1 Introduction

These notes shortly recall some basic concepts in classical probability. The material presented here is more leisurely expounded in a physics style language in chapter two of [2]. For a more mathematics style presentation see chapter one of [3] or chapter two of [1].

2 Measure theoretic definitions

Let Ω a non-empty set.
Definition 2.1 (σ-algebra). A σ-algebra is a collection \mathcal{F} of subsets of Ω with these properties

1. $\emptyset, \Omega \in \mathcal{F}$.
2. if $F \in \mathcal{F}$ then $F^{c} \in \mathcal{F}$ for $F^{c}:=\Omega \backslash F$ the complement of F.
3. if $\left\{F_{k}\right\}_{k=1}^{\infty} \in \mathcal{F}$ then

$$
\cap_{k=1}^{\infty} F_{k}, \cup_{k=1}^{\infty} F_{k} \in \mathcal{F}
$$

Definition 2.2 (Probability measure). Let \mathcal{F} be a σ-algebra of subsets of Ω. We call

$$
P: \mathcal{F} \rightarrow[0,1]
$$

a probability measure provided:

1. $P(\emptyset)=0, P(\Omega)=1$
2. if $\left\{F_{k}\right\}_{k=1}^{\infty}$ then

$$
P\left(\cup_{k=1}^{\infty} F_{k}\right) \leq \sum_{k=1}^{\infty} P\left(F_{k}\right)
$$

3. if $\left\{F_{k}\right\}_{k=1}^{\infty}$ are disjoint sets

$$
\begin{equation*}
P\left(\cup_{k=1}^{\infty} F_{k}\right)=\sum_{k=1}^{\infty} P\left(F_{k}\right) \tag{2.1}
\end{equation*}
$$

It follows that if $F_{1}, F_{2} \in \mathcal{F}$

$$
F_{1} \subset F_{2} \quad \Rightarrow \quad P\left(F_{1}\right) \leq P\left(F_{2}\right)
$$

Definition 2.3 (Borel σ-algebra). The smallest σ-algebra containing all the open subsets of \mathbb{R}^{d} is called the Borel σ-algebra, denoted by \mathcal{B}

The Borel subsets of \mathbb{R}^{d} i.e. the content of \mathcal{B} may be thought as the collection of all the well-behaved subsets of \mathbb{R}^{d} for which Lebesgue measure theory applies.

3 Probability Space

Definition 3.1 (Probability space). A triple

$$
(\Omega, \mathcal{F}, P)
$$

is called a probability space provided

1. Ω is any set
2. \mathcal{F} is a σ-algebra of subsets of Ω
3. P is a probability measure on \mathcal{F}

- Points $\omega \in \Omega$ are sample (outcome) points.
- A set $F \in \mathcal{F}$ is called an event.
- $P(F)$ is the probability of the event F.
- A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated "a.s.").

Example 3.1 (Single unbiased coin tossing). :

- outcomes: head, tail
- $\Omega=\{$ head,tail $\}$.
- σ-algebra \mathcal{F} : it comprises $|\mathcal{F}|=2^{|\Omega|}=4$ events
$1 \mathrm{~T}=$ tail
$2 \mathrm{H}=$ head
$3 \emptyset=$ neither head nor tail
$4 T \vee H=$ head or tail
- Probability measure:

$$
\begin{equation*}
P(T)=P(H)=\frac{1}{2} \quad \& \quad P(\emptyset)=0 \quad \& \quad P(T \vee H)=1 \tag{3.1}
\end{equation*}
$$

Example 3.2 (Uniform distribution). :

- $\Omega=[0,1]$.
- \mathcal{F} : the σ-algebra of all Borel subsets of $[0,1]$.
- P : the Lebesgue measure on $[0,1]$. (Note: as $0 \cup 1$ has zero measure $[0,1] \sim(0,1)$.)

Definition 3.2 (Probability density on \mathbb{R}^{d}). Let p be a non-negative, integrable function, such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d^{d} x p(\boldsymbol{x})=1 \tag{3.2}
\end{equation*}
$$

then to each $B \in \mathcal{B}$ (Borel σ-algebra) is possible to associate a probability

$$
\begin{equation*}
P(B)=\int_{B} d^{d} x p(\boldsymbol{x}) \tag{3.3}
\end{equation*}
$$

so that $\left(\mathbb{R}^{d}, \mathcal{B}, P\right)$ is a probability space. The function p is called the density of the probability P.
Example 3.3 (Gaussian distribution). The function

$$
\begin{align*}
& g_{\bar{x} \sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+} \\
& g_{\bar{x} \sigma}(x)=\frac{e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}} \tag{3.4}
\end{align*}
$$

is a probability density on $\left(\mathbb{R}^{d}, \mathcal{B}, P\right)$.

