Random Walk, Martingales and Markov processes

1 Introduction

Evans discusses conditional expectations in $\S H$ of chapter 2 of his lecture notes [1]. The same topics can be found in $\S 2.1$ of [4] where form the definitions of section 2 are taken. The definition of martingale follows instead \S I of chapter 2 of [1]. A nice mathematical presentation of martingales in the case of countable state space is given in $\S 11$ of chapter 1 of [3]. The solution of the master equation for the Poisson process can be also found in $\S 3.8 .3$ of [2].

2 Some definitions

Definition 2.1. Let $\left(\Omega, \mathcal{F}_{n}, \mathrm{P}\right)$ be a probability space. A (discrete time) filtration is an increasing sequence $\mathcal{F}:=$ $\left\{\mathcal{F}_{k}\right\}_{k=0}^{n}$ of σ-algebras $\mathcal{F}_{0} \subseteq \mathcal{F}_{1} \subseteq \ldots \mathcal{F}_{n}$. The quadruple $\left(\Omega, \mathcal{F}_{n}, \mathcal{F}, \mathrm{P}\right)$ is called a filtered probability space

Definition 2.2. A stochastic process is just a collection of random variables $\left\{\boldsymbol{\xi}_{t}, t \geq 0\right\}$, indexed by a time parameter t discrete or continuous.

Definition 2.3. Let $\left(\Omega, \mathcal{F}_{n}, \mathcal{F}, \mathrm{P}\right)$ be a filtered probability space. A stochastic process $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ is called \mathcal{F}_{n}-adapted $\boldsymbol{\xi}_{n}$ if is \mathcal{F}_{n}-measurable for every n, and is called \mathcal{F}_{n}-predictable if $\boldsymbol{\xi}_{n}$ is \mathcal{F}_{n-1}-measurable for every n.

Definition 2.4. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and $\left\{\boldsymbol{\xi}_{n}\right\}_{n}$ be a stochastic process. The filtration generated by $\left\{\boldsymbol{\xi}_{n}\right\}_{n}$ is defined as $\mathcal{F}_{n}^{\boldsymbol{\xi}}=\sigma\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{n}\right)$ and the process is $\mathcal{F}_{n}^{\boldsymbol{\xi}}$-adapted by construction.

3 Conditional Expectation, Heuristics

Let $\boldsymbol{\xi}$ an integrable random variable

$$
\begin{equation*}
\mathrm{E}\|\boldsymbol{\xi}\|<\infty \tag{3.1}
\end{equation*}
$$

on the probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Let then \mathcal{G} a finite dimensional σ-algebra generated by the atomic decomposition (or partition) $\left\{A_{i}\right\}_{i=1}$ of Ω i.e.

$$
\begin{equation*}
\Omega=\bigcup_{i=1}^{n} A_{i} \tag{3.2}
\end{equation*}
$$

In such a case we define the conditional expectation of $\boldsymbol{\xi}$ with respect to \mathcal{G} as the random variable

$$
\begin{equation*}
\mathrm{E}\{\boldsymbol{\xi} \mid \mathcal{G}\}=\sum_{i=1}^{n} \frac{\mathrm{E}\left\{\boldsymbol{\xi} \chi_{A_{i}}\right\}}{\mathrm{P}\left(A_{i}\right)} \chi_{A_{i}}(\omega) \tag{3.3}
\end{equation*}
$$

where $\omega \in \Omega$ and

$$
\chi_{A}(\omega)= \begin{cases}1 & \text { if } \omega \in A \tag{3.4}\\ 0 & \text { if } \omega \notin A\end{cases}
$$

