
Random Walk, Martingales and Markov processes

1 Introduction

Evans discusses conditional expectations in §H of chapter 2 of his lecture notes [1]. The same topics can be found
in § 2.1 of [4] where form the definitions of section 2 are taken. The definition of martingale follows instead § I of
chapter 2 of [1]. A nice mathematical presentation of martingales in the case of countable state space is given in §11
of chapter 1 of [3]. The solution of the master equation for the Poisson process can be also found in §3.8.3 of [2].

2 Some definitions

Definition 2.1. Let (Ω ,Fn ,P) be a probability space. A (discrete time) filtration is an increasing sequence F :=
{Fk}nk=0 of σ-algebras F0 ⊆ F1 ⊆ . . .Fn. The quadruple (Ω ,Fn ,F ,P) is called a filtered probability space

Definition 2.2. A stochastic process is just a collection of random variables {ξt, t ≥ 0}, indexed by a time parameter
t discrete or continuous.

Definition 2.3. Let (Ω ,Fn ,F ,P) be a filtered probability space. A stochastic process {ξi}
n
i=1 is called Fn-adapted

ξn if is Fn-measurable for every n, and is called Fn-predictable if ξn is Fn−1-measurable for every n.

Definition 2.4. Let (Ω ,F ,P) be a probability space and {ξn}n be a stochastic process. The filtration generated by
{ξn}n is defined as Fξ

n = σ (ξ1 , . . . , ξn) and the process is Fξ
n-adapted by construction.

3 Conditional Expectation, Heuristics

Let ξ an integrable random variable

E ‖ ξ ‖< ∞ (3.1)

on the probability space (Ω ,F ,P). Let then G a finite dimensional σ-algebra generated by the atomic decomposition
(or partition) {Ai}i=1 of Ω i.e.

Ω =

n⋃
i=1

Ai (3.2)

In such a case we define the conditional expectation of ξ with respect to G as the random variable

E {ξ|G} =

n∑
i=1

E {ξχAi}
P(Ai)

χAi (ω) (3.3)

where ω ∈ Ω and

χA(ω) =

{
1 if ω ∈ A

0 if ω ∈/ A
(3.4)
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Note that if the discrete random variable χA(ω) is independent of ξ the definition implies immediately

E {ξ|G} = Eξ
n∑
i=1

E {χAi}
P(Ai)

χAi (ω) ≡ Eξ
n∑
i=1

χAi (ω) (3.5)

whence

E {ξ|G} = Eξ (3.6)

by virtue of

n∑
i=1

χAi (ω) = χΩ (ω) = 1 (3.7)

The latter equation just states that {Ai}i=1 is a partition of Ω and that χΩ(ω) reduces to the trivial random variable
equal to the unity whenever it is sampled i.e. ∀ω ∈ Ω.

Definition 3.1. Let (Ω ,F ,P) be a probability space and suppose F ′ is a σ-algebra, F ′ ⊆ F . If

ξ : ω 7→ Rd (3.8)

is an integrable random variable, we define

ξ′ := E
{
ξ|F ′

}
(3.9)

to be any random variable on Ω such that

i ξ′ is F ′-measurable;

ii For all F ′ ∈ F ′ the identity

EP {χF ′ξ} = EP

{
χF ′ξ′

}
(3.10)

holds true.

If F ′ = σ (η) i.e. is the σ-algebra generated by η we will write

ξ′ := E
{
ξ|F ′

}
≡ E {ξ|η} (3.11)

For more details please read § H of chapter 2 and/or § 2.1 of [4].