4 Random variables

Definition 4.1 (\mathbb{R}^{d}-valued random variable). Let (Ω, \mathcal{F}, P) be a probability space. A mapping

$$
\boldsymbol{\xi}: \Omega \rightarrow \mathbb{R}^{d}
$$

is called an d-dimensional random variable iffor each $B \in \mathcal{B}\left(\mathcal{B}\right.$ is the Borel σ-algebra over $\left.\mathbb{R}^{d}\right)$ one has

$$
\boldsymbol{\xi}^{-1}(B) \in \mathcal{F}
$$

i.e. if $\boldsymbol{\xi}$ is \mathcal{F}-measurable.

The definition associates to each event a Borel subset. More generally if \mathbb{S} is a set and \mathcal{S} a σ-algebra on it such that the pair $(\mathbb{S}, \mathcal{S})$ is a measurable space then we have

Definition $4.2(\mathbb{S}$-valued random variable). Let (Ω, \mathcal{F}, P) be a probability space. A mapping

$$
\boldsymbol{\xi}: \Omega \rightarrow \mathbb{S}
$$

is an \mathbb{S}-valued random variable if for each $S \in \mathcal{S}$ one has

$$
\boldsymbol{\xi}^{-1}(S) \in \mathcal{F}
$$

See [3] $\mathbf{1 . 3}$ for further details.
Example 4.1 (Indicator function). Let $F \in \mathcal{F}$. The indicator function of F is

$$
\chi_{F}(\omega)= \begin{cases}1 & \text { if } \omega \in F \\ 0 & \text { if } \omega \notin F\end{cases}
$$

Example 4.2 (Simple function). Let $\left\{F_{i}\right\}_{i=1}^{m} \in \mathcal{F}$ are disjoint (i.e. $F_{i} \cap F_{j}=\emptyset$) and form a partition of Ω (i.e. $\cup_{i=1}^{m} F_{i}=\Omega$) and $\left\{x_{i}\right\}_{i=1}^{m} \in \mathbb{R}$ then

$$
\xi=\sum_{i=1}^{m} x_{i} \chi_{F_{i}}(\omega)
$$

is a random variable, called a simple function.

Lemma 4.1. Let

$$
\boldsymbol{\xi}(\omega): \Omega \rightarrow \mathbb{R}^{d}
$$

be a random variable. Then

$$
\mathcal{F}(\boldsymbol{\xi})=\left\{\boldsymbol{\xi}^{-1}(B) \mid B \in \mathcal{B}\right\}
$$

is a σ-algebra, called the σ-algebra generated by $\boldsymbol{\xi}$. This is the smallest sub σ-algebra of \mathcal{F} with respect to which $\boldsymbol{\xi}$ is measurable.

Proof. It suffices to verify that $\mathcal{F}(\boldsymbol{\xi})$ is a σ-algebra.
Remark 4.1 (Meaning of measurability). : The σ-algebra $\mathcal{F}(\xi)$ encodes all the information described by the random variable $\boldsymbol{\xi}$. This means that if $\boldsymbol{\zeta}$ is a second random variable, the statement

- $\boldsymbol{\zeta}=\boldsymbol{f}(\boldsymbol{\xi})$ for some mapping \boldsymbol{f} implies that $\boldsymbol{\zeta}$ is $\mathcal{F}(\boldsymbol{\xi})$-measurable.
- $\boldsymbol{\zeta}$ is $\mathcal{F}(\boldsymbol{\xi})$-measurable, implies that there exists a mapping \boldsymbol{f} such that $\boldsymbol{\zeta}=\boldsymbol{f}(\boldsymbol{\xi})$.

