
STATISTICAL MECHANICS - EXERCISE 7

1. Consider a block spin argument for a system with Hamiltonian H(φ) = (φ, (−∆ + ∆2)φ).
Show that this converges to the Gaussian fixed point.

Solution: The Fourier transform of the correlation function is

〈φ(x)φ(y)〉 =

∫
[−π,π]d

dp
eip·(x−y)

µ(p)(µ(p) + 1)

Applying the coarse graining procedure as in the lecture notes, we have

〈Cn
Lφ(x)Cn

Lφ(y)〉 = L−2nd
∑
u,v

L−2n
∫
[−Lnπ,Lnπ]d

dp
eip·(x−y+L

−n(u−v))

µ(L−np)(1 + µ(L−np))
.

We note that L2nµ(L−np)→ p2 as in the notes and 1 + µ(L−np)→ 1 so we see that indeed the
limit of this is the Gaussian fixed point.

Remark: I’m not quite sure about the approach to the next problem or the formulation of the
statement. Perhaps it is correct the way it is, but I am missing something in the calculation or
misunderstood something. I think that at least morally, the idea should be to Fourier transform,
show that the Fourier transform is a product of two things. The zeroes of one cancel the singu-
larities of the other and the entire Fourier transform is analytic and we have exponential decay.
To me it seems D0 is not translation invariant so even Fourier transforming (a one-dimensional
Fourier transform that is) isn’t possible as it is. If you notice I’m missing something or if you
come up with something else, feel free to contact me. Even though, let us look at some of the
type of arguments and issues I think might be involved in a proof.

2. Let G0 = (−∆)−1 with periodic boundary conditions (period LN with the p = 0 mode
removed from the Fourier expansion), C the block spin map and G1 = CG0C

T . Show that for
D0 = G0C

TG−11 , (D0)x,y decays exponentially in |x− y|.

Solution: One way to show that a function f(x) has exponential decay (i.e. that there are some
positive α and C so that for large enough x, |f(x)| ≤ Ce−α|x|) is to show that its Fourier transform
is analytic. This argument holds (at least a contour integral proof for it) only for functions with
continuous variables so we must agree first what we mean by exponential decay - do we mean
it in the L → ∞ limit or do we mean that the correlation length is a function of L-finite for
each finite L, but might not have a finite limit as L → ∞. If we take the interpretation that
we are interested in finte L, we must note that we have periodic boundary conditions and we
should consider distances smaller than the period. Moreover, we have to note that singularities
correspond to things exploding as L→∞.

Without worrying too much about the interpretatoin, let us write stuff in Fourier language.

(G0)x,y =
1

LNd

∑
p∈( 2π

LN
Z)

d
:p6=0,|pi|<π

1

µ(p)
eip·(x−y). (1)
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Let us consider how the block spin map acts on an element in the Fourier basis: (write BL(0) =
{y : |yi| < L

2
})

Ceip·x = L
a
2
−d

∑
u∈BL(0)

eip·(Lx+u) = L
a
2
−deip·(Lx)

∑
u∈BL(0)

eip·u = L
a
2
−deip·(Lx)f(p), (2)

where f(p) =
∏d

i=1

sin
Lpi
2

sin
pi
2

. We then have (note that the C acts on the eip·x and CT on the e−ip·y)

(G1)x,y =
1

LNd
La−2d

∑
p∈( 2π

LN
Z)

d
:p 6=0,|pi|<π

1

µ(p)
eiLp·(x−y)f(p)2. (3)

Let us rescale the summation variable: p′ = Lp -

(G1)x,y =
La−3d

L(N−1)d

∑
p′∈( 2π

LN−1 Z)
d
:p′ 6=0,|p′i|<Lπ

1

µ
(
p′

L

)f (p′
L

)2

eip
′·(x−y).

We want to write this as a Fourier transform, but we are now summing over p′ on a scale Lπ
instead of π. To do this, we split the sum over [−Lπ, Lπ]d into a sum over boxes of size [−π, π]d:

(G1)x,y =
La−3d

L(N−1)d

∑
p′∈( 2π

LN−1 Z)
d
:p′ 6=0,|p′i|<π

∑
M∈Zd:|Mi|<L

2

1

µ
(
p′+2πM

L

)f (p′ + 2πM

L

)2

ei(p
′+2πM)·(x−y) (4)

As x, y and M are in Zd, e2πiM ·(x−y) = 1 and we find

(G1)x,y =
La−3d

L(N−1)d

∑
q∈( 2π

LN−1 Z)
d
:q 6=0,|qi|<π

eiq·(x−y)
∑

M∈Zd:|Mi|<L
2

1

µ
(
q+2πM

L

)f (q + 2πM

L

)2

(5)

and we have written (G1)x,y in the form of a Fourier transform (note that while G0 is LN
periodic, the coarse graining procedure essentially changes the scale on which we look at things
by a factor of L. Thus G1 is LN−1 periodic and the natural scale Fourier modes live on is L−(N−1)
so this indeed is ’the’ Fourier transform of G1).

