
STATISTICAL MECHANICS - EXERCISE 8

1. Let φ be a centered Gaussian random variable of variance σ2.

a) Write : φn : in terms of φ and σ.
b) Try to invert the formula you got, i.e. write φn in terms of : φm : and σ.

Solution: a) By the definition of normal ordering, : eλφ := eλφe−
1
2
λ2σ2 . Plugging in the power series

representations of the functions we have

∞∑
n=0

1

n!
: φn : λn =

∞∑
n=0

1

n!
φnλn

∞∑
m=0

1

m!

(
−σ2

2

)m
λ2m.

Recall that the product of two series (say when both are absolutely convergent)
∑∞

n=0 an
∑∞

m=0 bm =∑∞
n=0 cn, where cn =

∑n
k=0 an−kbk. Let us write an = 1

n!
φnλn and bm = 0 when m is odd and b2m =

1
m!

(
−σ2

2

)m
λ2m. We certainly satisfy the absolute convergence criterion so we can use the above formula

to calculate the product of the series. For the convolution, we find

cn =
n∑
k=0

an−kbk

=

bn
2
c∑

k=0

an−2kb2k

=

bn
2
c∑

k=0

1

(n− 2k)!
φn−2k

1

k!

(
−σ

2

2

)k
λn.

Equating the coefficients of the λn terms on both sides, we find that

(1) : φn :=

bn
2
c∑

k=0

n!

(n− 2k)!k!
φn−2k

(
−σ

2

2

)k
.

b) This part is essentially identical: write eλφ =: eλφ : e
1
2
λ2σ2 and multiply out the series. The result

is

(2) φn =

bn
2
c∑

k=0

n!

(n− 2k)!k!
: φn−2k :

(
σ2

2

)k
.

2. Continuing from the previous problem; if σ = 1, show that : φn := Hn(φ), where Hn is the nth
Hermite Polynomial.

Solution: By the definition of normal ordering, we have for general σ

(3) : eλφ := eλφ−
1
2
λ2σ2

.

Writing this slightly differently, we have
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(4)
∞∑
n=0

(λσ)n

n!
:

(
φ

σ

)n
:= eλσ

φ
σ
− 1

2
(λσ)2 .

If we write t = λσ and ψ = φ
σ
, we have

(5)
∞∑
n=0

tn

n!
: ψn := etψ−

1
2
t2 .

We note that the (probabilist’s) Hermite polynomials can be defined through the generating function:

(6)
∞∑
n=0

tn

n!
Hn(x) = etx−

t2

2 .

So we conclude that

(7) : ψn := Hn(ψ),

and for σ = 1 this becomes : φn := Hn(φ).

Remark: In the original formulation of the problem, there was a problem where one was asked to
show that the partition function is a martingale. While this is correct at least morally, it is not exactly
correct for our representation of the field. For the correct statement, one would have to introduce yet
another representation of the hierarchical field - a branching random walk. The main difference is that
we look at the field from a sort of inverse point of view: the term corresponding to the scale of the
entire box - an,{0,...,2n−1}2 in our formulation below - is taken to be independent of n. When one looks at
the problem from this point of view (more in the spirit of taking a continuum limit or taking a square
of fixed size and partitioning it into finer and finer discretizations) there is a certain self similarity that
allows powerful martingale arguments. This being said, we shall not delve more into the branching
random walk since it would require a fair amount of notation and would not be so relevant to the rest
of our discussion.

3. Consider the two-dimensional hierarchical field from a slightly different point of view: consider the
square {0, ..., 2n− 1}2 and let Bk be the collection of squares in Z2 with side length 2k and BDk subset
of Bk consisting of squares of the form {0, ..., 2k − 1}2 + (i, j)2k for some integers i, j. Also for x ∈ Z2,
let Bk(x) consist of squares B ∈ Bk so that x ∈ B and define BDk(x) similarly.