5 Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue integral of measurable functions. Let (Ω, \mathcal{F}, P) a probability space and ξ a simple 1-dimensional random variable

$$
\xi=\sum_{i=1}^{n} x_{i} \chi_{F_{i}}
$$

Definition 5.1 (Expectation value (integral) of a simple random variable).

$$
\mathrm{E} \xi:=\int_{\Omega} d P \xi=\sum_{i=1}^{n} x_{i} P\left(F_{i}\right)
$$

Definition 5.2 (Expectation value (integral) of a non-negative random variable η). For

$$
\eta: \Omega \rightarrow \mathbb{R}_{+}
$$

we define

$$
\mathrm{E} \eta \equiv \int_{\Omega} d P \eta:=\sup _{\substack{\xi \leq \eta \\ \xi=\operatorname{simple}}} \int_{\Omega} d P \xi
$$

Definition 5.3 (Expectation value a random variable η). For

$$
\eta: \Omega \rightarrow \mathbb{R}
$$

we define

$$
\eta_{+}:=\max \{\eta, 0\} \quad \& \quad \eta_{-}:=\max \{-\eta, 0\}
$$

If

$$
\min \left\{\mathrm{E} \eta_{+}, \mathrm{E} \eta_{-}\right\}<\infty
$$

we define the expectation variable of

$$
\eta \equiv \eta_{+}-\eta_{-}
$$

as

$$
\int_{\Omega} d P \eta:=\int_{\Omega} d P \eta_{+}-\int_{\Omega} d P \eta_{-}
$$

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable $\xi: \Omega \rightarrow \mathbb{R}^{d}$ is the function

$$
\tilde{P}_{\xi}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}
$$

such that

$$
\tilde{P}_{\boldsymbol{\xi}}(\boldsymbol{x})=P_{\boldsymbol{\xi}}\left(\xi_{1} \leq x_{1}, \ldots, \xi_{d} \leq x_{d}\right)
$$

Definition 6.2 (PDF of a random variable). Let $\boldsymbol{\xi}: \Omega \rightarrow \mathbb{R}^{d}$ be a random variable and \tilde{P}_{ξ} its distribution function. If there exists a non-negative, integrable function

$$
p: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}
$$

such that

$$
\tilde{P}_{\boldsymbol{\xi}}(\boldsymbol{x})=\prod_{i=1}^{d} \int_{-\infty}^{x_{i}} d y_{i} p_{\boldsymbol{\xi}}(\boldsymbol{y})
$$

then p_{ξ} specifies the probability density function of $\boldsymbol{\xi}$ (PDF).
Lemma 6.1. Let

$$
\boldsymbol{\xi}: \Omega \rightarrow \mathbb{R}^{d}
$$

be a random variable, with statistics described by PDF p_{ξ}. Suppose

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

and

$$
y=f(\boldsymbol{x})
$$

Then

$$
\mathrm{E} f(\boldsymbol{\xi})=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) f(\boldsymbol{x})
$$

Proof. Suppose first f is a simple function on \mathbb{R}^{d}. Then

$$
\mathrm{E} f(\boldsymbol{\xi})=\sum_{i=1}^{n} f_{i} \int \chi_{B_{i}}(\boldsymbol{\xi}) d P=\sum_{i=1}^{n} f_{i} P\left(B_{i}\right)=\sum_{i=1}^{n} \int_{B_{i}} p_{\boldsymbol{\xi}}(\boldsymbol{x}) f(\boldsymbol{x})
$$

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general functions g.

In particular for a \mathbb{R}^{d}-valued random variable we have

$$
\mathrm{E} \boldsymbol{\xi}=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) \boldsymbol{x} \quad \text { average or mean value }
$$

meaning that if $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{d}$ is the collection of the unit vectors spanning the canonical basis of \mathbb{R}^{d} i.e.

$$
\boldsymbol{e}_{1}=\left[\begin{array}{c}
1 \tag{6.1}\\
0 \\
\vdots \\
0
\end{array}\right] \quad \boldsymbol{e}_{2}=\left[\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right] \quad \text { etc. }
$$

then

$$
\begin{equation*}
\boldsymbol{e}_{i} \cdot \mathrm{E} \boldsymbol{\xi}=\mathrm{E} \boldsymbol{e}_{i} \cdot \boldsymbol{\xi} \equiv \mathrm{E} \xi^{i}=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) x^{i} \tag{6.2}
\end{equation*}
$$

