
1 Introduction

The Borel–Cantelli lemma is nicely discussed in paragraph 1.2 of [4]. The presentation of the strong law of large
numbers and the central limit theorem is drawn from [1].

2 Borel -Cantelli lemma

Let {Fk}∞k=1 a sequence of events in a probability space.

Definition 2.1 (Fn infinitely often). The event specified by the simultaneous occurrence an infinite number of the
events in the sequence {Fk}∞k=1 is called “Fn infinitely often” and denoted ” Fn i.o.”. In formulae

Fn i.o. := ∩∞n=1 ∪∞k=n Fk = {ω ∈ Ω |ω belongs to infinitely many of theFn}

Let us analyze the meaning of the individual events intervening in (2.1)

• F̃n := ∪∞k=nFk: for any given n at least one of the {Fk}∞k=n occurs.

• ∩∞n=1F̃n : this event differ from the empty set if and only if all the F̃n’s have a non-trivial intersection.

• By definition we have F̃n+1 ⊆ F̃n whence it follows

∩∞n=1F̃n ≡ ∩∞n=1 ∪∞k=n Fk = lim
n↑∞

sup
k≥n

Fk (2.1)

An alternative, equivalent notation is

Fn i.o. = lim
n↑∞
∪k≥nFk = lim

n↑∞
sup
k≥n

Fk

Recall also that

P(Fk) =

∫
dP χFk(ω)

for χFk the characteristic function of the event χ and that

lim
n↑∞

sup
k≥n

χFk(ω) = χlimn↑∞ supk≥n Fk(ω)

Finally let us observe that the following proposition holds

Proposition 2.1. Let {Ak}∞k=1 an increasing (decreasing) sequence of telescopic events such that A1 ⊆ A2 ⊆ . . .
(A1 ⊇ A2 ⊇ . . . ). If

A = lim
n↑∞

An (2.2)

then we have

lim
n↑∞

P(An) = P(A) (2.3)
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Proof. The axioms of probability require that if An ⊆ An+1 then P(An) ≤ P(An+1). Since P(An) ≤ P (A) ≤ 1 for
all n the sequence {P(An)}∞n=1 is monotonic and bounded. It must therefore have a limit

lim
n↑∞

P(An) = P(A′) ≤ P(A) (2.4)

Suppose A′ ⊂ A then by hypothesis for n sufficiently large A′ ⊂ An and therefore P(A′) < P(A) which contradicts
(2.4).

By virtue of the above considerations we can state and prove the Borel–Cantelli lemma.

Lemma 2.1 (Borel-Cantelli). The following claims hold:

• if
∑

n P (Fn) < ∞ then P (Fn i.o.) = 0

• if
∑

n P (Fn) = ∞ and {Fn}∞n=1 consists of independent events P (Fn i.o.) = 1

Proof. :

• By definition

P(Fn i.o.) = P(∩∞n=0 ∪∞k=n Fk) = P( lim
n↑∞
∪∞k=nFk) (2.5)

Lebesgue’s dominated convergence theorem (see e.g. [3] pag. 187), allows us to carry out the limit from the
integral

P(Fn i.o.) = lim
n↑∞

P(∪∞k=nFk)

whilst the definition of probability measure enforces the inequality

P(Fn i.o.) ≤ lim
n↑∞

∞∑
k=n

P(Fk) = 0

The proof of the first statement follows from the hypothesized convergence of the series.

• We can turn to the complementary event:

(∪k≥nFk)c = ∩k≥nF ck

and use independence

P(∩k≥nF ck) =

∞∏
k=n

P(F ck) =

∞∏
k=n

[1− P(Fk)]

The inequality

1− x ≤ e−x (2.6)
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then provides us with an upper bound for each factor in the product

P(∩k≥nF ck) ≤
∞∏
k=n

e−P(Fk) = e−
∑∞
k=n P(Fk)

whence the claim follows if the series diverges.

The Borel-Cantelli lemma provides an extremely useful tool to prove asymptotic results about random sequences
holding almost surely (acronym: a.s.). This mean that such results hold true but for events of zero probability. An
obvious synonym for a.s. is then with probability one.

3 Law of Large Numbers

The law of large number theorem gives information about the average outcome of repeated sampling of the same
random variable performed one independently of the other.

