
1 Introduction

These notes shortly recall some basic concepts in classical probability. The material presented here is more leisurely
expounded in a physics style language in chapter two of [2]. For a more mathematics style presentation see chapter
one of [3] or chapter two of [1].

2 Measure theoretic definitions

Let Ω a non-empty set.

Definition 2.1 (σ-algebra). A σ-algebra is a collection F of subsets of Ω with these properties

1. ∅ ,Ω ∈ F .

2. if F ∈ F then F c ∈ F for F c := Ω \ F the complement of F .

3. if {Fk}∞k=1 ∈ F then

∩∞k=1Fk ,∪∞k=1Fk ∈ F

Definition 2.2 (Probability measure). Let F be a σ-algebra of subsets of Ω. We call

P : F → [0, 1]

a probability measure provided:

1. P (∅) = 0 , P (Ω) = 1

2. if {Fk}∞k=1 then

P (∪∞k=1Fk) ≤
∞∑
k=1

P (Fk)

3. if {Fk}∞k=1 are disjoint sets

P (∪∞k=1Fk) =
∞∑
k=1

P (Fk) (2.1)

It follows that if F1 , F2 ∈ F

F1 ⊂ F2 ⇒ P (F1) ≤ P (F2)

Definition 2.3 (Borel σ-algebra). The smallest σ-algebra containing all the open subsets of Rd is called the Borel
σ-algebra, denoted by B

The Borel subsets of Rd i.e. the content of B may be thought as the collection of all the well-behaved subsets of
Rd for which Lebesgue measure theory applies.
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3 Probability Space

Definition 3.1 (Probability space). A triple

(Ω ,F , P )

is called a probability space provided

1. Ω is any set

2. F is a σ-algebra of subsets of Ω

3. P is a probability measure on F

• Points ω ∈ Ω are sample (outcome) points.

• A set F ∈ F is called an event.

• P (F ) is the probability of the event F .

• A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated
”a.s.”).

Example 3.1 (Single unbiased coin tossing). :

• outcomes: head, tail

• Ω = {head, tail}.

• σ-algebra F : it comprises |F| = 2|Ω| = 4 events

1 T=tail

2 H=head

3 ∅=neither head nor tail

4 T ∨H=head or tail

• Probability measure:

P (T ) = P (H) =
1

2
& P (∅) = 0 & P (T ∨H) = 1 (3.1)

Example 3.2 (Uniform distribution). :

• Ω = [0, 1].

• F : the σ-algebra of all Borel subsets of [0, 1].

• P : the Lebesgue measure on [0, 1]. (Note: as 0 ∪ 1 has zero measure [0, 1] ∼ (0, 1).)
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Definition 3.2 (Probability density on Rd). Let p be a non-negative, integrable function, such that∫
Rd
ddx p(x) = 1 (3.2)

then to each B ∈ B (Borel σ-algebra) is possible to associate a probability

P (B) =

∫
B
ddx p(x) (3.3)

so that (Rd ,B , P ) is a probability space. The function p is called the density of the probability P .

Example 3.3 (Gaussian distribution). The function

gx̄ σ : R→ R+

gx̄ σ(x) =
e−

(x−x̄)2

2σ2

√
2π σ2

(3.4)

is a probability density on (Rd ,B , P ).

4 Random variables

Definition 4.1 (Rd-valued random variable). Let (Ω ,F , P ) be a probability space. A mapping

ξ : Ω → Rd

is called an d-dimensional random variable if for each B ∈ B (B is the Borel σ-algebra over Rd) one has

ξ−1(B) ∈ F

i.e. if ξ is F-measurable.

The definition associates to each event a Borel subset. More generally if S is a set and S a σ-algebra on it such
that the pair (S,S) is a measurable space then we have

Definition 4.2 (S-valued random variable). Let (Ω ,F , P ) be a probability space. A mapping

ξ : Ω → S

is an S-valued random variable if for each S ∈ S one has

ξ−1(S) ∈ F

See [3] 1.3 for further details.