Similarly

$$
\mathrm{E}(\boldsymbol{\xi}-\mathrm{E} \boldsymbol{\xi}) \otimes(\boldsymbol{\xi}-\mathrm{E} \boldsymbol{\xi})=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x})(\boldsymbol{x}-\mathrm{E} \boldsymbol{\xi}) \otimes(\boldsymbol{x}-\mathrm{E} \boldsymbol{\xi}) \quad \text { (co-)variance tensor }
$$

stands for the rank two tensor with components

$$
\begin{align*}
& \mathrm{E}\left(\xi^{i}-\mathrm{E} \xi^{i}\right)\left(\xi^{j}-\mathrm{E} \xi^{j}\right)=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x})\left(x^{i}-\mathrm{E} x^{i}\right)\left(x^{j}-\mathrm{E} x^{j}\right) \\
& \quad=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x})\left(x^{i} x^{j}-x^{j} \mathrm{E} x^{i}-x^{i} \mathrm{E} x^{j}\right)+\mathrm{E} x^{i} \mathrm{E} x^{j}=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) x^{i} x^{j}-\mathrm{E} x^{i} \mathrm{E} x^{j} \tag{6.3}
\end{align*}
$$

Note that for any (non-random) vector \boldsymbol{v} the inequality

$$
\begin{equation*}
\boldsymbol{v} \cdot \mathrm{E}(\boldsymbol{\xi}-\mathrm{E} \boldsymbol{\xi}) \otimes(\boldsymbol{\xi}-\mathrm{E} \boldsymbol{\xi}) \cdot \boldsymbol{v} \equiv \mathrm{E}[(\boldsymbol{\xi}-\mathrm{E} \boldsymbol{\xi}) \cdot \boldsymbol{v}]^{2} \geq 0 \tag{6.4}
\end{equation*}
$$

holds true. The covariance tensor also referred to as correlation tensor is therefore positive definite and in particular strictly positive definite for any random variable $\boldsymbol{\xi}$ whose probability distribution does not degenerate on a single deterministic value.

Definition 6.3 (Moments of a random variable). Let

$$
\xi: \Omega \rightarrow \mathbb{R}
$$

we call the expectation value of the n-th power of ξ

$$
\mathrm{E} \xi^{n}=\int_{\Omega} d P \xi^{n}
$$

the moment of order n of ξ.
The lower order moments are those most recurrent in applications and as such are given special names such as the average and the variance.

Example 6.1. (Average and variance of a Gaussian variable)

- Average:

$$
\mathrm{E} \xi=\int_{\mathbb{R}} d x x g_{\bar{x} \sigma}(x)=\int_{\mathbb{R}} d x(\bar{x}+\sigma x) g_{01}(x)
$$

As

$$
g_{01}(x)=g_{01}(-x)
$$

we find

$$
\mathrm{E} \xi=\bar{x}
$$

- Variance

$$
\mathrm{E}(\xi-\mathrm{E} \xi)^{2}=\sigma^{2} \int_{\mathbb{R}} d x x^{2} g_{01}(x)
$$

The remaining integral I can be evaluated for example using the identity

$$
\begin{array}{r}
\int_{\mathbb{R}} d x x^{2} g_{01}(x)=\left.\frac{d^{2}}{d \jmath^{2}}\right|_{\jmath=0} Z(\jmath) \\
Z(\jmath):=\int_{\mathbb{R}} d x g_{01}(x) e^{\jmath x}=\int_{\mathbb{R}} d x \frac{e^{-\frac{(x-\jmath)^{2}}{2}}}{\sqrt{2 \pi}} e^{\frac{\jmath^{2}}{2}}
\end{array}
$$

Performing the change of variable $x \mapsto x+\jmath$ we can therefore write

$$
Z(\jmath)=e^{\frac{\jmath^{2}}{2}} \int_{\mathbb{R}} d x \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}=e^{\frac{\rho^{2}}{2}}
$$

Finally in order to prove that $g_{01}(x)$ is indeed normalized to the unity we observe that

$$
\left[\int_{\mathbb{R}} d x \frac{e^{-\frac{x^{2}}{2}}}{\sqrt{2 \pi}}\right]^{2}=\int_{\mathbb{R}^{2}} \prod_{i=1}^{2} d x_{i} \frac{e^{-\frac{x_{1}^{2}+x_{2}^{2}}{2}}}{2 \pi}=\int_{0}^{\infty} d r r e^{-\frac{r^{2}}{2}}=1
$$

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Characteristic function of a random variable

Definition 7.1 (Characteristic function). Let

$$
\xi: \Omega \rightarrow \mathbb{R}^{d}
$$

the expectation value

$$
\check{p}_{\boldsymbol{\xi}}(\boldsymbol{q}):=\mathrm{E} e^{\imath \xi \cdot \boldsymbol{q}}
$$

is referred to as the characteristic function of the random variable

Example 7.1 (Characteristic function of a Gaussian random). Let

$$
\xi: \Omega \rightarrow \mathbb{R}
$$

distributed with Gaussian PDF. The characteristic function is

$$
\check{g}_{\bar{x}, \sigma}(q)=\int d x e^{\imath q x} g_{\bar{x}, \sigma}(x)=e^{\imath q x-\frac{\sigma^{2} q^{2}}{2}}
$$

