lecture, we observe that
probability that the system has performed n jumps at time t is

P (#t = n) = P (Tn ≤ t, Tn+1 > t) =∫ t

0
P (s < Tn ≤ s+ ds, Tn+1 > t) =

∫ t

0
dsP (Tn+1 > t |Tn = s) pTn(s) (3.8)

We used here the short hand notation

#t := number of jumps at time t (3.9)

Then we have

P (Tn+1 > t |Tn = s) = P (τn+1 > t− Tn |Tn = s) =

∫ ∞
t−s

du r e−r u (3.10)

so that

P (Tn ≤ t, Tn+1 > t) =

∫ t

0
ds e−r (t−s) r (r s)n−1 e−r s

Γ(n)
(3.11)

which allows us to recover

P (#t = n) =
(r t)n e−r t

Γ(n+ 1)
≡ (r t)n e−r t

n!
(3.12)

4 Averaging

Let F any bounded measurable function

F : (S× R+)n 7→ R (4.1)

Let also {ti}ni=1 an ordered R+-valued n-tuple

t1 ≤ t2 ≤ t3 · · · ≤ tn = t < T∞ (4.2)

Suppose we need to evaluate the expectation value with respect to a Markov jump process {ξt , 0 ≤ t < T∞}

F̄ := EF (ξt1 , t1 , . . . , ξt , t) (4.3)

Let us observe that

0 ≤ t ≤ T∞ ⇒
∞∑
n=0

11[Tn,Tn+1)(t) = 1 (4.4)

3



Using (4.4) the expectation value reduces to the form

F̄ =

∞∑
i=0

F̄i (4.5a)

F̄i = EF (ξt1 , t1 , . . . , ξt , t)11[Ti,Ti+1)(t) (4.5b)

Taking into account that Tn+1 = Tn + τn+1 and the mutual independence of the τn’s we have the identity

11[Tn,Tn+1)(t) = 11[0,t](Tn)11(t−Tn,∞)(τn+1) (4.6)

whence we can write

F̄i = E
{
F (ξt1 , t1 , . . . , ξTi , t) e

−r(ξTi ) (t−Tn)11[0,t)(Ti)
}

(4.7)

The advantage of this writing is that each therm appearing in the series now contains only a finite number jumps,
specifically i for F̄i. Note that we can now iterate the procedure for ξtn−1 in order to finally arrive to an expression
amenable to an elementary expression in terms of the transition probability (2.10)

5 Mean forward derivative of Markov jump process

We define the mean forward derivative of a Markov jump process as

Dξt := lim
dt↓0

Eξt

{
ξt+dt − ξt

dt

}
(5.1)

Let us preliminarily observe that for any f depending upon the Markov jump process we can write any conditional
expectation as the series

Eξtf(·) =

∞∑
i=0

11[Tn,Tn+1)(t)EξTnf(·) (5.2)

Hence we need only to evaluate

EξTn {(ξt+dt − ξTn)} =

∞∑
k=0

EξTn
{

(ξTk − ξTn)11[Tk,Tk+1)(t+ dt)
}

(5.3)

Since t+ dt > t we can restrict the focus to addends satisfying Tk ≥ Tn and k ≥ n:

EξTn (ξt+dt − ξTn) =

∞∑
k=n

EξTn
{

(ξTk − ξTn)11[Tk,Tk+1)(t+ dt)
}

(5.4)

or equivalently

EξTn (ξt+dt − ξTn) =

∞∑
k=n

EξTn
{

(ξTk − ξTn)11[Tk,Tk+1)(t+ dt)
}

(5.5)

As the addend for k = n vanishes we only need to evaluate

Xkn(t) := EξTn
{

(ξTk − ξTn)11[Tk,Tk+1)(t+ dt)
}

(5.6)

for k > n and for Tn ≤ t < Tn+1. By virtue of (4.6) we have

Xkn(t) := EξTn

{
(ξTk − ξTn) e−r(ξTk)(t+dt−Tk)11[0,t+dt](Tk)11[Tn,Tn+1)(t)

