$7^{\text {th }}$ Sheet of Exercise

$18^{\text {th }}$ April 2012

Exercises.

1. Let $A \in L_{\mathrm{cl}}^{2 m}(X)$ be properly supported, $m \geq 0$. Assume that the principal symbol $a_{2 m}(x, \xi)$ satisfies

$$
\operatorname{Re} a_{2 m} \geq \frac{1}{C_{0}}|\xi|^{2 m}, \quad C_{0}>0
$$

Let $K \subset \subset X$ and $u \in C_{0}^{\infty}(X) \cap \mathcal{E}^{\prime}(K)$. Show that $\operatorname{Re}(A u \mid u)=(B u \mid u)$ where $B=1 / 2\left(A+A^{*}\right)$.
2. Show that there exists $C \in L_{\mathrm{cl}}^{m}$ elliptic and $R \in L^{-\infty}$ such that $B=$ $C^{*} C+R$.
3. Show that there exists a constant $C(K)$ such that for every $u \in C_{0}^{\infty}(X) \cap$ $\mathcal{E}(K)$

$$
\operatorname{Re}(A u \mid u) \geq \frac{1}{C(K)}\|u\|_{H^{m}}^{2}-C(K)\|u\|_{H^{0}}^{2}
$$

4. Let $v=\sum_{1}^{n} a_{j}(x) \partial_{x_{j}}$ be a C^{∞} vector field, defined in a neighbourhood of $0 \in \mathbb{R}^{n}$, and suppose $v(0)=0$. We introduce the linearized vector field of v at 0 as $\sum \sum \partial_{x_{k}} a_{j}(0) x_{k} \partial_{x_{j}}$, and we consider $A=\left(\partial_{x_{k}} a_{j}(0)\right)$ as an element of $\operatorname{End}\left(T_{0} \mathbb{R}^{n}\right)$ and let $\sigma(A) \subset \mathbb{C}$ be the set of eigenvalues of A.
If $\lambda \in \sigma(A)$ implies $\operatorname{Re} \lambda<0$, show that there exists $C>0$ such that if $|x| \leq 1 / C$ and $t \geq 0$ then $|\exp (t v)(x)| \leq C e^{-t / C}|x|$.
5. Suppose that $n=2$ and that A has one strictly positive eigenvalue and one strictly negative eigenvalue. Study the shape of the integral curves near $(0,0)$.
6. Also with $n=2$, study the integral curves of $x_{1} \partial_{x_{2}}-x_{2} \partial_{x_{1}}+w$ in the following case:

- $w=0$.
- $w=-|x|^{2}\left(x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}\right)$.
- $w=|x|^{2}\left(x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}\right)$.

Comments.

1. The result of Exercise 3 is called the Gårding inequality.