Note that if the discrete random variable $\chi_{A}(\omega)$ is independent of $\boldsymbol{\xi}$ the definition implies immediately

$$
\begin{equation*}
\mathrm{E}\{\boldsymbol{\xi} \mid \mathcal{G}\}=\mathrm{E} \boldsymbol{\xi} \sum_{i=1}^{n} \frac{\mathrm{E}\left\{\chi_{A_{i}}\right\}}{\mathrm{P}\left(A_{i}\right)} \chi_{A_{i}}(\omega) \equiv \mathrm{E} \boldsymbol{\xi} \sum_{i=1}^{n} \chi_{A_{i}}(\omega) \tag{3.5}
\end{equation*}
$$

whence

$$
\begin{equation*}
\mathrm{E}\{\boldsymbol{\xi} \mid \mathcal{G}\}=\mathrm{E} \boldsymbol{\xi} \tag{3.6}
\end{equation*}
$$

by virtue of

$$
\begin{equation*}
\sum_{i=1}^{n} \chi_{A_{i}}(\omega)=\chi_{\Omega}(\omega)=1 \tag{3.7}
\end{equation*}
$$

The latter equation just states that $\left\{A_{i}\right\}_{i=1}$ is a partition of Ω and that $\chi_{\Omega}(\omega)$ reduces to the trivial random variable equal to the unity whenever it is sampled i.e. $\forall \omega \in \Omega$.

Definition 3.1. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space and suppose \mathcal{F}^{\prime} is a σ-algebra, $\mathcal{F}^{\prime} \subseteq \mathcal{F}$. If

$$
\begin{equation*}
\boldsymbol{\xi}: \omega \mapsto \mathbb{R}^{d} \tag{3.8}
\end{equation*}
$$

is an integrable random variable, we define

$$
\begin{equation*}
\boldsymbol{\xi}^{\prime}:=\mathrm{E}\left\{\boldsymbol{\xi} \mid \mathcal{F}^{\prime}\right\} \tag{3.9}
\end{equation*}
$$

to be any random variable on Ω such that
$i \xi^{\prime}$ is \mathcal{F}^{\prime}-measurable;
ii For all $F^{\prime} \in \mathcal{F}^{\prime}$ the identity

$$
\begin{equation*}
\mathrm{E}_{\mathrm{P}}\left\{\chi_{F^{\prime}} \boldsymbol{\xi}\right\}=\mathrm{E}_{\mathrm{P}}\left\{\chi_{F^{\prime}} \boldsymbol{\xi}^{\prime}\right\} \tag{3.10}
\end{equation*}
$$

holds true.
If $\mathcal{F}^{\prime}=\sigma(\boldsymbol{\eta})$ i.e. is the σ-algebra generated by $\boldsymbol{\eta}$ we will write

$$
\begin{equation*}
\boldsymbol{\xi}^{\prime}:=\mathrm{E}\left\{\boldsymbol{\xi} \mid \mathcal{F}^{\prime}\right\} \equiv \mathrm{E}\{\boldsymbol{\xi} \mid \boldsymbol{\eta}\} \tag{3.11}
\end{equation*}
$$

For more details please read $\S \mathrm{H}$ of chapter 2 and/or $\S 2.1$ of [4].

4 Martingales

Definition 4.1. Let $\left(\Omega, \mathcal{F}_{n}, \mathcal{F}, \mathrm{P}\right)$ be a filtered probability space and $\left\{\boldsymbol{\xi}_{i}\right\}_{i=1}^{n}$ a \mathcal{F}_{n}-adapted stochastic process such that

$$
\begin{equation*}
\mathrm{E}\left|\xi_{i}\right|<\infty \quad \forall i \tag{4.1}
\end{equation*}
$$

If

$$
\xi_{k}=\mathrm{E}\left\{\xi_{j} \mid \mathcal{F}_{k}\right\} \quad \text { a.s } \quad \forall j \geq k
$$

holds true we say that $\left\{\xi_{i}\right\}_{i=1}^{n}$ is a (discrete) martingale.

