Lineaariset mallit, Spring 2012, Exercise 4, week 16

1. Consider the linear model $\mathbf{Y} \sim \mathbf{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)\left(\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma^{2}>\mathbf{0}, \mathrm{r}(\mathbf{X})=p\right)$ and recall that the \log-likelihood function of the parameter vector $\left[\begin{array}{ll}\boldsymbol{\beta}^{\prime} & \sigma^{2}\end{array}\right]^{\prime}$ is

$$
l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right)=-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \mathrm{~S}(\boldsymbol{\beta}),
$$

where

$$
\mathrm{S}(\boldsymbol{\beta})=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\sum_{i=1}^{n}\left(y_{i}-\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}\right)^{2} .
$$

Show that the Fisher information matrix, that is, the matrix

$$
\mathbf{i}\left(\boldsymbol{\beta}, \sigma^{2}\right)=\mathrm{E}\left[\begin{array}{cc}
-\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{Y}\right) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime} & -\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{Y}\right) / \partial \boldsymbol{\beta} \partial \sigma^{2} \\
-\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{Y}\right) / \partial \sigma^{2} \partial \boldsymbol{\beta}^{\prime} & -\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{Y}\right) / \partial \sigma^{2} \partial \sigma^{2}
\end{array}\right]
$$

is

$$
\mathbf{i}\left(\boldsymbol{\beta}, \sigma^{2}\right)=\left[\begin{array}{cc}
\sigma^{-2} \mathbf{X}^{\prime} \mathbf{X} & \mathbf{0} \\
\mathbf{0} & n / 2 \sigma^{4}
\end{array}\right]
$$

(Hint: It may be useful to calculate first $\partial l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) / \partial \boldsymbol{\beta}$ as $\partial \mathrm{S}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}$ in Exercise 2.3 and after that $\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) / \partial \boldsymbol{\beta} \partial \sigma^{2}$ and further $E\left[\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{Y}\right) / \partial \boldsymbol{\beta} \partial \sigma^{2}\right]$. $\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}$ can be calculated as $\partial^{2} \mathrm{~S}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\prime}$ (cf. Exercise 2.5) and $\partial^{2} l\left(\boldsymbol{\beta}, \sigma^{2} ; \mathbf{y}\right) / \partial \sigma^{2} \partial \sigma^{2}$ only requires differentiation with respect to the real variable σ^{2}. Note also that symmetry.)
2. Let the correct (full rank) model be $\mathbf{Y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\varepsilon}\left(\boldsymbol{\varepsilon} \sim \mathrm{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)\right.$, $\left.\boldsymbol{\beta}_{1} \in \mathbb{R}^{p_{1}}, \boldsymbol{\beta}_{2} \in \mathbb{R}^{p_{2}}, \sigma^{2}>\mathbf{0}\right)$. Suppose that $\boldsymbol{\beta}_{1}$ is estimated by using the model from which \mathbf{X}_{2} has been omitted (in other words, the model equation is $\mathbf{Y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\varepsilon}_{*}$). Derive the expectation of the least squares estimator of the parameter $\boldsymbol{\beta}_{1}$ and its probability distribution. When is this estimator unbiased?
3. Consider two independent linear models
$\mathbf{Y}_{i}=\mathbf{X}_{i} \boldsymbol{\beta}_{i}+\varepsilon_{i}, \quad \varepsilon_{i} \sim \mathrm{~N}_{n_{i}}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n_{i}}\right), \quad \varepsilon_{1} \| \varepsilon_{2}, \quad \boldsymbol{\beta}_{i} \in \mathbb{R}^{p}, \sigma^{2}>\mathbf{0}, \mathrm{r}\left(\mathbf{X}_{i}\right)=p, i=1,2$.
Form a single model from these two models by using matrices and derive the expression of the least squares estimator of the parameter vector $\boldsymbol{\beta}=\left[\begin{array}{ll}\boldsymbol{\beta}_{1}^{\prime} & \boldsymbol{\beta}_{2}^{\prime}\end{array}\right]^{\prime}$. What is the probability distribution of this least squares estimator?

An auxiliary result: If \mathbf{A} and \mathbf{B} are nonsingular square matrices, then

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{B}^{-1}
\end{array}\right] .
$$

4. Consider the linear model of two independent normal samples, that is,

$$
Y_{1}, \ldots, Y_{n} \xrightarrow{\|}, Y_{i} \sim \begin{cases}\mathrm{~N}\left(\mu_{1}, \sigma^{2}\right), & \text { as } i=1, \ldots, n_{1} \\ \mathrm{~N}\left(\mu_{2}, \sigma^{2}\right), & \text { as } i=n_{1}+1, \ldots, n_{1}+n_{2}=n\end{cases}
$$

$\left(\mu_{1}, \mu_{2} \in \mathbb{R}, \sigma^{2}>0, n_{1}, n_{2}>1\right)$. Estimate the parameters μ_{1} and μ_{2} under the constraint $\mu_{1}=\mu_{2}$ by using (i) the general formula for the constrained least squares estimate and (ii) taking the constraint $\mu_{1}=\mu_{2}$ into account in the model and estimating the parameters of the resulting model.
Note: Let the model be $\mathbf{Y} \sim \mathrm{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)\left(\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma^{2}>\mathbf{0}, \mathrm{r}(\mathbf{X})=p\right)$ and consider the general linear constraints $\mathbf{A} \boldsymbol{\beta}=\mathbf{c}$ where the matrix $\mathbf{A}(q \times p)$ and the vector \mathbf{c} $(q \times 1)$ are known and $r(\mathbf{A})=q$. Then the general formula for the constrained least squares estimate is

$$
\hat{\boldsymbol{\beta}}_{H}=\hat{\boldsymbol{\beta}}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{A}^{\prime}\left(\mathbf{A}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{A}^{\prime}\right)^{-1}(\mathbf{A} \hat{\boldsymbol{\beta}}-\mathbf{c})
$$

