
From Bernoulli variables to Random Walk

1 Introduction

A short but nice introduction to σ-algebras and their probabilistic interpretation is given in [2] §1.1 and §1.3 . The
solution of the master equation of the random walk is discussed in §3.8.2 of [1].

2 Probability space for iterated coin tossing

2.1 Single coin toss

For a single coin tossing with outcomes head H or tail T we already seen that

Ω = {H ,T} & F = {∅, H, T,Ω} (2.1)

Note that Ω = H ∪ T i.e. {H ,T} are the atoms of Ω.

2.2 Double coin toss

Let us consider the case of an iterated coin tossing. The space of events is

Ω = {HH ,HT , TH , TT} (2.2)

We can construct several σ-algebras on Ω depending on the probability model we wish to consider. The minimal
σ-algebra on Ω is

Fmin = σmin(Ω) = {∅,Ω} (2.3)

If in a double coin tossing we can observe only the outcome of the first tossing the σ-algebra attuned to describe such
situation is

F1 = σ1(Ω) = {∅, HH ∪HT, TH ∪ TT ,Ω} (2.4)

Finally the maximal σ-algebra on Ω is

Fmax = σmax(Ω) = {∅, HT ,HT , TH , TT ,

HH ∪HT , TH ∪ TT ,HH ∪ TH ,HT ∪ TT ,HH ∪ TT ,HT ∪ TH ,

HH ∪HT ∪ TH ,HT ∪ TH ∪ TT ,HH ∪HT ∪ TT ,HH ∪ TH ∪ TT ,Ω} (2.5)

In the maximal σ-algebra we can attribute a probability to events such as

• Probability to get an head in a double coin tossing: P (HH ∪HT ∪ TH)

• Probability to get the same result if we toss the coin twice: P (HH ∪ TT )

and so on.
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3 Random walk

Consider a sequence {ξi}Ni=1 of i.i.d. Benoulli variables:

∀ i ξi
d
= ξ = {−x , x} (3.1)

with

P (ξ = x) = p < 1 (3.2)

We interpret the sum of this variable as giving the displacement from zero of a random walker

Ξn =
n∑
i=1

ξi (3.3)

and suppose that of the n steps nr were to the right and nl to the left:

n = nl + nr (3.4)

The displacement from the origin in units of x is then given by

m = nr − nl (3.5)

We can solve for nl, nr and obtain

nr =
n+m

2
& nl =

n−m
2

The probability of an individual sequence of samples of Bernoulli variables such that Ξn(ω) = mx is

P(ω) = p
n+m

2 (1− p)
n−m

2

In order to evaluate the total probability P (Rn = mx) we must count all possible sequences of samples such that
(3.4), (3.5) are verified. This number is equal to the number of ways we can extract nr out of n indistinguishable
object (this means that the extraction order does not matter):

Cnrn =
n!

nr!(n− nr)!
≡ n!

nr!nl!

The conclusion is

P(Ξn = mx) =
n!(

n+m
2

)
!
(
n−m

2

)
!
p
n+m

2 (1− p)
n−m

2 (3.6)

Using binomial formula it is straightforward to check the normalization condition form = −n,−(n−1), . . . , n−1, n.

4 Master equation for Random Walk

In the previous section we derived the probability distribution of the random walk by counting the path leading to
the same displacement in a fixed time horizon of n steps. The feasibility of such calculation strictly depends on the
specific nature of the process. A more general approach is to derive the evolution law that locally i.e. over one time
step (3.6) must obey. Suppose we are given the displacement probabilities {Pn(k)}nk=−n at time n (by definition the
displacement satisfies |m| ≤ n). The probability of finding the walker at time n+ 1 in m comprises two terms
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i the probability of being at time n in m− 1 times the probability of making a step forward

ii the probability of being at time n in m+ 1 times the probability of making a step backward

more explicitly

Pn+1(m) = pPn(m− 1) + (1− p) Pn(m+ 1) (4.1)

Note that (4.1) is equvalent to say

P(Ξn+1 = m |Ξn = k) = p δkm−1 + (1− p) δkm+1 (4.2)

Namely let us observe that

Pn+1(m) ≡ P(Ξn+1 = m) =∑
k∈Z

P(Ξn+1 = m,Ξn = k) =
∑
k∈Z

P(Ξn+1 = m,Ξn = k)

P(Ξn = k)
P(Ξn = k) (4.3)

By definition of conditional probability, we have

P(Ξn+1 = m |Ξn = k) =
P(Ξn+1 = m,Ξn = k)

P(Ξn = k)
(4.4)

hence

Pn+1(m) =
∑
k∈Z

P(Ξn+1 = m |Ξn = k)Pn(k) (4.5)

The contents of (4.1) is that the evolution of the probability density of the walker displacement is specified by

• the current state of the walker (i.e. “the present”)

• the transition probabilities P(Ξn+1 = m |Ξn = k) over the time unit.