More generally we will consider stochastic processes $\left\{\boldsymbol{\xi}_{t}, t \in T\right\}$ with T being a subset or coinciding with either \mathbb{R}_{+}or \mathbb{N}. Furthermore we can posit that for any fixed $t \in T$ the random variable $\boldsymbol{\xi}_{t}$ takes values in a state space \mathbb{S} which may be finite (as for the random walk), countable or (a subset of) \mathbb{R}^{d}. In such a case the general definition is

Definition 4.2. Let \mathcal{F}_{t} be a filtration of the probability space $\left(\Omega, \mathcal{F}_{t}, \mathrm{P}\right)$ and let $\left\{\boldsymbol{\xi}_{t}, t \in T\right\}$ an \mathbb{S}-valued stochastic process adapted to \mathcal{F}_{t} satisfying

$$
\begin{equation*}
\mathrm{E}\left\|\boldsymbol{\xi}_{t}\right\|<\infty \tag{4.2}
\end{equation*}
$$

for all $t \in T$. We say that $\left\{\boldsymbol{\xi}_{t}, t \in T\right\}$ is a \mathcal{F}_{t}-martingale if

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{\xi}_{t} \mid \mathcal{F}_{s}\right\}=\boldsymbol{\xi}_{s} \quad \forall t \geq s \in T \tag{4.3}
\end{equation*}
$$

If instead

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{\xi}_{t} \mid \mathcal{F}_{s}\right\} \leq \boldsymbol{\xi}_{s} \quad \forall t \geq s \in T \tag{4.4}
\end{equation*}
$$

we say that $\left\{\boldsymbol{\xi}_{t}, t \in T\right\}$ is a \mathcal{F}_{t}-super-martingale. Finally, if

$$
\begin{equation*}
\mathrm{E}\left\{\boldsymbol{\xi}_{t} \mid \mathcal{F}_{s}\right\} \geq \boldsymbol{\xi}_{s} \quad \forall t \geq s \in T \tag{4.5}
\end{equation*}
$$

we say that $\left\{\boldsymbol{\xi}_{t}, t \in T\right\}$ is a \mathcal{F}_{t}-sub-martingale.
An important consequence of the martingale property is the conservation of the expectation value. Namely we must have

$$
\begin{equation*}
\mathrm{EE}\left\{\boldsymbol{\xi}_{t} \mid \mathcal{F}_{s}\right\}=\mathrm{E} \boldsymbol{\xi}_{s} \tag{4.6}
\end{equation*}
$$

but also from the definition of conditional expectation

$$
\begin{equation*}
\mathrm{EE}\left\{\boldsymbol{\xi}_{t} \mid \mathcal{F}_{s}\right\}=\mathrm{E} \boldsymbol{\xi}_{t} \tag{4.7}
\end{equation*}
$$

Hence for any t, s

$$
\begin{equation*}
\mathrm{E} \boldsymbol{\xi}_{t}=\mathrm{E} \boldsymbol{\xi}_{s} \tag{4.8}
\end{equation*}
$$

5 Random Walk as Martingale

We defined the random walk as

$$
\begin{equation*}
\Xi_{n}=\sum_{i=1}^{n} \xi_{i} \tag{5.1}
\end{equation*}
$$

with $\left\{\xi_{i}\right\}_{i=1}^{N}$ i.i.d. random variables with $\xi_{i} \stackrel{d}{=} \xi$ for all i. Furthermore

$$
\begin{equation*}
\xi: \Omega \mapsto\{-x, x\} \tag{5.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\Xi_{n}\right| \leq n \quad \forall n=1, \ldots N \tag{5.3}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathrm{E}\left\{\Xi_{n} \mid \Xi_{n}\right\}=\Xi_{n} \tag{5.4}
\end{equation*}
$$

by definition of conditional expectation. We have

$$
\begin{equation*}
\mathrm{E}\left\{\Xi_{n} \mid \Xi_{n-1}\right\}=\mathrm{E}\left\{\Xi_{n-1}+\xi_{n} \mid \Xi_{n-1}\right\}=\mathrm{E}\left\{\Xi_{n-1} \mid \Xi_{n-1}\right\}+\mathrm{E}\left\{\xi_{n} \mid \Xi_{n-1}\right\}=\Xi_{n-1}+\mathrm{E}\left\{\xi_{n} \mid \Xi_{n-1}\right\} \tag{5.5}
\end{equation*}
$$

