Random Walk, Martingales and Markov processes

1 Introduction

Evans discusses conditional expectations in §H of chapter 2 of his lecture notes [1]. The same topics can be found
in § 2.1 of [4] where form the definitions of section 2 are taken. The definition of martingale follows instead § I of
chapter 2 of [1]. A nice mathematical presentation of martingales in the case of countable state space is given in §11
of chapter 1 of [3]. The solution of the master equation for the Poisson process can be also found in §3.8.3 of [2].

2 Some definitions

Definition 2.1. Let (2, F,, ,P) be a probability space. A (discrete time) filtration is an increasing sequence F :=
{Fi}i_y of o-algebras Fo C Fi C ... Fy. The quadruple (X, F,, , F ,P) is called a filtered probability space

Definition 2.2. A stochastic process is just a collection of random variables {&,,t > 0}, indexed by a time parameter
t discrete or continuous.

Definition 2.3. Ler (2, F,, , F , P) be a filtered probability space. A stochastic process {&;}.-_; is called F,-adapted
&, if is Fp-measurable for every n, and is called F, -predictable if €, is F,_1-measurable for every n.

Definition 2.4. Let (2, F ,P) be a probability space and {§,,},, be a stochastic process. The filtration generated by
{&,.},, is defined as Fs=o (&1,...,&,) and the process is fs-adapted by construction.
3 Conditional Expectation, Heuristics

Let £ an integrable random variable
Ef &< oo 3.1)

on the probability space (2, F , P). Let then G a finite dimensional o-algebra generated by the atomic decomposition
(or partition) {A;},_, of Qi.e.

0= U A; (3.2)

In such a case we define the conditional expectation of € with respect to G as the random variable

B{€g) = > “pei) v @ (33)
i=1 ¢
where w €  and
1 if we A 24
XA(w) = 0 g A (3.4)



Note that if the discrete random variable x 4 (w) is independent of £ the definition implies immediately

n E , n
B0} =B Y- M v () = BE D wa, @) 3.3
i=1 v i=1
whence
E{¢|G} = E¢ (3.6)
by virtue of
D x4 (W) =xaw) =1 3.7)
i=1

The latter equation just states that {A;},_, is a partition of € and that yq(w) reduces to the trivial random variable
equal to the unity whenever it is sampled i.e. Vw € €.

Definition 3.1. Let (2, F , P) be a probability space and suppose F' is a o-algebra, F' C F. If

£ w— RY (3.8)
is an integrable random variable, we define
¢ =E{¢F} (3.9)
to be any random variable on ) such that
i & is F'-measurable;
ii Forall F' € F' the identity
Ep {x#&} = Ep {xm¢'} (3.10)

holds true.

If 7/ = o (n) i.e. is the o-algebra generated by i we will write

¢ =E{¢{F}=E{¢&n} (3.11)

For more details please read § H of chapter 2 and/or § 2.1 of [4].

4 Martingales

Definition 4.1. Ler (2, F,, , F , P) be a filtered probability space and {€;}}_, a Fy-adapted stochastic process such
that

E|&§] < oo Vi (4.1)
if
& = E{&|Fi} a.s Vi>k

holds true we say that {&;}}_, is a (discrete) martingale.



More generally we will consider stochastic processes {&;,t € T'} with T" being a subset or coinciding with either
R+ or N. Furthermore we can posit that for any fixed ¢ € 7' the random variable &, takes values in a state space S
which may be finite (as for the random walk), countable or (a subset of) R?. In such a case the general definition is

Definition 4.2. Let F; be a filtration of the probability space (2, F; ,P) and let {&, ,t € T'} an S-valued stochastic

process adapted to F satisfying
E &< oo

forallt € T. We say that {&, ,t € T'} is a Fi-martingale if

E{§|F} =& Vi>seTl
If instead

E{&|Fs} <&, Vt>seT
we say that {&, ,t € T'} is a Fy-super-martingale. Finally, if

E{&[Fs} = &, VizsecT

we say that {&, ,t € T'} is a Fy-sub-martingale.

4.2)

(4.3)

4.4)

4.5)

An important consequence of the martingale property is the conservation of the expectation value. Namely we

must have

EE{&[Fs} = E&,
but also from the definition of conditional expectation

EE {&|Fs} = E¢,
Hence for any ¢, s

E‘Et = E&s

5 Random Walk as Martingale

We defined the random walk as
n
En=) &
i=1

with {fi}f\il i.i.d. random variables with &; 4 £ for all 4. Furthermore
£:Q— {—x,x}

then

We have

(4.6)

“4.7)

(4.8)

S.D

5.2)

(5.3)

5.4)



by definition of conditional expectation. We have
E{Zn|En-1} =E{En1 + & | En} =E{En1|En} + E{& [En1} = En1 + E{& [En-1}
By definition of conditional expectation
E{&n|Ena} =E&=02p-1)=
if P(¢ = x) = p as &, is independent of =,,_;. Repeating for arbitrary k < n
n
E{Z, =k} ==k + Z E{&|E}t =Sk +(n—k)(2p—1)z
i=k+1

We verified that {=,,,1 <n < N}is

e asub-martingale if p > 1/2;

e a martingale if p = 1/2;

e asuper-martingale if p < 1/2.

