4th Sheet of Exercise

23rd February 2012

Notation. Along this sheet, we will follow the following notation. If X is an open subset of \mathbb{R}^m with m a positive integer, then $C^{\infty}(X)$ is the space of smooth functions in X. Finally, $\mathcal{S}(\mathbb{R}^m)$ denotes the space of rapidly decreasing smooth functions.

Exercises. Along these exercises we consider $a \in \mathcal{S}(\mathbb{R}^{2n})$ and $u \in \mathcal{S}(\mathbb{R}^n)$. Set

$$Op(a)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\theta} a\left(\frac{x+y}{2},\theta\right) u(y) \,\mathrm{d}y \,\mathrm{d}\theta.$$

Set $S_{0,0}^0 = \{ a \in C^\infty(\mathbb{R}^{2n}) : \partial_x^\alpha \partial_\theta^\beta a \in L^\infty(\mathbb{R}^{2n}) \, \forall (\alpha, \beta) \in \mathbb{N}^{2n} \}.$

1. Let $a \in S_{0,0}^0$ and $\chi \in \mathcal{S}(\mathbb{R}^{2n})$ such that $\chi(0) = 1$. Show that

$$\lim_{\varepsilon \to 0} Op(\chi(\varepsilon(\bullet, \bullet))a)u$$

exists for all $u \in \mathcal{S}(\mathbb{R}^n)$ and defines a linear continuous operator Op(a): $\mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$. Show that Op(a) can be extended to a continuous operator from $\mathcal{S}'(\mathbb{R}^n)$ to $\mathcal{S}'(\mathbb{R}^n)$.

2. Calculate Op(a) in the following cases

$$a(x,\theta) = e^{il_x \cdot x}$$
 $a(x,\theta) = e^{il_\theta \cdot \theta}$ $a(x,\theta) = e^{i(l_x \cdot x + l_\theta \cdot \theta)}$

where $l_{\theta} \in \mathbb{R}^n$ and $l_x \in \mathbb{R}^n$.

3. For n = 1, $a \in C^{\infty}(\mathbb{R}^2)$ and 2π -periodic in (x, θ) , let

$$\hat{a}_{j,k} = (2\pi)^{-2} \int \int e^{-i(jx+k\theta)} a(x,\theta) \, \mathrm{d}x \mathrm{d}\theta, \qquad j,k \in \mathbb{Z}$$

be the Fourier coefficients of a. Show that $Op(a): L^2 \longrightarrow L^2$ is bounded and that

$$\|Op(a)\| \le \sum_{j,k} |\hat{a}_{j,k}|.$$

4. For $a \in \mathcal{S}(\mathbb{R}^2)$ (or even for $a \in S_{0,0}^0$ with $\hat{a} \in L^1$) show that Op(a) is bounded from L^2 to L^2 and

$$||Op(a)|| \le \frac{1}{(2\pi)^2} ||\hat{a}||_{L^1}.$$

5. Show that, for $a \in \mathcal{S}(\mathbb{R}^{2n})$ and \mathcal{F} denoting the Fourier transform,

$$\mathcal{F}^{-1}Op(a)\mathcal{F} = Op(b)$$

where $b(x,\xi) = a \circ \kappa_{\mathcal{F}}(x,\xi)$ with $\kappa_{\mathcal{F}}(x,\xi) = (\xi, -x)$.

6. Let a and b belong to $\mathcal{S}(\mathbb{R}^{2n})$. Show that Op(a) Op(b) = Op(c) with

$$c(x,\xi) = \left(e^{i\sigma(D_x,D_\xi;D_y,D_\eta)/2}a(x,\xi)b(y,\eta)\right)\Big|_{\substack{y=x\\\eta=\xi}}$$

Here $\sigma(x,\xi;y,\eta) = \xi \cdot y - x \cdot \eta$.

Comments.

(i) These exercises continue with the Weyl quantization started in the previous sheet of exercises.