1 Introduction

These notes shortly recall some basic concepts in classical probability. The material presented here is more leisurely
expounded in a physics style language in chapter two of [2]. For a more mathematics style presentation see chapter
one of [3] or chapter two of [1].

2 Measure theoretic definitions

Let 2 a non-empty set.

Definition 2.1 (c-algebra). A o-algebra is a collection F of subsets of {2 with these properties
1. 0,Q ¢ F.
2. if F € Fthen F¢ € F for F¢:= Q\ F the complement of F.
3. if{Fi}re, € F then
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Definition 2.2 (Probability measure). Let F be a o-algebra of subsets of ). We call
P:F — [0,1]
a probability measure provided:
1. P) =0, P(Q) =1

2. if{Fi}re, then

P(UG21Fy) < ) P(Fy)

3. if {Fy}4, are disjoint sets

P(U2 Fy) = ) P(Fy) @1
k=

[y

It follows that if £ , Fy € F
Fy C Fy = P(Fl) < P(FQ)

Definition 2.3 (Borel o-algebra). The smallest o-algebra containing all the open subsets of RY is called the Borel
o-algebra, denoted by B

The Borel subsets of R? i.e. the content of B may be thought as the collection of all the well-behaved subsets of
R? for which Lebesgue measure theory applies.



3 Probability Space
Definition 3.1 (Probability space). A triple
(Q,F,P)
is called a probability space provided
1. Qis any set
2. Fis a o-algebra of subsets of ()

3. P is a probability measure on F

Points w € €2 are sample (outcome) points.

A set F' € F is called an event.

e P(F) is the probability of the event F'.

”a.s.”).

Example 3.1 (Single unbiased coin tossing). :

e outcomes: head, tail

o O = {head,tail}.

e g-algebra F: it comprises | F| = 2/Yl = 4 events
1 T=tail
2 H=head

3 ()=neither head nor tail
4 TV H=head or tail

e Probability measure:

PT)=PH)== & PWM)=0 & P(TVH) =1

Example 3.2 (Uniform distribution). :

e O =10,1].
e F: the o-algebra of all Borel subsets of [0, 1].

e P: the Lebesgue measure on [0, 1]. (Note: as 0 U 1 has zero measure [0, 1] ~ (0,1).)

A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated

3.1



Definition 3.2 (Probability density on RY). Let p be a non-negative, integrable function, such that

/ dzp(x) =1 (3.2)
Rd

then to each B € B (Borel o-algebra) is possible to associate a probability
P(B) = / d%z p(x) (3.3)
B

so that (RY | B, P) is a probability space. The function p is called the density of the probability P.

Example 3.3 (Gaussian distribution). The function

9zo R%R-‘r
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is a probability density on (R¢, B, P).

4 Random variables

Definition 4.1 (R?-valued random variable). Let (Q, F , P) be a probability space. A mapping
£:Q - R?

is called an d-dimensional random variable if for each B € B (B is the Borel o-algebra over R?) one has
¢€1'(B) e F

i.e. if € is F-measurable.

The definition associates to each event a Borel subset. More generally if S is a set and S a g-algebra on it such
that the pair (S, S) is a measurable space then we have

Definition 4.2 (S-valued random variable). Let (2, F , P) be a probability space. A mapping
E:Q—S
is an S-valued random variable if for each S € S one has
£7(8) e F
See [3] 1.3 for further details.
Example 4.1 (Indicator function). Let F' € F. The indicator function of F' is

{1l fweF
XFWI=1 0 ifwgF

Example 4.2 (Simple function). Let {F;};", € F are disjoint (i.e. F; N F; = () and form a partition of  (i.e.
U, F; = Q)and {z;};", € Rthen

£=Y wixp(w)
i=1

is a random variable, called a simple function.



Lemma 4.1. Let
£w): Q= R?
be a random variable. Then
F(€)={€'(B)|B € B}

is a o-algebra, called the o-algebra generated by €. This is the smallest sub o-algebra of F with respect to which &
is measurable.

Proof. It suffices to verify that () is a o-algebra. O

Remark 4.1 (Meaning of measurability). : The o-algebra F (§) encodes all the information described by the random
variable €. This means that if ¢ is a second random variable, the statement

e ( = f (&) for some mapping f implies that ¢ is F(&)-measurable.

e ( is F(&)-measurable, implies that there exists a mapping f such that { = f ().

S Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue
integral of measurable functions. Let (€2, F , P) a probability space and £ a simple 1-dimensional random variable

n
§= Z TiXF,
=1

Definition 5.1 (Expectation value (integral) of a simple random variable).

n
E¢ := / dP¢=> x,P(F)
Q i=1
Definition 5.2 (Expectation value (integral) of a non-negative random variable n). For
n:Q - Ry
we define

EnE/dPn:: sup /dP§
Q &<n - JQ

£=simple
Definition 5.3 (Expectation value a random variable ). For
n:Q—->R
we define
N+ :=max {n,0} & n- :=max{—n,0}
If

min{Eny ,En_} < o

4



we define the expectation variable of

=m0+ —1-

as

/dPn::/dPn+—/dP77_
Q Q Q

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable & : Q@ — R® is the function

P iR - R,

such that

Pe(m) = Pe(&1 < 21,... &0 < 24)

Definition 6.2 (PDF of a random variable). Let & : Q — R be a random variable and ]55 its distribution function.