For a Gaussian variable it is also true

$$
\check{g}_{\bar{x}, \sigma}(q)=\sum_{n=0}^{\infty} \frac{i^{n} q^{n}}{\Gamma(n+1)} \prec \xi^{n} \succ
$$

having used the Γ-function representation of the factorial (see appendix A). If $\bar{x}=0$ odd moments vanish whilst for even moments we get into

$$
\begin{equation*}
\mathrm{E} \xi^{2 n}=\sigma^{2 n} \frac{\Gamma(2 n+1)}{2^{n} \Gamma(n+1)}=(2 n-1)!!\sigma^{2 n} \tag{7.1}
\end{equation*}
$$

Formally for a random variable ξ one can write

$$
\begin{equation*}
\mathrm{E} \xi^{n}=\left.\frac{1}{\imath^{n}} \frac{d^{n}}{d q^{n}} \check{p}_{\xi}(q)\right|_{q=0} \tag{7.2}
\end{equation*}
$$

The relation is formal because it may be a relation between infinities.
Example 7.2 (Lorentz distribution). Let

$$
p: \mathbb{R} \rightarrow \mathbb{R}_{+}
$$

be

$$
p_{y \sigma}(x)=\frac{\sigma}{\pi\left\{(x-y)^{2}+\sigma^{2}\right\}}
$$

the Lorentz probability density so that $\left(\mathbb{R}, \mathcal{B}, P_{y \sigma}(\mathcal{B})\right)$ a probability space. Note that

$$
p_{0 \sigma}(x)=p_{0 \sigma}(-x)
$$

Using a change of variable and it is straightforward to verify that

$$
\int_{\mathbb{R}} d x x p_{y \sigma}(x)=y
$$

however

$$
\int_{\mathbb{R}} d x x^{2} p_{y \sigma}(x)=\infty
$$

The characteristic function can be computed using Cauchy theorem

$$
\begin{aligned}
\check{p}_{y \sigma} & (q)=e^{\imath q y} \int d x e^{\imath q x} p_{0 \sigma}(x) \\
& =\frac{e^{\imath q y}}{2 \imath \pi} \int_{\mathbb{R}} d x e^{\imath q x}\left\{\frac{1}{x-\imath \sigma}-\frac{1}{x+\imath \sigma}\right\}=e^{\imath q y} \begin{cases}e^{-q \sigma} & \text { if } q>0 \\
e^{q \sigma} & \text { if } q<0\end{cases}
\end{aligned}
$$

The characteristic function develops a cusp for $q=0$

$$
\check{p}_{y \sigma}(q)=e^{\imath q y-\sigma|q|}
$$

Appendices

A Gamma function

The Γ function for any $x \in \mathbb{R}_{+}$is specified by the integral

$$
\Gamma(x)=\int_{0}^{\infty} \frac{d y}{y} y^{x} e^{-y}
$$

For $x \in \mathbb{N}$ the integral can be performed explicitly and it is equal to the factorial:

$$
\Gamma(x)=(x-1)!\quad x \in \mathbb{N}
$$

For $x \in \mathbb{R}_{+}$, integration by parts yields the identity

$$
\Gamma(x+1)=\int_{0}^{\infty} \frac{d y}{y} y^{x+1} e^{-y}=x \Gamma(x)
$$

which is trivially satisfied by factorials. For $x \gg 1$ the value of the integral is approximated by Laplace's stationary point method

$$
\begin{equation*}
\Gamma(x+1) \simeq e^{x(\ln x-1)} \int_{\mathbb{R}} d y e^{-\frac{y^{2}}{2 x}}=\sqrt{2 \pi x} e^{x(\ln x-1)} \quad x \gg 1 \tag{A.1}
\end{equation*}
$$

Such asymptotic estimation is usually referred to as Stirling formula.

References

[1] L. C. Evans. An introduction to stochastic differential equations. UC Berkeley, Lecture Notes, 2006.
[2] C. W. Gardiner. Handbook of stochastic methods for physics, chemistry and the natural sciences, volume 13 of Springer series in synergetics. Springer, 2 edition, 1994.
[3] R. van Handel. Stochastic calculus and stochastic control. Lecture Notes, Caltech, 2007.