Let {ak,B}k≥0,B∈BDk be a family of i.i.d. standard Gaussians. We then define the field

(8) φn(z) =
n∑
k=0

∑
B∈BDk(z)

ak,B.

a) Calculate the covariance of the field φn

b) Consider then a modification of our field φn. Let Bnk be the subset of Bk where the squares have the
property that their lower left corner is in {0, ..., 2n− 1}2. Let {bk,B}k≥0,B∈Bnk be a family of independent
centered Gaussian random variables and bk,B having variance 2−2k. Then define bnk,B = bk,B if B ∈ Bnk
and bnk,B = bk,B′ if B′ is a translate of B by (i, j)2n for some integers i, j. Then define

(9) ψn(z) =
n∑
k=0

∑
B∈Bk(z)

bnk,B.
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Calculate the covariance 〈ψn(z)ψn(w)〉 and estimate it in the limit of large dn(z, w) (here dn is the
distance on the torus). Compare ψ and φ. Note that the complications with the translations are there
only to make the field periodic so that the covariance is simpler.

Solution: a) We have

〈φn(z)φn(w)〉 =
n∑
k=0

n∑
k′=0

∑
B∈BDk(z)

∑
B′∈BDk′ (w)

E(ak,Bak′,B′)

=
n∑
k=0

n∑
k′=0

∑
B∈BDk(z)

∑
B′∈BDk′ (w)

δk,k′δB,B′

=
n∑
k=0

∑
B∈BDk(z)

∑
B′∈BDk(w)

δB,B′ .

Note that BDk(z) always contains only a single element (the unique square of sidelength 2k of the
form {0, ..., 2k−1}2+2k(i, j) containing the point z). So the sum over B and B′ is equal to one, if there
is such a box containing both of the points and it is equal to zero if there is not.

This can also be interpreted in terms of tree structure: we have a tree of height n and at each level k
there is branching into 4 directions. We can identify each vertex at level k with a square of size 2k × 2k

(the tree picture is probably easiest to grasp if you consider the d = 1 case and you’re dealing with a
binary tree). The covariance in this case becomes simply a function of the distance between points in
the ultrametric distance - the number of generations the points differ from each other in (again drawing
a picture in the d = 1 case may clarify this).

b) For x, y ∈ Z2, x = (x1, x2) and y = (y1, y2) let ti(x, y) = min(|xi − yi|, |xi − yi − 2n|, |xi − yi +N |)
(i.e. the minimum amount the i coordinates differ in the periodic distance). We then have

〈ψn(x)ψn(y)〉 =
n∑

k,k′=0

∑
B∈Bk(x)

∑
B′∈Bk′ (y)

E(bnk,Bb
n
k′,B′)

=
n∑

k,k′=0

∑
B∈Bk(x)

∑
B′∈Bk′ (y)

2−2kδk,k′1(B = B′ + (i, j)2k).

Now the number of squares of side length 2k containing both x and y (and taking into account the
periodicicty) is simply (2k − t1(x, y))(2k − t2(x, y)). Noting that k = dlog2(dn∞(x, y) + 1)e (where dn∞ is
the sup distance with periodicity taken into account) is the minimum scale where we can even have a
box containing both points, we find that

〈ψn(x)ψn(y)〉 =
n∑

k=dlog2(dn∞(x,y)+1)e

2−2k(2k − t1(x, y))(2k − t2(x, y))

=
n∑

k=dlog2(dn∞(x,y)+1)e

(
1− t1(x, y)

2k
− t2(x, y)

2k
+
t1(x, y)t2(x, y)

4k

)
.

This is as closed a form of the covariance as we can get. Comparing with the purely hierarchical
model, we note that this is something between the hierarchical model and the actual free field. This
has a similar rather explicit construction as the hierarchical model, but it has the benefit of having a
translation invariant covariance. On the other hand, the covariance and the field it self is still rather
complicated and one can expect that proving non-trivial things for it will be complicated.
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For asymptotic estimates, one can use inequalities such as a + b − ab ≥ 0 for 0 ≤ a, b ≤ 1 and
a+ b− ab ≤ a+ b to estimate the covariance and find that there is a constant C (independent of n) so
that

(10) |〈ψn(x)ψn(y)〉 − (n− log2 d
n(x, y))| ≤ C,

where dn is the periodic Euclidean distance. This in fact means that in some sense ψn is just as good a
’discrete 2-dimensional Gaussian free field’ as any other definition. This is because taking a continuum
limit of this correlation function will lead to the correlation function of the 2-dimensional continuum
Gaussian free field.

As a recap, the field ψn is similar to φn as it’s constructed in a rather similar manner, but it is
different in that it has a translation invariant covariance and its continuum limit should be the actual
2-dimensional Gaussian free field.
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