}
(5.7)

We may distinguish two situations.
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• k = n+ 1

Xn+1n(t) = EξTn

{
ξTn+1 e

−r(ξTn+1)(t+dt−Tn+1) 11[0,t+dt)(Tn+1)11[Tn,Tn+1)(t)
}

= EξTn

{
ξTn+1 e

−r(ξTn+1)(t+dt−Tn+1) 11[0,t+dt](Tn+1)11[0,Tn](t)11[t,∞)(Tn+1)
}

(5.8)

The constraints imposed by the set characteristic functions yield

11[0,t+dt](Tn+1)11[t,∞)(Tn+1) = 11[t,t+dt)(Tn+1) = 11[t−Tn ,t+dt−Tn)(τn+1) (5.9)

We know explicitly, the probability density of the “time” increment variable

τn+1
d
= r (ξTn) e−r(ξTn ) tH(t) (5.10)

which yields∫ t+dt−Tn

t−Tn
ds e−r(ξTn+1)(t+dt−Tn−s)r (ξTn) e−r(ξTn ) s = dt r (ξTn) e−r(ξTn ) (t−Tn) +O(dt2) (5.11)

whence we obtain

Xn+1n = dt r (ξTn) EξTn

{
(ξTn+1 − ξTn) e−r(ξTn ) (t−Tn) 11[0,t](Tn)

}
+O(dt2) (5.12)

The remaining average factorizes in

EξTn

{
(ξTn+1 − Tn) e−r(ξTn ) (t−Tn) 11[0,t](Tn)

}
=

EξTn
{

(ξTn+1 − ξTn)
}

EξTn

{
e−r(ξTn ) (t−Tn) 11[0,t](Tn)

}
(5.13)

where

EξTn (ξTn+1 − ξTn) =
∑
x∈S

(x− ξTn) p (x|ξTn) (5.14a)

EξTn

{
e−r(ξTn ) (t−Tn) 11[0,t](Tn)

}
= P (#t = n|ξTn) = 11[Tn,Tn+1)(t) (5.14b)

We therefore proved that

Xn−1n = dt r
(
ξTn−1

)
11[Tn−1,Tn)(t)

∑
x∈S

x p
(
x|ξTn−1

)
+O(dt2) (5.15)

2 If k > n+ 1. In such a case it is expedient to define

T̃k,n =

k∑
l=n+2

τl (5.16)

so that

Xkn(t) = EξTn

{
ξTk e

−r(ξTk)(t+dt−Tn+1−T̃k,n)11[0,t+dt](Tn+1 + T̃k,n)11[Tn,Tn+1)(t)
}

= EξTn

{
ξTk e

−r(ξTk)(t+dt−Tn+1−T̃k,n)11[0,t+dt](Tn+1 + T̃n,n)11[0,t](Tn)11[t,∞](Tn+1)
}

(5.17)
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We observe

11[0,t+dt](Tn+1 + T̃k,n)11[t,∞](Tn+1) = 11[0,t+dt−Tk,n](Tn+1)11[t,∞](Tn+1)

= 11[0,dt](T̃k,n)11[t ,t+dt−Tk,n](Tn+1) = 11[0,dt](T̃k,n)11[t−Tn ,t+dt−Tn−Tk,n](τn+1) (5.18)

We can couch the last equality in to the form

Xkn(t) =

EξTn

{
ξTk e

−r(ξTk)(t+dt−Tn−τn+1−T̃k,n)11[0,t](Tn)11[0,dt](T̃k,n)11[t−Tn ,t+dt−Tn−Tk,n](τn+1)
}

(5.19)

whence we see that we are taking the expectation of a quantity containing the product of two characteristic
functions of sets having support of linear size O(dt). The conclusion is

Xkn(t) = O(dt2) (5.20)

Gleaning the above information we have shown that

Dξt = lim
dt↓0

∞∑
n=1

dt r
(
ξTn−1

)
11[Tn−1,Tn)(t)