The simplifying feature of (4.1) is that the transition rates are spatially homogeneous. This means that by they do
not depend neither on the initial state nor on the final state. This translational invariance suggests that the natural
tool to solve (4.1) is the Fourier transform. In other words, it is expedient to reformulate (4.1) as an equation for the
characteristic function of the walker position process:

Gn(t) := E eı tΞn =
n∑

k=−n
eı t k xPn(k) (4.6)

As (4.6) involves only a finite sum, we have

Gn(t) = Gn

(
t+

2π

x

)
(4.7)

so that the Fourier anti-transform is specified by the integral

Pn(m) =

∫ 2π
x

0

dt

2π
e−ı tmx Gn(t) =

n∑
k=−n

Pn(k)

∫ 2π
x

0

dt

2π
e−ı t x (m−k) =

n∑
k=−n

Pn(k)δmk (4.8)
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Taking the Fourier transform of both sides of (4.1) yields

Gn+1(t) = [p eı t x + (1− p) e−ı t x] Gn(t) (4.9)

For every fixed t, (4.9) defines a linear map in n which we can solve by iteration

Gn(t) = [p eı t x + (1− p) e−ı t x]n G0(t) (4.10)

If we posit that the walker starts her path from the origin at time n = 0 then

P0(k) = δ0 k ⇒ G0(t) = 1 (4.11)

Thus the Fourier transform of the solution of (4.1) is

Gn(t) = [p eı t x + (1− p) e−ı t x]n (4.12)

From this latter expression we recover (3.6) using the binomial formula in the Fourier anti-transform. Namely, a
straightforward calculation yields

Pn(m) =

∫ 2π
x

0

dt

2π
e−ı tmx Gn(t) =

n∑
k=0

n!

k!(n− k)!
pk(1− p)k

∫ 2π
x

0

dt

2π
e−ı t xmeı t x ke−ı t x (n−k) =

n∑
k=0

n!

k!(n− k)!
pk(1− p)kδk n+m

2
(4.13)

whence the claim is proved.

Appendix

A Summary of limit theorems for Bernoulli variables

The characteristic function of a Bernoulli random variable

ξ : Ω 7→ {−x, x} & P(ξ = x) = p (A.1)

is

E eıtξ = cos(xt) + ı (2 p− 1) sin(xt)

Differentiating the characteristic function for t = 0 we obtain all the positive moments

E ξn =

{
xn if n = 2 k
xn (2 p− 1) if n = 2 k + 1

In particular

E ξ = (2 p− 1)x & E (ξ − E ξ)2 = 4 p (1− p)x2

and

E(ξ − E ξ)4 = 16 p (1− p) [1− 3 (1− p) p] x4

If we introduce the random variable

Sn :=

∑n
i=1 ξi
n

then

ESn = E ξ & E(Sn − E ξ)2 =
4 p (1− p)x2

n
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• By Čebyšev theorem we have immediately

P (|Sn − E ξ| ≥ ε) ≤ E (Sn − E ξ)2

ε2
=

4 p (1− p)x2

n ε2

n↑∞→ 0 (A.2)

This is law of large numbers for i.i.d. Bernoulli variables.

• Upon setting

ξ̃i = ξi − E ξ (A.3)

we can write

E (Sn − E ξ)4 =
∑
i=1

E ξ̃4
i

n4
+ 3

∑
ijkl

δijδkl(1− δjk)
(E ξ̃2

i )2

n4

=
16 p (1− p)x2

n3
[1− 3 (1− p) p] + 3n (n− 1)

16 p2 (1− p)2

n4

n� 1
≤ C x2

n2

We obtain therefore the estimate

P (|Sn− ≺ ξ | ≥ ε) ≤ E (Sn − E ξ )4

ε4
≤ C x4

n2 ε4

n↑∞→ 0

As in the general case, this last upper bound bound tends to zero sufficiently fast at infinity to permit the
application of the the Borel-Cantelli lemma. We can therefore prove that

Sn
n↑∞→ E ξ a.s.

i.e. the validity of the strong law of large numbers for Bernoulli schemes.

• Consider now the characteristic function

E eıSn t = E eıξ t n =

[
cos

(
x t

n

)
+ ı (2 p− 1) sin

(
x t

n

)]n
If we hold t fixed and take n� 1 we can expand the right hand side in Taylor series

ln E eıSn t = ı (2 p− 1)x t− x2 t2

2

4 p (p− 1)

n
+ o

(
1

n

)
We can couch the result into the form

ln E eıSn t
n�1
= ıE ξ t− t2

2

E (ξ − E ξ )2

n
+ o

(
1

n

)
(A.4)

which also suggests

E eıSn t = eıE ξ t−
t2

2
E (ξ−E ξ )2

n + o

(
1

n

)
(A.5)

Hence we recovered the content of the central limit theorem in the case of Bernoulli variables:

PSn(x)
n� 1∼

√
n

2πE (ξ − E ξ )2
e
− n (x−E ξ)2

2 E (ξ−E ξ)2 (A.6)
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