$1^{\text {st }}$ Sheet of Exercise

$8^{\text {th }}$ February 2012

Notation. Along this sheet, we will follow the following notation. If X is an open subset of \mathbb{R}^{m}, then $C^{\infty}(X)$ denotes the space of smooth functions in X. Additionally, $C_{0}^{\infty}(X)$ is the subspace of $C^{\infty}(X)$ such that its elements have compact support in X. We also use the notations $\mathcal{D}^{\prime}(X)$ for the space of distributions in X and $\mathcal{E}^{\prime}(X)$ for the subspace of $\mathcal{D}^{\prime}(X)$ such that its elements have compact support in X.

Exercises.

1. Let $\xi=\left(\xi^{\prime}, \xi_{n}\right)$ belong to $\mathbb{R}^{n-1} \times \mathbb{R}$. Write $\left|\xi^{\prime}\right|^{2}=\sum_{j=1}^{n-1} \xi_{j}^{2}$ and $|\xi|^{2}=$ $\left|\xi^{\prime}\right|^{2}+\xi_{n}^{2}$. To which symbol spaces do the following symbols belong?
(a) $\left(\left|\xi^{\prime}\right|^{2}+i \xi_{n}\right)^{-1}$
(b) $\left(|\xi|^{2}+1\right)^{-1}$
(c) $\left(\left|\xi^{\prime}\right|^{2}+1\right)^{-1}$
2. Let $x=\left(x^{\prime}, x^{\prime \prime}\right)$ belong to $\mathbb{R}^{n-d} \times \mathbb{R}^{d}$ with $d \in\{1, \ldots, n-1\}$. For any $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, define

$$
V u\left(x^{\prime}\right)=\int_{\mathbb{R}^{d}} u\left(x^{\prime}, x^{\prime \prime}\right) \mathrm{d} x^{\prime \prime}
$$

Write V as a Fourier integral operator and show that V can be extended to a continuous operator from $\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ to $\mathcal{E}^{\prime}\left(\mathbb{R}^{n-d}\right)$.
3. Let X and Y be open subsets of \mathbb{R}^{n} and let $f: X \longrightarrow Y$ be a smooth diffeomorphism. Let $T: C_{0}^{\infty}(Y) \longrightarrow C^{\infty}(X)$ be defined by

$$
T u(x)=u(f(x)) .
$$

Show that T is a Fourier integral operator.
4. Let X_{1} and X_{2} be two open subsets in $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$, respectively. Let ϕ_{j} belong to $C_{0}^{\infty}\left(X_{j}\right)$ and write $\left(\phi_{1} \otimes \phi_{2}\right)\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)$ for $x_{j} \in X_{j}$. Prove that if $u \in \mathcal{D}^{\prime}\left(X_{1} \times X_{2}\right)$ and $u\left(\phi_{1} \otimes \phi_{2}\right)=0$ for all $\phi_{j} \in C_{0}^{\infty}\left(X_{j}\right)$, then $u=0$.
5. Let X_{1} and X_{2} be two open subsets in $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$, respectively. Consider $u_{j} \in \mathcal{D}^{\prime}\left(X_{j}\right)$ and define $\varphi_{2}\left(x_{1}\right)=u_{2}\left(\phi\left(x_{1}, \cdot\right)\right)$ and $\varphi_{1}\left(x_{2}\right)=$ $u_{1}\left(\phi\left(\cdot, x_{2}\right)\right)$ for a given $\phi \in C_{0}^{\infty}\left(X_{1} \times X_{2}\right)$. Show that there exists $u \in \mathcal{D}^{\prime}\left(X_{1} \times X_{2}\right)$ satisfying
(a) $u\left(\phi_{1} \otimes \phi_{2}\right)=u_{1}\left(\phi_{1}\right) u_{2}\left(\phi_{2}\right)$ for all $\phi_{j} \in C_{0}^{\infty}\left(X_{j}\right)$,
(b) and $u(\phi)=u_{1}\left(\varphi_{2}\right)=u_{2}\left(\varphi_{1}\right)$ for all $\phi \in C_{0}^{\infty}\left(X_{1} \times X_{2}\right)$.

Additionally, prove that if $u_{j} \in \mathcal{E}\left(X_{j}\right)$, (b) holds for $\phi \in C^{\infty}\left(X_{1} \times X_{2}\right)$.
6. Let X_{1} and X_{2} be two open subsets of \mathbb{R}_{1}^{n} and \mathbb{R}_{2}^{n}, respectively. Prove that every $K \in \mathcal{D}^{\prime}\left(X_{1} \times X_{2}\right)$, according to

$$
\langle\mathcal{K} \phi, \psi\rangle=K(\psi \otimes \phi) \quad \psi \in C_{0}^{\infty}\left(X_{1}\right), \phi \in C_{0}^{\infty}\left(X_{2}\right)
$$

defines a linear map \mathcal{K} from $C_{0}^{\infty}\left(X_{2}\right)$ to $\mathcal{D}^{\prime}\left(X_{1}\right)$ which is continuous in the sense that $\mathcal{K} \phi_{j} \rightarrow 0$ in $\mathcal{D}^{\prime}\left(X_{1}\right)$ if $\phi_{j} \rightarrow 0$ in $C_{0}^{\infty}\left(X_{2}\right)$.

Comments.

(i) The distribution $u \in \mathcal{D}^{\prime}\left(X_{1} \times X_{2}\right)$ defined in Exercise 5 is called the tensor product of $u_{1} \in \mathcal{D}^{\prime}\left(X_{1}\right)$ and $u_{2} \in \mathcal{D}^{\prime}\left(X_{2}\right)$ and it is often denoted by $u=u_{1} \otimes u_{2}$.
(ii) Exercise 6 is only part of the so-called Schwartz Kernel Theorem.