∑
x∈S(x− ξTn) p

(
x|ξTn−1

)
+O(dt2)

dt
(5.21)

or equivalently

Dξt =
∑
x∈S

(x− ξt) k (x|ξt) (5.22)

6 Stochastic Equation satisfied by a Markov Jump process

The mean forward derivative suggests us that a Markov jump process may pathwise pathwise a stochastic equation of
the form

dξt = dtDξt + dµt (6.1)

From the definition of mean forward derivative we must have

Eξtdµt = 0 (6.2)

for any t. If (6.1) holds true, then we can write

ξt − ξ0 =

∫ t

0
dtDξt +

∫ t

0
dµt (6.3)

As ξt is constant between jumps ∫ t

0
dtDξt =

ı∞∑
n=0

DξTn (t ∧ Tn+1 − t ∧ Tn) (6.4)

where

t1 ∧ t2 =

{
t1 t1 ≤ t2

t2 t1 > t2
(6.5)
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Note that in (6.4) when t ≤ Tn

t ∧ Tn+1 − t ∧ Tn = 0 (6.6)

Thus we have for µ0 = 0

µt = ξt − ξ0 −
∞∑
n=0

DξTn (t ∧ Tn+1 − t ∧ Tn) (6.7)

It is possible to prove [3] that if the probability of having very large jumps is “sufficiently” small the process exists µt
and is a martingale.

7 Generator description

Let

f : S 7→ R (7.1)

a bounded, measurable function. We define the generator of a jump Markov process acting on f

(Lf) (x) =
∑
x′∈S

[
f(x′)− f(x)

]
k(x′|x) =

∑
x′∈S

f(x′) k(x′|x)− f(x) r(x) (7.2)

for x′ ,x ∈ S, k(x′|x). The nullspace N (L) of the generator L consists in general of constant functions over S:∑
x′∈S

k(x′|x) f − r(x) f = 0 ∀ f (7.3)

If the state of the system at time t is described by a probability distribution m

m : S × R+ 7→ [0, 1] (7.4)

we obtain

d

dt
Ef =

∑
x,x′∈S

k(x′|x)
[
f(x′)− f(x)

]
m(x, t) (7.5)

If we then choose

f(x) = δx,y (7.6)

we recover the evolution equation for the measure

dm(y, t)

dt
=
∑
x∈S

[k(y|x)m(x, t)− k(x|y)m(y, t)] =
∑
x∈S

[k(y|x) − r (y) δxy]m(x, t) (7.7a)

m(y, to) = mo(y) (7.7b)
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8 Girsanov formula: explicit expression of the Radon-Nikodym derivative

Let us consider two Markov chains Ξ1 =
{
ξ1;t , t ∈ T

}
and Ξ2 =

{
ξ2;t , t ∈ T

}
on the same countable space S with

probability measures PΞ1 and PΞ2 . The probability measure PΞ1 is absolutely continuous with respect to PΞ2 up to
a time t if the allowed jumps are the same. This means that for every x ∈ S the sets{

x ∈ S |pΞ1

(
x|x′

)
6= 0
}

=
{
x ∈ S | pΞ2

(
x|x′

)
6= 0
}

(8.1)

Proposition 8.1. The Radon-Nikodym derivative restricted to Ft is given by the formula

dPΞ1

dPΞ2

(ξt) = exp


∫ t

0
ds [r1(ξs)− r2(ξs)]−

∑
s≤t

ln
r1(ξs−) pΞ1(ξs|ξs−)

r2(ξs−) pΞ2(ξs|ξs−)

 (8.2)

Proof. The assumption

pΞ1 (x|x) = pΞ2 (x|x) = 0 (8.3)

ensures that

pΞ1(ξ2;s|ξ2;s−) = pΞ2(ξ2;s|ξ2;s−) = 0 (8.4)

everywhere but at the jumps. In particular with probability one the sum
∑

s≤t reduces to a finite sum. To prove the
claim we proceed in two steps.