From =, it is always possible to construct a martingale by subtracting its compensator:

[1]2

n:En_An

In the case of the random walk
n
Ay =Y EB&=nEE=n(2p—1)a
i=1

It is straightforward to verify that

[1]2

n
i=1
is specified by the sum of i.i.d. random variables with zero average. Hence

n
E{EnlEk}:Ek—i— S E{gi\zk}zzk

i=k+1

which proves that {=Z,, ,1 < n < N} is a martingale.

6 Markov process
Let us consider a stochastic process {&,, ,n € N} valued to a countable state space S C Z:

£n: Ux N3 S

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(6.1)

We suppose that the evolution law for its probability distribution generalizes the form we found for the random walk

Poi1(i) = Y P(i,n+ 1]k,n) Py(k)
keS

(6.2)



or equivalently
Ppi1(i) = Pu(i) = > _[P(i,n + 1|k, n) — 6;5] Pu(k) (6.3)
keS

Using the normalization condition

ZP(k,n—i—l\i,n) =1 (6.4)
keS
we can couch (6.3) into the form
Ppi1(i) = Pu(i) = > _[P(i,n + 1|k, n) Po(k) = P(k,n + 1[i,n) Pp(i)] (6.5)
keS

The master equation (6.2) states that at any time step we can reconstruct the probability of the stochastic process at
the ensuing step if we know its “present” distribution. A more pictorial description is that the “future” depends only
upon the “present” but not upon the “past”. Such a property is the distinguishing feature of Markov processes.

7 Continuous limit

Up to now we considered a unit time step. We may instead introduce a time unit 7 and rescale probabilities

P,(m) =P, ,(m) (7.1)
The aim is to study the limit
710 & t=n1teRy (7.2)
After rescaling we couch (6.5) into the form
Poir(i) = Pi(i) = Y [P(ist + 7|k, t) Py(k) = Pk, t + 714, 1) Py (0)] (7.3)
keS
The expansion in Taylor series
Piir(i) = Py(i) + 79, Py (i) + O(72) (7.4)
and
P(i,t + 7|k, t) = 0;x + TKe(i|k) + O (77) (7.5)
yields
0P (i) = Y [Ki(ilk) Py (k) — Ky(k|i) P(3)] + O(7) (7.6)
keS
Thus in the limit 7 | 0 we are left with
0iPy(i) = > [Ke(ilk) Pr(k) — Ky (k|i) Py (i) (7.7)
kesS
Probability conservation now requires
D 0P(i) =0 Y Py(i) =0 (7.8)
€S €S
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entailing

Z [Kq (il k) Py (k) — Ky (k|i) Py(i)] = 0 (7.9)

i,keS
which is satisfied identically. Two observations are in order
e the diagonal component K, (i|k) of the transition rate K;(-) does not contribute to (7.7).

e The condition

> Kqy(kli) =0 (7.10)

keS

is a sufficient condition for (7.9) to hold true. It is also guarantees to leading order in O(7) that

1= Plit+7lkt) =[x+ TEKi(ilk) + O (*)] = 1+ O(r?) (7.11)
1€S €S

By virtue of the first observation, it is not restrictive to assume that (7.10) always holds true. In such a case we can
write

OPy(i) = Y [Kq(ilk) Py (k) (7.12a)
keS
> Ky(kli) =0 (7.12b)
keS

8 Poisson process
We now make a special choice for the transition rates in (7.12) and set for some v € R
Ky (ilk) = v 0i g1 — 7Ok (8.1)
The resulting equation is
OP(i,t)=~vP(i—1,t) —vP(i,t)

This is the evolution for a process that can make (or not make) jumps only towards the right of its current position. If
we assume that the initial distribution

P(i, 0) = Po(i)

has support on N then the process will stay there for any further time. The equation can be solved exactly by computing
the characteristic function

Plu,t) :=> e P(k,t)
k=0

Namely, it is straightforward to see that P(u, ) satisfies:

0P (u,t) = v (e' — 1) P(u,t)



The solution for the initial condition P(u,0) = P, (u)
P(u,t) = e’ " ~DP,(u)
If we specialize for an initial condition
Po(i) = dio
(i.e. we assume that the process starts from the origin) we obtain
P(u,t) = evte=1)

In order to infer the probability distribution associated to the characteristic function we can write
o .
~ U _ "y t)j .
Pu,t) =1t e 7t = 71 <,7€“”
(1) Z rGg+1
J=0
which implies that P(u, t) is the characteristic function of the Poisson process, with probability distribution:

P@j,t) =
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