4 Martingales

Definition 4.1. Let (Ω ,Fn ,F ,P) be a filtered probability space and {ξi}
n
i=1 a Fn-adapted stochastic process such

that

E |ξi| < ∞ ∀i (4.1)

If

ξk = E {ξj |Fk} a.s ∀ j ≥ k

holds true we say that {ξi}ni=1 is a (discrete) martingale.
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More generally we will consider stochastic processes {ξt, t ∈ T} with T being a subset or coinciding with either
R+ or N. Furthermore we can posit that for any fixed t ∈ T the random variable ξt takes values in a state space S
which may be finite (as for the random walk), countable or (a subset of) Rd. In such a case the general definition is

Definition 4.2. Let F t be a filtration of the probability space (Ω ,Ft ,P) and let {ξt , t ∈ T} an S-valued stochastic
process adapted to F t satisfying

E ‖ ξt ‖< ∞ (4.2)

for all t ∈ T . We say that {ξt , t ∈ T} is a F t-martingale if

E {ξt|Fs} = ξs ∀ t ≥ s ∈ T (4.3)

If instead

E {ξt|Fs} ≤ ξs ∀ t ≥ s ∈ T (4.4)

we say that {ξt , t ∈ T} is a F t-super-martingale. Finally, if

E {ξt|Fs} ≥ ξs ∀ t ≥ s ∈ T (4.5)

we say that {ξt , t ∈ T} is a F t-sub-martingale.

An important consequence of the martingale property is the conservation of the expectation value. Namely we
must have

EE {ξt|Fs} = Eξs (4.6)

but also from the definition of conditional expectation

EE {ξt|Fs} = Eξt (4.7)

Hence for any t , s

Eξt = Eξs (4.8)

5 Random Walk as Martingale

We defined the random walk as

Ξn =
n∑
i=1

ξi (5.1)

with {ξi}Ni=1 i.i.d. random variables with ξi
d
= ξ for all i. Furthermore

ξ : Ω 7→ {−x, x} (5.2)

then

|Ξn| ≤ n ∀n = 1, . . . N (5.3)

We have

E {Ξn |Ξn} = Ξn (5.4)
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by definition of conditional expectation. We have

E {Ξn |Ξn−1} = E {Ξn−1 + ξn |Ξn−1} = E {Ξn−1 |Ξn−1}+ E {ξn |Ξn−1} = Ξn−1 + E {ξn |Ξn−1} (5.5)

By definition of conditional expectation

E {ξn |Ξn−1} = E ξn = (2 p− 1)x (5.6)

if P(ξ = x) = p as ξn is independent of Ξn−1. Repeating for arbitrary k ≤ n

E {Ξn |Ξk} = Ξk +
n∑

i=k+1

E {ξi |Ξk} = Ξk + (n− k) (2 p− 1)x (5.7)

We verified that {Ξn , 1 ≤ n ≤ N} is

• a sub-martingale if p > 1/2;

• a martingale if p = 1/2;

• a super-martingale if p < 1/2.

From Ξn it is always possible to construct a martingale by subtracting its compensator:

Ξ̃n = Ξn −An (5.8)

In the case of the random walk

An =
n∑
i=1

Eξi = nEξ = n (2 p− 1)x (5.9)

It is straightforward to verify that

Ξ̃n =
n∑
i=1

ξ̃i (5.10)

is specified by the sum of i.i.d. random variables with zero average. Hence

E
{

Ξ̃n | Ξ̃k
}

= Ξ̃k +

n∑
i=k+1

E
{
ξ̃i | Ξ̃k

}
= Ξ̃k (5.11)

which proves that {Ξn , 1 ≤ n ≤ N} is a martingale.

6 Markov process

Let us consider a stochastic process {ξn , n ∈ N} valued to a countable state space S ⊆ Z:

ξn : Ω× N 7→ S (6.1)

We suppose that the evolution law for its probability distribution generalizes the form we found for the random walk

Pn+1(i) =
∑
k∈S

P(i, n+ 1|k, n) Pn(k) (6.2)
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or equivalently

Pn+1(i)− Pn(i) =
∑
k∈S

[P(i, n+ 1|k, n)− δi k] Pn(k) (6.3)

Using the normalization condition ∑
k∈S

P(k, n+ 1|i, n) = 1 (6.4)

we can couch (6.3) into the form

Pn+1(i)− Pn(i) =
∑
k∈S

[P(i, n+ 1|k, n) Pn(k)− P(k, n+ 1|i, n) Pn(i)] (6.5)

The master equation (6.2) states that at any time step we can reconstruct the probability of the stochastic process at
the ensuing step if we know its “present” distribution. A more pictorial description is that the “future” depends only
upon the “present” but not upon the “past”. Such a property is the distinguishing feature of Markov processes.