i Let us fix an n ∈ N and

t = Tn =
n∑
i=1

τi (8.5)

For any bounded measurable function

F : (S× R+)n 7→ R (8.6)

we have

EPΞ1
F
(
ξT1 , T1, ξT2 , T2, . . . , ξTn , Tn

)
=

∑
x1,...,xn∈S

∏
0≤i≤n−1

∫ ∞
0

dsi+1

× pΞ1(xi+1|xi) r1(xi) e
−r1(xi) si+1 F (x1, s1,x2, s1 + s2, . . . ,xn, s1 + · · ·+ sn) (8.7)

Dividing and multiplying by the measure of Ξ2 we can couch the right hand side into the form

EPΞ1
F
(
ξT1 , T1, ξT2 , T2, . . . , ξTn , Tn

)
=

∑
x1,...,xn∈S

∏
0≤i≤n−1

∫ ∞
0

dsi+1

× pΞ2(xi+1|xi) r2(xi) e
−r2(xi) si+1

dPΞ1

dPΞ2

(xTn)F (x1, s1,x2, s1 + s2, . . . ,xn, s1 + · · ·+ sn)(8.8a)

dPΞ1

dPΞ2

(xTn) :=
∏

0≤i≤n−1

pΞ1(xi+1|xi) r1(xi)

pΞ2(xi+1|xi) r2(xi)
e−[r1(xi)−r2(xi)] si+1 (8.8b)
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Since the factors are strictly positive definite we can also write

dPΞ1

dPΞ2

(x2;t) = exp

− ∑
0≤i≤n−1

[r1(xi)− r2(xi)] si+1 +
∑

0≤i≤n−1

ln
pΞ1(xi+1|xi) r1(xi)

pΞ2(xi+1|xi) r2(xi)

 (8.9)

By definition τi = ti and the process Ξ2 is constant in between jumps. Hence

dPΞ1

dPΞ2

(ξTn) := exp

−
∫ Tn

0
ds [r1(ξs)− r2(ξs)] +

∑
0≤s≤Tn

ln
pΞ1(ξs|ξs−) r1(ξs−)

pΞ2(ξs|ξs−) r2(ξs−)

 (8.10)

and therefore

EPΞ1
F
(
ξτ1 , τ1, ξτ1+τ2 , τ1 + τ2, . . . , ξTn , Tn

)
=

EPΞ2

dPΞ1

dPΞ2

(ξTn)F
(
ξτ1 , τ1, ξτ1+τ2 , τ1 + τ2, . . . , ξTn , Tn

)
(8.11)

ii Let us now consider an ordered n-tuple (t1 ≤ t2 ≤ . . . tn = t). We can write

EPΞ1
F
(
ξt1 , t1, ξt2 , t2, . . . , ξt, t

)
=

∞∑
n=0

EPΞ1
F
(
ξt1 , t1, ξt2 , t2, . . . , ξTn , tn

)
11[Tn,Tn+1)(tn) (8.12)

Acting with (4.4) on all element of the n-tuple we arrive to an expression of the form

EPΞ1
F
(
ξt1 , t1, ξt2 , t2, . . . , ξt, t

)
=∑

n

EPΞ1
Fn
(
ξT1 , t1, ξT2 , t2, . . . , ξTn , tn

)
e−r(ξTn)(t−Tn)11[tn,∞)(Tn) (8.13)

for some {Fn}. On each term of the series we can now act as in step i. Since in the time interval (Tn, t] no
jump occurs, the only correction to the formula previously found comes from the exponential factor in (8.13).
We can therefore write

dPΞ1

dPΞ2

(ξt) := exp

−
∫ t

0
ds [r1(ξs)− r2(ξs)] +

∑
0≤s≤t

ln
pΞ1(ξs|ξs−) r1(ξs−)

pΞ2(ξs|ξs−) r2(ξs−)

 (8.14)
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