If there exists a non-negative, integrable function
p:RY - Ry

such that

Pe(z) =[] / dy; pe(y)
i=1"v "X

then p¢ specifies the probability density function of € (PDF).

Lemma 6.1. Let
£:Q —» RY
be a random variable, with statistics described by PDF p¢. Suppose
f:RIS R
and
y=f(z)
Then

Ef(€) = / dz pe () (x)

Proof. Suppose first f is a simple function on R? . Then

BA© =31 [xn(@dr =3 fPB) =Y [ ne@) f@)
i=1 i=1 i=1"Bi

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general

functions g.

O]



In particular for a R%-valued random variable we have
E¢ = / A%z pe(x) x average or mean value

meaning that if {ei};-izl is the collection of the unit vectors spanning the canonical basis of R¢ i.e.

1 0
0 1
e = |. ey = |. ete. (6.1)
0 0
then
e;-E€ =Fe,; - £ = E¢' = /ddxpg(a:) zt (6.2)
Similarly

E(& —Ef) ® (€ — E¢) = /ddx pe(x) (x — E§) ® (x — EE) (co-)variance tensor
stands for the rank two tensor with components
B¢~ B¢)(E ~ES) = [ d'ape(e) (o'~ Ba')(o! ~ Ba)
= /dd:cpg(a:) (2’27 —2'Ex' — 2'Ea’) + E2'Eal = /ddl’pg(m) 'zl —Ex'Ea’ (6.3)
Note that for any (non-random) vector v the inequality

v-E(£ —E¢) ® (£ —E¢)-v=E[£—EE) v]>>0 (6.4)

holds true. The covariance tensor also referred to as correlation tensor is therefore positive definite and in particular
strictly positive definite for any random variable £& whose probability distribution does not degenerate on a single
deterministic value.

Definition 6.3 (Moments of a random variable). Let
E:Q - R

we call the expectation value of the n-th power of €

Egn_/degn

the moment of order n of €.

The lower order moments are those most recurrent in applications and as such are given special names such as the
average and the variance.

Example 6.1. (Average and variance of a Gaussian variable)



e Average:

Bé= [ dragen(o) = [ do(@+oa) o

As
901(x) = go1(— )
we find
EéE=2x
e Variance

E(-E¢)? = aQ/Rdm:?gm(:c)

The remaining integral I can be evaluated for example using the identity

2 d?
dxx” go1(z) = Z(3

_(==p?
e 2
Z(y ::/dmg x eﬂ:/daf;e
() . 01(z) A o

Performing the change of variable x — = 4 7 we can therefore write

2
2

22

e 2 2

2
A :eg/da: —e2
() L=

Finally in order to prove that gg () is indeed normalized to the unity we observe that

22 2 «24a2
/d ¢ 2 / 2d T /Ood -5
x = H T; = rre 2z =
R X s RQ’i:l 2T 0

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Characteristic function of a random variable
Definition 7.1 (Characteristic function). Let
£:Q - R?
the expectation value
Pe(q) = E e

is referred to as the characteristic function of the random variable



Example 7.1 (Characteristic function of a Gaussian random). Let
E:2—-R

distributed with Gaussian PDF. The characteristic function is

o2 q2

9z o(q) = /dx ez o(x) = "7 2

For a Gaussian variable it is also true

& i qn
gi,a(‘]) = Z m < §n >
n=0

having used the I'-function representation of the factorial (see appendix A). If £ = 0 odd moments vanish whilst for
even moments we get into

r'22n+1)
A NCES) (2n = 1lo .h
Formally for a random variable £ one can write
1 d"
E&=— —p 7.2
&= dan@(Q)qzo (7.2)

The relation is formal because it may be a relation between infinities.

Example 7.2 (Lorentz distribution). Let
p R — R+

be
T {(z —y)* + 0%}

the Lorentz probability density so that (R, B, P, ,(13)) a probability space. Note that

pyo(x) =

poo(®) = poo(—2)
Using a change of variable and it is straightforward to verify that
/ drxpys(z) =y
R
however
/ dr 2 pyo(z) = 00
R

The characteristic function can be computed using Cauchy theorem

Byold) = €% / d €9 po o (x)

- /dﬂ:e“’”’ L1 ='W e %fq >0
2im Jr r—10 z+4+10 e?? ifg <O

The characteristic function develops a cusp for g = 0

Pyolq) = €7l




Appendices

A Gamma function

The I' function for any z € R is specified by the integral

*d
M= [ e
o Y

For x € N the integral can be performed explicitly and it is equal to the factorial:
I(z) = (x —1)! zeN

For x € R, integration by parts yields the identity
o
d
Mx+1)= / —ygf”r1 e V=T (x)
o Y

which is trivially satisfied by factorials. For x >> 1 the value of the integral is approximated by Laplace’s stationary
point method

2
[(z+1) ~ = (nz=1) / dye %z =2rzer a1 z>1 (A.1)
R

Such asymptotic estimation is usually referred to as Stirling formula.
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