6th Sheet of Exercise

4^{th} April 2012

Notation. Along this sheet, we will follow the following notation. $\mathcal{L}(E, F)$ denotes the space of linear bounded operators from E to B. $\mathcal{S}(\mathbb{R}^n)$ denotes the space of rapidly decreasing smooth functions. $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ denotes the space of smooth functions in $\mathbb{R}^n \times \mathbb{R}^n$. $L^2(\mathbb{R}^n)$ is the space of measurable function such that their modulus are square integrable functions.

Exercises.

1. Let A_1, \ldots, A_N belong to $\mathcal{L}(E, F)$ where E and F are Hilbert spaces. Assume that

$$\sup_{j \in \{1,\dots,N\}} \sum_{k=1}^{n} \left\| A_{j}^{*} A_{k} \right\|^{1/2} \le M \qquad \sup_{j \in \{1,\dots,N\}} \sum_{k=1}^{n} \left\| A_{j} A_{k}^{*} \right\|^{1/2} \le M.$$

Let $A = \sum_{j=1}^{N} A_j$.

• Show that $||A||^{2m} = ||(A^*A)^m||$ and that

$$(A^*A)^m = \sum_{j_1,\dots,j_{2m}} A^*_{j_1}A_{j_2}\dots A^*_{j_{2m-1}}A_{j_{2m}}.$$

• Show that

$$\|A_{j_1}^* A_{j_2} \dots A_{j_{2m-1}}^* A_{j_{2m}}\| \le$$

$$\le \|A_{j_1}^*\|^{1/2} \|A_{j_1}^* A_{j_2}\|^{1/2} \dots \|A_{j_{2m-1}}^* A_{j_{2m}}\|^{1/2} \|A_{j_{2m}}\|^{1/2}$$

• Show that $||A||^{2m} \leq NM^{2m}$ for every $m \in \mathbb{N}$ and deduce that $||A|| \leq M$.

2. Consider now an infinite sequence of operators $A_j \in \mathcal{L}(E, F)$, for $j \in \{1, 2, ...\}$ such that

$$\sup_{j \in \{1,\dots,N\}} \sum_{k=1}^{\infty} \left\| A_j^* A_k \right\|^{1/2} \le M \qquad \sup_{j \in \{1,\dots,N\}} \sum_{k=1}^{\infty} \left\| A_j A_k^* \right\|^{1/2} \le M.$$

Show that $A = \sum_{j=1}^{\infty} A_j$ converges strongly and that the sum A satisfies $||A|| \leq M$. (Consider the series $\sum A_j u$ first when $u \in \Sigma = \sum_k \operatorname{Im} A_k^*$, then when $u \in \overline{\Sigma}$, finally when $u \in \overline{\Sigma}^{\perp}$.)

3. Let $a(x,\xi) \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$ satisfy

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)\right| \le C_{\alpha,\beta} \forall \alpha,\beta.$$
(1)

Consider the pseudodifferential operator $A \in L^0_{0,0}(\mathbb{R}^n)$ of the form

$$Au(x) = \frac{1}{(2\pi)^n} \int \int e^{i(x-y)\cdot\xi} a\left(\frac{x+y}{2},\xi\right) \,\mathrm{d}y \,\mathrm{d}\xi$$

(defined for $u \in \mathcal{S}(\mathbb{R}^n)$ as an iterated integral). We call a the Weyl symbol of A.

Let U_{ν} be the open ball of radius R > 0 and center $\nu \in \mathbb{Z}^{2n}$. Show if R is large enough, there exists a function $\phi_0 \in C_0^{\infty}(U_0)$ such that the function $\phi_{\nu} = \phi_0((x,\xi) - \nu) \in C_0^{\infty}(U_{\nu})$ with $\nu \in \mathbb{Z}^{2n}$ form a partition of unity: $1 = \sum_{\nu} \phi_{\nu}(x,\xi)$.

- 4. Show that $a_{\nu} = a\phi_{\nu}$ satisfy estimates like (1) with constants $\hat{C}_{\alpha,\beta}$ and uniform in ν .
- 5. Let A_{ν} be a pseudodifferential operator with Weyl symbol a_{ν} . Show that $A_{\nu}A_{\mu}^{*}$ has kernel

$$\frac{1}{(2\pi)^n} \int \int \int e^{i(x\cdot\xi-y\cdot\eta)} e^{-iz\cdot(\xi-\eta)} a_\nu\left(\frac{x+z}{2},\xi\right) \overline{a_\mu}\left(\frac{z+y}{2},\eta\right) \,\mathrm{d}\xi \,\mathrm{d}\eta \,\mathrm{d}z.$$

Use integrations by parts in ξ, η and z and use Comment 2 to show that, for every N,

$$||A_{\nu}A_{\mu}^{*}||_{\mathcal{L}(L^{2},L^{2})} \leq C_{N}(1+|\nu-\mu|)^{-N}.$$

6. Use Exercise 2 and show that A is continuous from L^2 to L^2 .

Comments.

- 1. The result of Exercise 2 is called the Cotlar-Stein lemma.
- 2. If $K \in C(\mathbb{R}^n \times \mathbb{R}^n)$ and

$$\sup_{y} \int |K(x,y)| \, \mathrm{d}x \le C \qquad \sup_{x} \int |K(x,y)| \, \mathrm{d}y \le C,$$

then the integral operator A induced by K is bounded in $L^2(\mathbb{R}^n)$ and $||A|| \leq C$.

3. The result of Exercise 6 is called the Calderón and Vaillancourt theorem.