By definition of conditional expectation

$$
\begin{equation*}
\mathrm{E}\left\{\xi_{n} \mid \Xi_{n-1}\right\}=\mathrm{E} \xi_{n}=(2 p-1) x \tag{5.6}
\end{equation*}
$$

if $\mathrm{P}(\xi=x)=p$ as ξ_{n} is independent of Ξ_{n-1}. Repeating for arbitrary $k \leq n$

$$
\begin{equation*}
\mathrm{E}\left\{\Xi_{n} \mid \Xi_{k}\right\}=\Xi_{k}+\sum_{i=k+1}^{n} \mathrm{E}\left\{\xi_{i} \mid \Xi_{k}\right\}=\Xi_{k}+(n-k)(2 p-1) x \tag{5.7}
\end{equation*}
$$

We verified that $\left\{\Xi_{n}, 1 \leq n \leq N\right\}$ is

- a sub-martingale if $p>1 / 2$;
- a martingale if $p=1 / 2$;
- a super-martingale if $p<1 / 2$.

From Ξ_{n} it is always possible to construct a martingale by subtracting its compensator:

$$
\begin{equation*}
\tilde{\Xi}_{n}=\Xi_{n}-A_{n} \tag{5.8}
\end{equation*}
$$

In the case of the random walk

$$
\begin{equation*}
A_{n}=\sum_{i=1}^{n} E \xi_{i}=n \mathrm{E} \xi=n(2 p-1) x \tag{5.9}
\end{equation*}
$$

It is straightforward to verify that

$$
\begin{equation*}
\tilde{\Xi}_{n}=\sum_{i=1}^{n} \tilde{\xi}_{i} \tag{5.10}
\end{equation*}
$$

is specified by the sum of i.i.d. random variables with zero average. Hence

$$
\begin{equation*}
\mathrm{E}\left\{\tilde{\Xi}_{n} \mid \tilde{\Xi}_{k}\right\}=\tilde{\Xi}_{k}+\sum_{i=k+1}^{n} \mathrm{E}\left\{\tilde{\xi}_{i} \mid \tilde{\Xi}_{k}\right\}=\tilde{\Xi}_{k} \tag{5.11}
\end{equation*}
$$

which proves that $\left\{\Xi_{n}, 1 \leq n \leq N\right\}$ is a martingale.

6 Markov process

Let us consider a stochastic process $\left\{\xi_{n}, n \in \mathbb{N}\right\}$ valued to a countable state space $\mathbb{S} \subseteq \mathbb{Z}$:

$$
\begin{equation*}
\xi_{n}: \Omega \times \mathbb{N} \mapsto \mathbb{S} \tag{6.1}
\end{equation*}
$$

We suppose that the evolution law for its probability distribution generalizes the form we found for the random walk

$$
\begin{equation*}
\mathrm{P}_{n+1}(i)=\sum_{k \in \mathbb{S}} \mathrm{P}(i, n+1 \mid k, n) \mathrm{P}_{n}(k) \tag{6.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mathrm{P}_{n+1}(i)-\mathrm{P}_{n}(i)=\sum_{k \in \mathbb{S}}\left[\mathrm{P}(i, n+1 \mid k, n)-\delta_{i k}\right] \mathrm{P}_{n}(k) \tag{6.3}
\end{equation*}
$$

Using the normalization condition

$$
\begin{equation*}
\sum_{k \in \mathbb{S}} \mathrm{P}(k, n+1 \mid i, n)=1 \tag{6.4}
\end{equation*}
$$

we can couch (6.3) into the form

$$
\begin{equation*}
\mathrm{P}_{n+1}(i)-\mathrm{P}_{n}(i)=\sum_{k \in \mathbb{S}}\left[\mathrm{P}(i, n+1 \mid k, n) \mathrm{P}_{n}(k)-\mathrm{P}(k, n+1 \mid i, n) \mathrm{P}_{n}(i)\right] \tag{6.5}
\end{equation*}
$$

The master equation (6.2) states that at any time step we can reconstruct the probability of the stochastic process at the ensuing step if we know its "present" distribution. A more pictorial description is that the "future" depends only upon the "present" but not upon the "past". Such a property is the distinguishing feature of Markov processes.

