7th Sheet of Exercise

18^{th} April 2012

Exercises.

1. Let $A \in L^{2m}_{cl}(X)$ be properly supported, $m \ge 0$. Assume that the principal symbol $a_{2m}(x,\xi)$ satisfies

$$\operatorname{Re} a_{2m} \ge \frac{1}{C_0} |\xi|^{2m}, \quad C_0 > 0.$$

Let $K \subset X$ and $u \in C_0^{\infty}(X) \cap \mathcal{E}'(K)$. Show that $\operatorname{Re}(Au|u) = (Bu|u)$ where $B = 1/2(A + A^*)$.

- 2. Show that there exists $C \in L^m_{cl}$ elliptic and $R \in L^{-\infty}$ such that $B = C^*C + R$.
- 3. Show that there exists a constant C(K) such that for every $u \in C_0^{\infty}(X) \cap \mathcal{E}(K)$

$$\operatorname{Re}(Au|u) \ge \frac{1}{C(K)} \|u\|_{H^m}^2 - C(K) \|u\|_{H^0}^2.$$

4. Let $v = \sum_{1}^{n} a_j(x) \partial_{x_j}$ be a C^{∞} vector field, defined in a neighbourhood of $0 \in \mathbb{R}^n$, and suppose v(0) = 0. We introduce the linearized vector field of v at 0 as $\sum \sum \partial_{x_k} a_j(0) x_k \partial_{x_j}$, and we consider $A = (\partial_{x_k} a_j(0))$ as an element of End $(T_0 \mathbb{R}^n)$ and let $\sigma(A) \subset \mathbb{C}$ be the set of eigenvalues of A.

If $\lambda \in \sigma(A)$ implies $\operatorname{Re} \lambda < 0$, show that there exists C > 0 such that if $|x| \leq 1/C$ and $t \geq 0$ then $|\exp(tv)(x)| \leq Ce^{-t/C}|x|$.

5. Suppose that n = 2 and that A has one strictly positive eigenvalue and one strictly negative eigenvalue. Study the shape of the integral curves near (0, 0).

- 6. Also with n = 2, study the integral curves of $x_1\partial_{x_2} x_2\partial_{x_1} + w$ in the following case:
 - w = 0.
 - $w = -|x|^2(x_1\partial_{x_1} + x_2\partial_{x_2}).$
 - $w = |x|^2 (x_1 \partial_{x_1} + x_2 \partial_{x_2}).$

Comments.

1. The result of Exercise 3 is called the Gårding inequality.