Theorem 3.1 (The strong law of large numbers). Let {ξi}
n
i=1 a sequence of independent identically distributed (i.e.

we suppose ξi
d
= ξ for all i ∈ N) random variables defined over the same probability space. Then if Eξ4 < ∞ we

have

P

(
lim
n↑∞

∑n
i=1 ξi
n

= E ξ

)
= 1

Proof. Let

Ξn =
n∑
i=1

ξi
n

(3.1)

In order to prove the claim, by Borel-Cantelli lemma it is sufficient to show that

∞∑
n=1

P (|Ξn − Eξ| ≥ ε) < ∞ (3.2)

From Čebyšev’s lemma we know that

P (|Ξn − Eξ| ≥ ε) ≤ E(Ξn − Eξ)4

ε4
(3.3)

Let us observe first that

Ξn − Eξ =
n∑
i=1

ξi
n
− E ξ =

n∑
i=1

ξi − E ξ

n
=

n∑
i=1

ξ̃i
n

:= Ξ̃n (3.4)

where
{
ξ̃i

}n
i=1

is a sequence of i.i.d. random variables ξ̃i
d
= ξ̃ such that Eξ̃ = 0. We have then that

EΞ̃n =

n∑
ijlk=1

E ξ̃iξ̃j ξ̃lξ̃k
n

(3.5)

where
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i if at least one of the labels, say i, differs from all the others

E ξ̃iξ̃j ξ̃lξ̃k = (E ξ̃i)Eξ̃j ξ̃lξ̃k (3.6)

as the random variable in the sequence are mutually independent; in such a case

E ξ̃i = 0 ⇒ E ξ̃iξ̃j ξ̃lξ̃k = 0 (3.7)

ii if labels are equal in pairs, say i = j and l = k then

E ξ̃iξ̃j ξ̃lξ̃k = (E ξ̃iξ̃j)Eξ̃lξ̃k = (Eξ̃2)2 (3.8)

iii if all labels are equal

E ξ̃iξ̃j ξ̃lξ̃k = (Eξ̃2)4 (3.9)

We conclude that
n∑

ijlk=1

Eξ̃iξ̃j ξ̃lξ̃k = nEξ̃4 + (Eξ̃2)2(
∑
ijlk

δijδlk + δilδjk + δikδjl − n) = nEξ̃4 + 3n (n− 1)(Eξ̃2)2 (3.10)

Jensen’s inequality implies that Eξ̃4 < ∞ implies Eξ̃2 < ∞ thus for n sufficiently large there exists a positive
constant K < ∞ such that

EΞ̃4
n ≤

K

n2
(3.11)

From this latter result we have
∞∑
n=1

P (|Ξn − Eξ| ≥ ε) ≤
∞∑
n=1

K

n2
< ∞ (3.12)

which proves the claim.

In the proof of the strong law of large numbers we mentioned Jensen’s inequality. Jensen’s inequality holds for
convex functions i.e. (Borel measurable) functions

f : Ω 7→ R (3.13)

such that for any two points x1 and x2 in its domain of definition Ω and any t ∈ [0, 1]

f(t x1 + (1− t)x2) ≤ t f(x1) + (1− t) f(x2)

Proposition 3.1 (Jensen’s inequality). Let the Borel function f(x) be downward convex and ξ a random variable with
absolutely convergent first moment. Then

f(E ξ) ≤ E f(ξ)

Proof. Using the definition of convex function for each xo ∈ R we can find a number g(xo) such that

f(x) ≥ f (xo) + g(xo) (x− xo)

The identifications x = ξ and xo = E ξ yield the proof of the inequality
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In particular upon setting

f(x2) = x4 (3.14)

we get into

E ξ4 ≥ (E ξ2)2 (3.15)

A further useful consequence of Jensen’s inequality is

Proposition 3.2 (Lyapunov’s inequality). Let 0 < s < t then

(E |ξ|s)1/s ≤ (E |ξ|t)1/t

Proof. Define r = t/s and

η = |ξ|s (3.16)

Since r > 1 the function f(x) = xr is convex. By Jensen’s inequality

(E η)r ≡ f(E η) ≤ E f(η) ≡ E ηr

whence the claim follows upon inserting (3.16) into the inequality.

4 Central Limit theorem

The central limit theorem gives information about the deviation from the average outcome of repeated sampling of
the same random variable performed one independently of the other.

Theorem 4.1 (The central limit theorem). Let {ξi}ni=1 a sequence of independent identically distributed real-valued

integrable random variables defined over the same probability space. Assume ξi
d
= ξ and

E ξ = m

E (ξ − E ξ)2 = σ2 > 0

Set

Ξn =
1

n

n∑
i=1

ξi

Then for all −∞ < a < b <∞ the limit holds

lim
n↑∞

P

(
a <

Ξn −m
[E(Ξn −m)2]1/2

< b

)
=

∫ b

a
dx g0 1(x) (4.1)

where

g0 1(x) =
e−

x2

2

√
2π
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Sketch of the proof. Consider the characteristic function

Ee
ı t Ξn−m

[E(Ξn−m)2]1/2 = E e
ı t

∑n
i=1 ξi−nm√

nσ =
n∏
i=1

E e
ı t

ξi−m√
nσ =

[∫
R
dx e

ı t x−m√
nσ pξ(x)

]n
As n increases to infinity one expects the characteristic function for ”small values” of q to be well approximated by a
Taylor expansion of the exponential

E e
ı t Ξn−nm√

nσ =

[
1− t2

2n

∫
R
dx

(x−m)2

σ2
pξ(x) +O(

1

n3/2
)

]n
n↑∞→ e−

t2

2

Thus the small wave number behavior of the characteristic function is approximated by the characteristic function of
the Gaussian distribution.

