Lineaariset mallit, Spring 2012, Exercise 3, week 14

1. Consider the linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\varepsilon, \varepsilon \sim \mathbf{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)\left(\boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma^{2}>\mathbf{0}\right.$, $r(\mathbf{X})=p$). Show that the residual vector $\hat{\varepsilon}=\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}$ satisfies $\hat{\boldsymbol{\varepsilon}}=\left(\mathbf{I}_{n}-\mathbf{P}\right) \boldsymbol{\varepsilon}$, where $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ (an orthogonal projector) and $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ (the least squares estimator). Use this result to calculate $E(\hat{\varepsilon}), \operatorname{Cov}(\hat{\varepsilon})$ and $\operatorname{Cov}(\hat{\varepsilon}, \hat{\boldsymbol{\beta}})$.
2. Continuation of the preceding exercise. Show that $\hat{\mathbf{y}}^{\prime} \hat{\mathbf{y}}=\mathbf{y}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}$ and that $\hat{\beta}_{1}=$ $\bar{y}-\hat{\beta}_{2} \bar{x}_{2}-\cdots-\hat{\beta}_{p} \bar{x}_{p}$, when there is a constant term in the model or when $x_{i 1}=1$ for all $i=1, \ldots, n$. Here $\bar{x}_{j}=\left(x_{1 j}+\cdots+x_{n j}\right) / n$, where $x_{i j}$ is a general element of the matrix $\mathbf{X}(i=1, \ldots, n, j=1, \ldots, p), \hat{\boldsymbol{\beta}}=\left[\hat{\beta}_{1} \cdots \hat{\beta}_{p}\right]^{\prime}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$, and $\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{P y}$. (Note also the result $\mathbf{X}^{\prime} \hat{\boldsymbol{\varepsilon}}=\mathbf{0}$.)
3. In exercise 1.4 is shown that $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}=\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{J}\right) \mathbf{y}$, where $\mathbf{y}=\left[\begin{array}{lll}y_{1} & \cdots & y_{n}\end{array}\right]^{\prime}$ and $\mathbf{J}=\mathbf{1}_{n}\left(\mathbf{1}_{n}^{\prime} \mathbf{1}_{n}\right)^{-1} \mathbf{1}_{n}^{\prime}$, or that the total sum of squares SST $=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ can be written as $\operatorname{SST}=\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{J}\right) \mathbf{y}$. Show that the regression sum of squares $\mathrm{SSR}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}$ and the residual sum of squares $\mathrm{SSE}=\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$ can be written as $\operatorname{SSR}=\mathbf{y}^{\prime}(\mathbf{P}-\mathbf{J}) \mathbf{y}$ and $\operatorname{SSE}=\mathbf{y}^{\prime}\left(\mathbf{I}_{n}-\mathbf{P}\right) \mathbf{y}$, respectively. Here $\mathbf{P}=$ $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$ with the first column of the matrix \mathbf{X} equal to $\mathbf{1}_{n}=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]^{\prime}(n \times 1)$, and \hat{y}_{i} and $\hat{\varepsilon}_{i}$ typical components of the vectors $\hat{\mathbf{y}}$ and $\hat{\varepsilon}$. This gives you one way to see the result $\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE}$ used to define the coefficient of determination $R^{2}=1-\mathrm{SSE} / \mathrm{SST}=\mathrm{SSR} / \mathrm{SST}$.
4. Consider the model of exercise 1 in the special case $p=1$ where the model can be expressed in component form as $Y_{i}=\beta x_{i}+\varepsilon_{i}, i=1, \ldots, n$, with $\varepsilon_{1}, \ldots, \varepsilon_{n}$ independent and $\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$ and the matrix \mathbf{X} equal to the vector $\mathbf{x}=\left[x_{1} \cdots x_{n}\right]^{\prime}$. (i) Show that the least squares estimator of the parameter β is

$$
\hat{\beta}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}
$$

(ii) Suppose now that the fixed regressor x_{i} in the model and least squares estimator is replaced by the random variable X_{i}. Show that the least squares estimator is unbiased or that $\mathrm{E}(\hat{\beta})=\beta$, when the independence $\left(X_{1}, \ldots, X_{n}\right) \|\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ holds. Explain further why unbiasedness does not necessarily hold without this independence. (Hint: In part (ii) you may use the equation $Y_{i}=\beta X_{i}+\varepsilon_{i}$ in the expression of $\hat{\beta}$ and end up considering the expectation of $\hat{\beta}-\beta$. You may assume that all needed expectations are finite. In the last part an exact mathematical proof is not required.)
5. Consider the model of exercise 1 in the special case of a simple linear regression so that in the component form of the model reads $y_{i}=\beta_{1}+\beta_{2} x_{i}+\varepsilon_{i}, i=1, \ldots, n$, with $\varepsilon_{1}, \ldots, \varepsilon_{n}$ independent and $\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$. Denote $\hat{\boldsymbol{\beta}}=\left[\hat{\beta}_{1} \hat{\beta}_{2}\right]^{\prime}$ (the least squares estimator) and $\bar{x}=\left(x_{1}+\cdots+x_{n}\right) / n$. (i) Using the theorem below, form $\operatorname{Cov}(\hat{\boldsymbol{\beta}})$ and furthermore $\operatorname{Var}\left(\hat{\beta}_{2}\right)$ and $\operatorname{Var}\left(\hat{\beta}_{1}+\hat{\beta}_{2} \bar{x}\right)$. (ii) Suppose that the values of the regressors
x_{1}, \ldots, x_{n} can be chosen freely from the interval $[c, d]$. How should they be chosen if the aim is to minimize $\operatorname{Var}\left(\hat{\beta}_{2}\right)$? Is this choice reasonable otherwise? (Note: In part (ii) an exact mathematical proof is not required and you may also assume that n is even.)

Theorem. Consider the linear model $\mathbf{Y} \sim \mathbf{N}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right), \boldsymbol{\beta} \in \mathbb{R}^{p}, \sigma^{2}>0$, where $\mathbf{r}(\mathbf{X})=p$. Then, the maximum likelihood estimators of the parameters $\boldsymbol{\beta}$ and σ, $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ and $\hat{\sigma}^{2}=\frac{1}{n}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})$, satisfy
(i) $\hat{\boldsymbol{\beta}} \sim \mathbf{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
(ii) $n \hat{\sigma}^{2} / \sigma^{2}=(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime}(\mathbf{Y}-\mathbf{X} \hat{\boldsymbol{\beta}}) / \sigma^{2} \sim \chi_{n-p}^{2}$
(iii) $\hat{\boldsymbol{\beta}} \| \hat{\sigma}^{2}$.

