3rd Sheet of Exercise

22^{nd} February 2012

Notation. Along this sheet, we will follow the following notation. If X is an open subset of \mathbb{R}^m with m a positive integer, then $C_0^{\infty}(X)$ is the space of smooth functions with compact support in X. Finally, $\mathcal{S}(\mathbb{R}^m)$ denotes the space of rapidly decreasing smooth functions.

Exercises.

1. The following problem appears in the method of steepest descent. Show that for $u \in C_0^{\infty}(\mathbb{R}^n)$ and $\lambda \geq 1$:

$$\int_{\mathbb{R}^n} e^{-\lambda x^2/2} u(x) \, \mathrm{d}x = \sum_{k=0}^{N-1} \frac{(2\pi)^{n/2}}{k! \lambda^{k+n/2}} \frac{1}{2^k} (\Delta^k u)(0) + S_N(u,\lambda),$$

where

$$|S_N(u,\lambda)| \le C_{n,N} \lambda^{-N-n/2} \sum_{|\alpha|=2N} \sup |\partial^{\alpha} u(x)|.$$

 $2. \ \mathrm{Set}$

$$F(\lambda) = \int_0^{+\infty} e^{-t} t^{\lambda} \, \mathrm{d}t$$

with $\lambda \geq 1$.

- (a) Rewrite the integral by means of the change of variable $t = \lambda(1 + s)$.
- (b) Use Exercise 1 and show

$$F(\lambda) = \left(\frac{\lambda}{e}\right)^{\lambda} \sqrt{2\pi\lambda} \left(1 + a_1 \lambda^{-1} + a_2 \lambda^{-2} + \dots\right).$$

For $\lambda \in \mathbb{N}$, deduce Stirling's formula.

- 3. Calculate a_1 and a_2 from the Exercise 2.
- 4. Consider $a \in \mathcal{S}(\mathbb{R}^{2n})$ and $u \in \mathcal{S}(\mathbb{R}^n)$. Set

$$Op(a)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\theta} a\left(\frac{x+y}{2},\theta\right) u(y) \,\mathrm{d}y \,\mathrm{d}\theta.$$

Show that

$$[D_{x_j}, Op(a)] = Op(D_{x_j}a)$$
$$[x_j, Op(a)] = Op(-D_{\theta_j}a)$$

where in general we let [M, N] = MN - NM denote the commutator of the operators M and N.

- 5. Set $S_{0,0}^0 = \{a \in C^{\infty}(\mathbb{R}^{2n}) : \partial_x^{\alpha} \partial_{\theta}^{\beta} a \in L^{\infty}(\mathbb{R}^{2n}) \,\forall (\alpha, \beta) \in \mathbb{N}^{2n} \}$. Show that for $a \in \mathcal{S}(\mathbb{R}^{2n}), \, Op(a) : \mathcal{S}(\mathbb{R}^n) \longrightarrow L^{\infty}(\mathbb{R}^n)$ is continuous and the continuity is uniform for $a \in \mathcal{S}(\mathbb{R}^{2n}) \cap B$ if B is a bounded set in $S_{0,0}^0$. Here Op(a) is as in Exercise 4.
- 6. Show the same result as in Exercise 5 for $x^{\alpha}\partial_x^{\beta}Op(a)$ and show that $Op(a): \mathcal{S}(\mathbb{R}^n) \longrightarrow \mathcal{S}(\mathbb{R}^n)$ is uniformly continuous for $a \in \mathcal{S}(\mathbb{R}^{2n}) \cap B$. Here B is as in Exercise 5.

Comments.

- (i) Exercise 2 and Exercise 3 are proposed to find the asymptotic behaviour of $F(\lambda)$ as λ goes to $+\infty$. Note that $F(\lambda) = \Gamma(\lambda + 1)$.
- (ii) Exercise 4, Exercise 5 and Exercise 6 correspond to Weyl quantization.
 We will keep on with in the next session(23rd February 2012).