Example 4.1 (Indicator function). Let F ∈ F . The indicator function of F is

χF (ω) =

{
1 if ω ∈ F
0 if ω ∈/ F

Example 4.2 (Simple function). Let {Fi}mi=1 ∈ F are disjoint (i.e. Fi ∩ Fj = ∅) and form a partition of Ω (i.e.
∪mi=1Fi = Ω) and {xi}mi=1 ∈ R then

ξ =
m∑
i=1

xiχFi(ω)

is a random variable, called a simple function.
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Lemma 4.1. Let

ξ(ω) : Ω → Rd

be a random variable. Then

F(ξ) =
{
ξ−1(B) |B ∈ B

}
is a σ-algebra, called the σ-algebra generated by ξ. This is the smallest sub σ-algebra of F with respect to which ξ
is measurable.

Proof. It suffices to verify that F(ξ) is a σ-algebra.

Remark 4.1 (Meaning of measurability). : The σ-algebra F (ξ) encodes all the information described by the random
variable ξ. This means that if ζ is a second random variable, the statement

• ζ = f (ξ) for some mapping f implies that ζ is F(ξ)-measurable.

• ζ is F(ξ)-measurable, implies that there exists a mapping f such that ζ = f (ξ).

5 Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue
integral of measurable functions. Let (Ω ,F , P ) a probability space and ξ a simple 1-dimensional random variable

ξ =

n∑
i=1

xiχFi

Definition 5.1 (Expectation value (integral) of a simple random variable).

Eξ :=

∫
Ω
dP ξ =

n∑
i=1

xiP (Fi)

Definition 5.2 (Expectation value (integral) of a non-negative random variable η). For

η : Ω → R+

we define

E η ≡
∫

Ω
dP η := sup

ξ≤η
ξ=simple

∫
Ω
dP ξ

Definition 5.3 (Expectation value a random variable η). For

η : Ω → R

we define

η+ := max {η , 0} & η− := max {−η , 0}

If

min {E η+ ,E η−} < ∞
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we define the expectation variable of

η ≡ η+ − η−

as ∫
Ω
dP η :=

∫
Ω
dP η+ −

∫
Ω
dP η−

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable ξ : Ω→ Rd is the function

P̃ξ : Rd → R+

such that

P̃ξ(x) = Pξ(ξ1 ≤ x1 , . . . , ξd ≤ xd)

Definition 6.2 (PDF of a random variable). Let ξ : Ω→ Rd be a random variable and P̃ξ its distribution function.
If there exists a non-negative, integrable function

p : Rd → R+

such that

P̃ξ(x) =
d∏
i=1

∫ xi

−∞
dyi pξ(y)

then pξ specifies the probability density function of ξ (PDF).

Lemma 6.1. Let

ξ : Ω → Rd

be a random variable, with statistics described by PDF pξ. Suppose

f : Rd → R

and

y = f(x)

Then

Ef(ξ) =

∫
ddx pξ(x)f(x)

Proof. Suppose first f is a simple function on Rd . Then

E f(ξ) =
n∑
i=1

fi

∫
χBi(ξ)dP =

n∑
i=1

fiP (Bi) =

n∑
i=1

∫
Bi

pξ(x) f(x)

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general
functions g.
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In particular for a Rd-valued random variable we have

Eξ =

∫
ddx pξ(x)x average or mean value

meaning that if {ei}di=1 is the collection of the unit vectors spanning the canonical basis of Rd i.e.

e1 =


1
0
...
0

 e2 =


0
1
...
0

 etc. (6.1)

then

ei · Eξ = Eei · ξ ≡ Eξi =

∫
ddx pξ(x)xi (6.2)

Similarly

E(ξ − Eξ)⊗ (ξ − Eξ) =

∫
ddx pξ(x) (x− Eξ)⊗ (x− Eξ) (co-)variance tensor

stands for the rank two tensor with components

E(ξi − Eξi)(ξj − Eξj) =

∫
ddx pξ(x) (xi − Exi)(xj − Exj)

=

∫
ddx pξ(x) (xixj − xjExi − xiExj) + ExiExj =

∫
ddx pξ(x)xi xj − ExiExj (6.3)

Note that for any (non-random) vector v the inequality

v · E(ξ − Eξ)⊗ (ξ − Eξ) · v ≡ E[(ξ − Eξ) · v]2 ≥ 0 (6.4)

holds true. The covariance tensor also referred to as correlation tensor is therefore positive definite and in particular
strictly positive definite for any random variable ξ whose probability distribution does not degenerate on a single
deterministic value.

