8th Sheet of Exercise

9^{th} May 2012

Notation. If f, g are two C^1 functions defined on the same open subset in T^*X , we define their Poisson bracket as the continuous function

$$\{f,g\} = H_f(g) = \langle H_f, dg \rangle = \sigma(H_f, H_g).$$

In local coordinates,

$$\{f,g\} = \sum \partial_{\xi_j} f \partial_{x_j} g - \partial_{x_j} f \partial_{\xi_j} g.$$

Exercises.

- 1. Let σ be the canonical 2-form on T^*X , and ν a vector field defined on some open subset of T^*X , diffeomorphic to a ball. Show that ν is a Hamilton field if and only if $\mathcal{L}_{\nu}\sigma = 0$.
- 2. Show that this three conditions are equivalent:
 - (i) $\{u, v\} = 0$ on for all smooth functions u, v on T^*X which vanish on Σ .
 - (ii) $T_p \Sigma^{\perp} \subset T_p \Sigma$ for all $p \in \Sigma$. Here \perp indicates the orthogonal with respect to the canonical 2-form σ .
 - (iii) u = 0 on Σ implies H_u is tangent to Σ . Here H_u is the Hamiltonian vector field of u.

A smooth submanifold Σ of T^*X is called involutive if it satisfies (i).

- 3. Show that if Σ is involutive then dim $\Sigma \ge \dim X$.
- 4. Show that Σ is Lagrangian if and only if Σ is involutive and dim $\Sigma = \dim X$.

5. Let $P \in L^m_{cl}(\mathbb{R}^n)$ with symbol $p(x,\xi) = p_m(x,\xi) + p_{m-1}(x,\xi) + \cdots + p_{m-j}(x,\xi) + \cdots$, where p_{m-j} is positively homogeneous of degree m-j in ξ . Let us denote $\sigma(P) = p_m$, sub $P = p_{m-1} - \frac{1}{2i} \sum_{j=1}^n \frac{\partial^2 p_m}{\partial \xi_j \partial x_j}$.

Show that if $P \in L^m_{cl}, Q \in L^{m'}_{cl}$:

$$\operatorname{sub}(P \circ Q) = \sigma(P) \operatorname{sub} Q + \sigma(Q) \operatorname{sub} P + \frac{1}{2i} \{ \sigma(P), \sigma(Q) \}.$$

Here $\{{\scriptstyle\bullet},{\scriptstyle\bullet}\}$ is the Poisson bracket.

6. Let $k \in \mathbb{N}$. Find an expression for sub P^k where $P^k = P \circ \cdots \circ P$ (k times). What is the degree of homogeneity of sub P^k ?