7 Continuous limit

Up to now we considered a unit time step. We may instead introduce a time unit τ and rescale probabilities

Pn(m) = P̃n τ (m) (7.1)

The aim is to study the limit

τ ↓ 0 & t = n τ ∈ R+ (7.2)

After rescaling we couch (6.5) into the form

P̃t+τ (i)− P̃t(i) =
∑
k∈S

[P̃(i, t+ τ |k, t) P̃t(k)− P̃(k, t+ τ |i, t) P̃t(i)] (7.3)

The expansion in Taylor series

P̃t+τ (i) = P̃t(i) + τ ∂tP̃t(i) +O(τ2) (7.4)

and

P̃(i, t+ τ |k, t) = δi k + τ Kt(i|k) +O
(
τ2
)

(7.5)

yields

∂tP̃t(i) =
∑
k∈S

[Kt(i|k) P̃t(k)−Kt(k|i) P̃t(i)] +O(τ) (7.6)

Thus in the limit τ ↓ 0 we are left with

∂tP̃t(i) =
∑
k∈S

[Kt(i|k) P̃t(k)−Kt(k|i) P̃t(i)] (7.7)

Probability conservation now requires ∑
i∈S

∂tP̃t(i) = ∂t
∑
i∈S

P̃t(i) = 0 (7.8)
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entailing ∑
i ,k∈S

[Kt(i|k) P̃t(k)−Kt(k|i) P̃t(i)] = 0 (7.9)

which is satisfied identically. Two observations are in order

• the diagonal component Kt(i|k) of the transition rate Kt(·) does not contribute to (7.7).

• The condition ∑
k∈S

Kt(k|i) = 0 (7.10)

is a sufficient condition for (7.9) to hold true. It is also guarantees to leading order in O(τ) that

1 =
∑
i∈S

P̃(i, t+ τ |k, t) =
∑
i∈S

[
δi k + τ Kt(i|k) +O

(
τ2
)]

= 1 +O(τ2) (7.11)

By virtue of the first observation, it is not restrictive to assume that (7.10) always holds true. In such a case we can
write

∂tPt(i) =
∑
k∈S

[Kt(i|k) Pt(k) (7.12a)

∑
k∈S

Kt(k|i) = 0 (7.12b)

8 Poisson process

We now make a special choice for the transition rates in (7.12) and set for some γ ∈ R+

Kt(i|k) = γ δi ,k+1 − γ δk ,i (8.1)

The resulting equation is

∂tP(i , t) = γ P(i− 1 , t)− γ P(i , t)

This is the evolution for a process that can make (or not make) jumps only towards the right of its current position. If
we assume that the initial distribution

P(i, 0) = Po(i)

has support on N then the process will stay there for any further time. The equation can be solved exactly by computing
the characteristic function

P̌(u, t) :=

∞∑
k=0

eı k u P(k, t)

Namely, it is straightforward to see that P̌(u, t) satisfies:

∂tP̌(u, t) = γ (eı u − 1) P̌(u, t)
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The solution for the initial condition P̌(u, 0) = P̌o(u)

P̌(u, t) = eγ t (eı u−1)P̌o(u)

If we specialize for an initial condition

Po(i) = δi 0

(i.e. we assume that the process starts from the origin) we obtain

P̌(u, t) = eγ t (eı u−1)

In order to infer the probability distribution associated to the characteristic function we can write

P̌(u, t) = eγ t e
ı u
e−γ t = e−γ t

∞∑
j=0

(γ t)j

Γ (j + 1)
eı u j

which implies that P̌(u, t) is the characteristic function of the Poisson process, with probability distribution:

P(j , t) =
(γ t)j

Γ (j + 1)
e−γ t
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