Definition 6.3 (Moments of a random variable). Let

ξ : Ω → R

we call the expectation value of the n-th power of ξ

Eξn =

∫
Ω
dP ξn

the moment of order n of ξ.

The lower order moments are those most recurrent in applications and as such are given special names such as the
average and the variance.

Example 6.1. (Average and variance of a Gaussian variable)
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• Average:

E ξ =

∫
R
dxx gx̄ σ(x) =

∫
R
dx (x̄+ σ x) g0 1(x)

As

g0 1(x) = g0 1(−x)

we find

E ξ = x̄

• Variance

E (ξ − E ξ)2 = σ2

∫
R
dxx2 g0 1(x)

The remaining integral I can be evaluated for example using the identity∫
R
dxx2 g0 1(x) =

d2

d2

∣∣∣∣
=0

Z()

Z() :=

∫
R
dx g0 1(x) ex =

∫
R
dx

e−
(x−)2

2

√
2π

e
2

2

Performing the change of variable x 7→ x+  we can therefore write

Z() = e
2

2

∫
R
dx

e−
x2

2

√
2π

= e
2

2

Finally in order to prove that g0 1(x) is indeed normalized to the unity we observe that∫
R
dx

e−
x2

2

√
2π

2

=

∫
R2

2∏
i=1

dxi
e−

x2
1+x2

2
2

2π
=

∫ ∞
0

dr r e−
r2

2 = 1

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Characteristic function of a random variable

Definition 7.1 (Characteristic function). Let

ξ : Ω→ Rd

the expectation value

p̌ξ(q) := E eıξ·q

is referred to as the characteristic function of the random variable
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Example 7.1 (Characteristic function of a Gaussian random). Let

ξ : Ω→ R

distributed with Gaussian PDF. The characteristic function is

ǧx̄ ,σ(q) =

∫
dx eıqxgx̄ ,σ(x) = eıqx−

σ2 q2

2

For a Gaussian variable it is also true

ǧx̄ ,σ(q) =

∞∑
n=0

in qn

Γ (n+ 1)
≺ ξn �

having used the Γ-function representation of the factorial (see appendix A). If x̄ = 0 odd moments vanish whilst for
even moments we get into

E ξ2n = σ2n Γ (2n+ 1)

2n Γ (n+ 1)
= (2n− 1)!!σ2n (7.1)

Formally for a random variable ξ one can write

E ξn =
1

ın
dn

dqn
p̌ξ(q)

∣∣∣∣
q=0

(7.2)

The relation is formal because it may be a relation between infinities.

Example 7.2 (Lorentz distribution). Let
p : R → R+

be

py σ(x) =
σ

π {(x− y)2 + σ2}

the Lorentz probability density so that (R ,B , Py σ(B)) a probability space. Note that

p0σ(x) = p0σ(−x)

Using a change of variable and it is straightforward to verify that∫
R
dxx py σ(x) = y

however ∫
R
dxx2 py σ(x) =∞

The characteristic function can be computed using Cauchy theorem

p̌y σ(q) = eıqy
∫
dx eıqxp0σ(x)

=
eıqy

2 ı π

∫
R
dx eıqx

{
1

x− ı σ
− 1

x+ ı σ

}
= eıqy

{
e−q σ if q > 0
eq σ if q < 0

The characteristic function develops a cusp for q = 0

p̌y σ(q) = eıqy−σ|q|
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Appendices

A Gamma function

The Γ function for any x ∈ R+ is specified by the integral

Γ(x) =

∫ ∞
0

dy

y
yx e−y

For x ∈ N the integral can be performed explicitly and it is equal to the factorial:

Γ(x) = (x− 1)! x ∈ N

For x ∈ R+, integration by parts yields the identity

Γ(x+ 1) =

∫ ∞
0

dy

y
yx+1 e−y = xΓ (x)

which is trivially satisfied by factorials. For x � 1 the value of the integral is approximated by Laplace’s stationary
point method

Γ(x+ 1) ' ex (lnx−1)

∫
R
dy e−

y2

2 x =
√

2π x ex (lnx−1) x � 1 (A.1)

Such asymptotic estimation is usually referred to as Stirling formula.
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