4.1 Some observations on the central limit theorem and its generalizations

The central limit theorem is often invoked in applications as it describes universal properties of a physical system.
This means properties which depend only on a coarse characterization of the phenomena (e.g. finiteness of the fourth
moment) rather than on its fine details.

4.1.1 The role of the Fourier transform

In the sketch of the proof we made use of the relation between the PDF of the a random variable and its characteristic
function. Such relation becomes particularly useful when dealing with sums of random variables. Namely let

ζ = ξ1 + ξ2

then

pζ(x) =

∫
R
dy1dy2 δ(x− y1 − y2) pξ1(y1) pξ2(y2) =

∫
R
dy pξ1(x− y) pξ2(y)

From the general properties of the Fourier transform, we know that

pζ(x) =

∫
R

dt

2π
e−ı t xp̌ξ1(t)p̌ξ2(t)

Thus dealing with characteristic functions in the proof of limit theorems it is helpful because it replaces convolutions
with products of Fourier transforms.

4.1.2 Domain of validity

It is important to understand that the central limit theorem is a statement concerning the bulk of the asymptotic
distribution of

ζn :=
Ξn −m

[E(Ξn −m)2]1/2
n � 1

This means that we can use the predicted Gaussian distribution only to evaluate the first moments of ζn but not to
sample the behavior of the tails of the distribution. The situation is illustrated by the following example.
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• Let {ξi}∞i=1 a sequence of i.i.d. positive definite random variables with density over R+

pξ(x) =
e−

x
x̄

x̄
ξi

d
= ξ ∀ i

From this sequence we can construct the products

ηn =
n∏
i=1

ξi = x̄n e
∑n
i=1 ψi & ψ

d
= ψi

d
:= ln

ξ

x̄

By hypothesis

m := Eψ =

∫ ∞
0

dx ln
x

x̄
pξ(x) < ∞

σ2 := E(ψ −m)2 =

∫ ∞
0

dx ln2 x

x̄
pξ(x)−m2 < ∞

We can explicitly compute mean and variance as derivatives of the Γ function. After passing to nondimensional
variable

y =
x

x̄
(4.2)

we have

m = lim
ε↓0

∫ ∞
0

dy
yε − 1

ε
pξ(y) = lim

ε↓0

Γ(1 + ε)− 1

ε
= −γ (4.3)

where γ stands for the Euler constant

γ = 0.577 . . . (4.4)

Similarly we obtain

σ2 = lim
ε↓0

Γ(1 + 2 ε) + 1− 2 Γ(1 + ε)

ε2
− γ2 =

π2

6
(4.5)

Since the variance is finite, we can apply the central limit theorem to

Ψn :=

∑n
i=1 ψi
n

and write for the density of this latter variable

pΨn(x)
n↑∞→ e−

n (x−m)2

2σ2√
2π σ2

n

(4.6)

We can use (4.6) to tentatively compute moments of arbitrary order of

ηn = x̄n enΨn

using

E ηkn
n↑∞
' x̄nk

∫ ∞
−∞

dx enk x
e−

n (x−m)2

2σ2√
2π σ2

n

= x̄nk e
n
(
km+ k2 σ2

2

)
(4.7)
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The same quantity can be, however, computed directly from its very definition:

E ηkn =
n∏
i=1

E ξki = (E ξk)n = x̄k n en ln E( ξx̄)
k

= en [k ln x̄+ln Γ(k+1)] (4.8)

From Stirling’s formula we know that

ln Γ(k + 1)
k↑∞→ k (ln k − 1) + o(k)

which, for k sufficiently large, disproves (4.7). On the other hand, for small k we have

ln Γ(k+1)

−γ k+π2 k2

12

ln E ξk = ln E

(
1 + k ln ξ +

k2

2
ln2 ξ + . . .

)
= km+

σ2 k2

2
+ . . . (4.9)

which coincides with the central limit prediction.

• An alternative way to phrase the content of the above example is the following: when computing expectation
values of random variables which take large values with small probability contributions from such values cannot
be neglected. The product of something big by something small can still be big. A systematic way to tackle the
problem is provided by the theory of large deviations (see e.g. [5]).

In applications, a qualitative estimate of the bulk of the asymptotic distribution is provided by the variance of ζn

Ξn − E ξ ∼ O
(
σ√
n

)
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