7 Continuous limit

Up to now we considered a unit time step. We may instead introduce a time unit τ and rescale probabilities

$$
\begin{equation*}
\mathrm{P}_{n}(m)=\tilde{\mathrm{P}}_{n \tau}(m) \tag{7.1}
\end{equation*}
$$

The aim is to study the limit

$$
\begin{equation*}
\tau \downarrow 0 \quad \& \quad t=n \tau \in \mathbb{R}_{+} \tag{7.2}
\end{equation*}
$$

After rescaling we couch (6.5) into the form

$$
\begin{equation*}
\tilde{\mathrm{P}}_{t+\tau}(i)-\tilde{\mathrm{P}}_{t}(i)=\sum_{k \in \mathbb{S}}\left[\tilde{\mathrm{P}}(i, t+\tau \mid k, t) \tilde{\mathrm{P}}_{t}(k)-\tilde{\mathrm{P}}(k, t+\tau \mid i, t) \tilde{\mathrm{P}}_{t}(i)\right] \tag{7.3}
\end{equation*}
$$

The expansion in Taylor series

$$
\begin{equation*}
\tilde{\mathrm{P}}_{t+\tau}(i)=\tilde{\mathrm{P}}_{t}(i)+\tau \partial_{t} \tilde{\mathrm{P}}_{t}(i)+O\left(\tau^{2}\right) \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\mathrm{P}}(i, t+\tau \mid k, t)=\delta_{i k}+\tau \mathrm{K}_{t}(i \mid k)+O\left(\tau^{2}\right) \tag{7.5}
\end{equation*}
$$

yields

$$
\begin{equation*}
\partial_{t} \tilde{\mathrm{P}}_{t}(i)=\sum_{k \in \mathbb{S}}\left[\mathrm{~K}_{t}(i \mid k) \tilde{\mathrm{P}}_{t}(k)-\mathrm{K}_{t}(k \mid i) \tilde{\mathrm{P}}_{t}(i)\right]+O(\tau) \tag{7.6}
\end{equation*}
$$

Thus in the limit $\tau \downarrow 0$ we are left with

$$
\begin{equation*}
\partial_{t} \tilde{\mathrm{P}}_{t}(i)=\sum_{k \in \mathbb{S}}\left[\mathrm{~K}_{t}(i \mid k) \tilde{\mathrm{P}}_{t}(k)-\mathrm{K}_{t}(k \mid i) \tilde{\mathrm{P}}_{t}(i)\right] \tag{7.7}
\end{equation*}
$$

Probability conservation now requires

$$
\begin{equation*}
\sum_{i \in \mathbb{S}} \partial_{t} \tilde{\mathrm{P}}_{t}(i)=\partial_{t} \sum_{i \in \mathbb{S}} \tilde{\mathrm{P}}_{t}(i)=0 \tag{7.8}
\end{equation*}
$$

entailing

$$
\begin{equation*}
\sum_{i, k \in \mathbb{S}}\left[\mathrm{~K}_{t}(i \mid k) \tilde{\mathrm{P}}_{t}(k)-\mathrm{K}_{t}(k \mid i) \tilde{\mathrm{P}}_{t}(i)\right]=0 \tag{7.9}
\end{equation*}
$$

which is satisfied identically. Two observations are in order

- the diagonal component $\mathrm{K}_{t}(i \mid k)$ of the transition rate $\mathrm{K}_{t}(\cdot)$ does not contribute to (7.7).
- The condition

$$
\begin{equation*}
\sum_{k \in \mathbb{S}} \mathrm{~K}_{t}(k \mid i)=0 \tag{7.10}
\end{equation*}
$$

is a sufficient condition for (7.9) to hold true. It is also guarantees to leading order in $O(\tau)$ that

$$
\begin{equation*}
1=\sum_{i \in \mathbb{S}} \tilde{\mathrm{P}}(i, t+\tau \mid k, t)=\sum_{i \in \mathbb{S}}\left[\delta_{i k}+\tau \mathrm{K}_{t}(i \mid k)+O\left(\tau^{2}\right)\right]=1+O\left(\tau^{2}\right) \tag{7.11}
\end{equation*}
$$

