
STATISTICAL MECHANICS - EXERCISE 9

1. Let φ be a centered Gaussian random varible with respect to both the measures µ and ν. Let
Eµ(φ2) = σ2

µ and Eν(φ
2) = σ2

ν . Denote by : :µ normal ordering with respect to the measure µ. Show
that

(1) : φn :µ=

bn2 c∑
m=0

n!

2mm!(n− 2m)!
: φn−2m :ν (σ2

ν − σ2
µ)m.

Solution: The arguments are essentially the same as in the problems last week. Using the definition
of normal ordering, we can write

(2) : eλφ :µ= eλφ−
1
2
σ2
µλ

2

=: eλφ :ν e
λ2

2
(σ2
ν−σ2

µ) =
∞∑
n=0

λn

n!
: φn :ν

∞∑
m=0

λ2m

2mm!
(σ2

ν − σ2
µ)m.

Writing out the product of the two series and equating terms of same order on each sides gives the
desired result.

2. Let φ and ψ be centered Gaussian random variables. Show that

(3) E(: φn :: ψm :) = δnmn!E(φψ)n.

Solution: Using the definition of normal ordering, we have

: eλφ :: eµψ : = eλφ+µψe−
λ2

2
E(φ2)−µ

2

2
E(ψ2)

=: eλφ+µψ : e
1
2
E((λφ+µψ)2)−λ

2

2
E(φ2)−µ

2

2
E(ψ2)

=: eλφ+µψ : eλµE(φψ).

Recall that normal ordering was defined so that for any random variable V , E(: eV :) = 1. Thus

(4) E(: eλφ :: eµψ :) = eλµE(φψ).

The result now follows from expanding the exponentials and equating terms of the same order.

3. Consider the model where the Fourier transform of the covariance is χ( p
Λ
)

p2 and χ(p) = e−p
2 . Consider

the Feynman graph with four external legs, two vertices and one internal loop (see page 63 in the lecture
notes - the graph labeled by 2m = 4, N = 2). Show that for d < 4, the value of this graph is bounded
as Λ→∞, for d = 4, it diverges logarithmically - its value goes like log Λ and for d > 4 it behaves like
Λd−4.

Remark: In the original formulation, there was a p2 + r instead of p2. This is not the model we have
been considering in the lectures so the current version is more relevant to our course.

Solution: This is very similar to exercise 6.5. Finding the asymptotic behavior of this is equivalent to
estimating the integral
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I(q) =

∫
Rd
dp

1

p2
1

(q − p)2
e−

p2

Λ2 e−
(p−q)2

Λ2

= Λd

∫
Rd
dp

1

Λ2p2
1

(q − Λp)2
e−p

2

e−(p− q
Λ)

2

= Λd−4
∫
Rd

1

p2
1

(p− qΛ−1)2
e−p

2

e−(p− q
Λ)

2

.

Since the integral is cut off at large p, we see that the only singular behavior comes from around
p = 0. We see that we are then dealing with precisely the same integral as in exercise 6.5. We see
that for d ≥ 5, I(q) = Λd−4O(1). For d = 4, I(q) ∼ −Λ0 log |qΛ−1| ∼ log |Λ|. For d < 4, we have
I(q) ∼ Λd−4|qΛ−1|d−4 = O(1).

4. Consider a translation invariant kernel K(x1, x2, x3, x4) and the potential

(5) V =

∫
(Rd)4

K(x1, x2, x3, x4) :
4∏
i=1

φ(xi) : dx1dx2dx3dx4,

where K is such that V ∈ Kλ. Show that we can write this as a
∫

: φ(x)4 : dx + Ṽ , where Ṽ ∈ Kλ
2
is

less relevant than the φ4 term.

Remark: In the original statement of the problem, the claim was that the perturbation was irrelevant,
but the more accurate statement is that it is less relevant than the φ4 term.

Solution: Abusing notation slightly, we use translation invariance to write K(x1, x2, x3, x4) = K(x2−
x1, x3 − x1, x4 − x1). Writing K in terms of its Fourier transfom, we have

(6) K(x, y, z) =

∫
(Rd)3

K̂(p1, p2, p3)e
ip1·x+ip2·y+ip3·zdp1dp2dp3.

We then write K̂ in the following way:

(7) K̂(p1, p2, p3) = K̂(0, 0, 0) +

∫ 1

0

d

dt
K̂(tp1, tp2, tp3)dt.

Thus

K(x, y, z) =

∫
(Rd)3

K̂(0, 0, 0)eip1·x+ip2·y+ip3·zdp1dp2dp3

+

∫
(Rd)3

∫ 1

0

d

dt
K̂(tp1, tp2, tp3)dte

ip1·x+ip2·y+ip3·zdp1dp2dp3

= K̂(0, 0, 0)δ(x)δ(y)δ(z) +

∫
(Rd)3

∫ 1

0

(∑
i

pi∂iK̂

)
(tp1, tp2, tp3)dte

ip1·x+ip2·y+ip3·zdp1dp2dp3.

The first term gives (recall that f̂(0) =
∫
f)

(8) K̂(0, 0, 0)

∫
(Rd)4

δ(x2−x1, x3−x1, x4−x1) :
4∏
i=1

φ(xi) : dx1dx2dx3dx4 =

(∫
(Rd)3

K

)∫
Rd

: φ(x)4 : dx,

which is of the form we want. It remains to show that the second term is less relevant and is finite in
the norm we claimed.
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Consider now the second term

(9)
∑
i

∫
(Rd)3

pi

∫ 1

0

(∂iK̂)(tp1, tp2, tp3)dte
ip1·x+ip2·y+ip3·zdp1dp2dp3.

Let us define the functions Hi so that

(10) Ĥi(p1, p2, p3) =

∫ 1

0

(∂iK̂)(tp1, tp2, tp3)dt

and we have

(11) Ṽ =
∑
i

∫
(Rd)4

∏
j

dxj :
∏
j

φ(xj) :

∫
(Rd)3

dp1dp2dp3e
ip1·(x2−x1)+ip2·(x3−x1)+ip3·(x4−x1)piĤi(p1, p2, p3).

Note that a p in Fourier space corresponds to −i ∂
∂x

in real space so

(12) Ṽ =
∑
i

∫
(Rd)4

∏
j

dxj :
∏
j

φ(xj) : (−i)(∂iHi)(x2 − x1, x3 − x1, x4 − x1).

Moreover, (∂iHi)(x2−x1, x3−x1, x4−x1) = ∂i+1Hi(x2−x1, x3−x1, x4−x1). Thus integrating by parts
(assuming the Hi decay fast enough that no boundary terms are produced - this might follow from our
definitions, but still should be checked if one wants to be rigorous) we find

(13) Ṽ = i
3∑
i=1

∫
(Rd)4

∏
j

dxj :
∂

∂xi+1

∏
j

φ(xj) : Hi(x2 − x1, x3 − x1, x4 − x1).

So we have succeeded in at least formally writing Ṽ in a form we wished and since a derivative acting
on the field φ always comes with a factor of L−1 in the renormalization map, we see that this indeed
looks to be less relevant than the φ4 term. What we still need to check is that this indeed is of the form
we wish, i.e. that the kernel H is in some space Kλ′ .

The norm estimate is essentially the same as the one in the lecture notes on page 99. We note that
∂k in Fourier space corresponds to multiplying by ixk in real space. One then rescales the integration
variable in the Fourier transform by t and then does the inverse scaling in the x integral. Then with
some elementary estimates, one gets ||Ṽ ||λ

2
≤ C(λ)||V ||λ.
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