By virtue of the first observation, it is not restrictive to assume that (7.10) always holds true. In such a case we can write

$$
\begin{gather*}
\partial_{t} \mathrm{P}_{t}(i)=\sum_{k \in \mathbb{S}}\left[\mathrm{~K}_{t}(i \mid k) \mathrm{P}_{t}(k)\right. \tag{7.12a}\\
\sum_{k \in \mathbb{S}} \mathrm{~K}_{t}(k \mid i)=0 \tag{7.12b}
\end{gather*}
$$

8 Poisson process

We now make a special choice for the transition rates in (7.12) and set for some $\gamma \in \mathbb{R}_{+}$

$$
\begin{equation*}
\mathrm{K}_{t}(i \mid k)=\gamma \delta_{i, k+1}-\gamma \delta_{k, i} \tag{8.1}
\end{equation*}
$$

The resulting equation is

$$
\partial_{t} \mathrm{P}(i, t)=\gamma \mathrm{P}(i-1, t)-\gamma \mathrm{P}(i, t)
$$

This is the evolution for a process that can make (or not make) jumps only towards the right of its current position. If we assume that the initial distribution

$$
\mathrm{P}(i, 0)=\mathrm{P}_{o}(i)
$$

has support on \mathbb{N} then the process will stay there for any further time. The equation can be solved exactly by computing the characteristic function

$$
\check{\mathrm{P}}(u, t):=\sum_{k=0}^{\infty} e^{\imath k u} \mathrm{P}(k, t)
$$

Namely, it is straightforward to see that $\check{\mathrm{P}}(u, t)$ satisfies:

$$
\partial_{t} \check{\mathrm{P}}(u, t)=\gamma\left(e^{\imath u}-1\right) \check{\mathrm{P}}(u, t)
$$

The solution for the initial condition $\check{\mathrm{P}}(u, 0)=\check{\mathrm{P}}_{o}(u)$

$$
\check{\mathrm{P}}(u, t)=e^{\gamma t\left(e^{\imath u}-1\right)} \check{\mathrm{P}}_{o}(u)
$$

If we specialize for an initial condition

$$
\mathrm{P}_{o}(i)=\delta_{i 0}
$$

(i.e. we assume that the process starts from the origin) we obtain

$$
\check{\mathrm{P}}(u, t)=e^{\gamma t\left(e^{\imath u}-1\right)}
$$

In order to infer the probability distribution associated to the characteristic function we can write

$$
\check{\mathrm{P}}(u, t)=e^{\gamma t e^{\imath u}} e^{-\gamma t}=e^{-\gamma t} \sum_{j=0}^{\infty} \frac{(\gamma t)^{j}}{\Gamma(j+1)} e^{\imath u j}
$$

which implies that $\check{\mathrm{P}}(u, t)$ is the characteristic function of the Poisson process, with probability distribution:

$$
\mathrm{P}(j, t)=\frac{(\gamma t)^{j}}{\Gamma(j+1)} e^{-\gamma t}
$$

References

[1] L. C. Evans. An Introduction to Stochastic Differential Equations. Lecture notes, UC Berkeley, 2006.
[2] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sciences, volume 13 of Springer series in synergetics. Springer, 2 edition, 1994.
[3] A. N. Shiryaev. Probability, volume 95 of Graduate texts in mathematics. Springer, 2 edition, 1996.
[4] R. van Handel. Stochastic Calculus and Stochastic Control. Lecture notes, Caltech, 2007.