Ĝ1(p) = La−3d
∑

M∈Zd:|Mi|<L
2

1

µ
(
p+2πM

L

)f (p+ 2πM

L

)2

. (6)

If we are considering singularities purely in p (namely we don’t call things blowing up with L
singularities), this can have singularities only in the M = 0 block in which case we have for p→ 0

La−3d
1

µ
(
p
L

)f ( p
L

)
∼ La−3d

L2

p2
L2d =

1

p2
La−d+2. (7)

Note that if a − d + 2 = 0, we have a singularity of the form p−2 (which one would expect from
a covariance in a Gaussian type model), but it is not clear that there are no other singularities in
the L→∞ limit.
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My interpretation is that one would then like to calculate the Fourier transform of G0C
T and note

that the Fourier transform of G0C
TG−11 is the product of the Fourier transform of G0C

T and that
of G−11 . The hope would then be to show that the Fourier transform of G0C

T has a pole (of max
order 2) at p = 0 which is exactly cancelled by the (second order) zero of Ĝ−11 at p = 0. The
problem is of course that (G0C

T )x,y is not a function of x− y and the Fourier transform does not
exist (in the way we wish to use it - one could of course transform in both x and y or something
else).

Remark: There were some errors in the original formulation of the problem. They should be
corrected here.

3. The aim of this problem is to consider the central limit theorem from the point of view of
the renormalization group. We shall not consider the CLT in it’s full generality to make our RG
approach simpler

Consider 2n independent identically distributed real random variables Qi . Let us assume that
the distribution of Qi has a density ρ(q) and we assume that ρ(q) has ’enough’ regularity - if you
are interested in the regularity assumptions we need, think about what regularity we need at each
step. Moreover, we assume that Qi are centered (

∫
qρ(q)dq = 0) and unit variance

∫
q2ρ(q)dq = 1).

The central limit theorem states that 2−
n
2

∑
iQi converges to a standard Gaussian. Consider

now the distribution of
∑

iQi. THis is given by the convolution of the distributions of Qi. Fol-
lowing the RG-philosohy, one would like to calculate this convolution in steps - at the first step,
pair up the distributions and calculate the convolutions of these pairs. At the next step, pair up
again and convolve. Following this idea, introduce the following mapping acting on densities:

(Tλρ)(q) = λ

∫
R
ρ(q′)ρ(λq − q′)dq′ (8)

.

What we would morally like to do is to show that T nλ ρ converges to a Gaussian distribution as
n→∞ if we pick λ correctly.

a) Let ρ̂ be the Fourier transform of ρ and w = log ρ̂. With some abuse of notation, lift Tλ to
act on w, i.e. define Tλw = log T̂λρ. Show that when acting on w, Tλ is linear.

b) Assuming we can expand w as a series around 0, describe the fixed points of Tλ (when acting
on functions of the form w).

c) Study the eigenfunctions and eigenvalues of Tλ (again when acting on the functions w) and
try to discuss the stability of different eigenfunctions and how they are related to the central limit
theorem.

Solution: a) Plugging inρ(q) = 1
2π

∫
dkeikqρ̂(k), the definition of Tλ becomes

(Tλρ)(q) =
λ

(2π)2

∫
dq′dk1dk2e

ik1q′+ik2(λq−q′)ρ̂(k1)ρ̂(k2)

=
λ

2π

∫
dk1dk2e

ik2λqδ(k1 − k2)ρ̂(k1)ρ̂(k2)

=
1

2π

∫
dkeikqρ̂

(
k

λ

)2

.
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Thus T̂λρ(k) = ρ̂
(
k
λ

)2 and Tλw(k) = 2w
(
k
λ

)
which is indeed a linear map.

b) Let w∗ be a fixed point of Tλ. By a), this means that for each k ∈ R,

w∗(k) = 2w∗
(
k

λ

)
. (9)

Assuming w∗ can be expanded as a power series around k = 0, this becomes

∞∑
j=0

wj
j!
kj =

∞∑
j=0

2
wj
j!
λ−jkj (10)

which means that for each j, we must have wj = 2λ−jwj. This implies that either wj = 0 for all
j or there is a single j for which 2 = λj and wj = 0 for other j.

Let us investigate how wj are actually related to the density ρ. To do this, we consider the
moments of ρ: ∫

qlρ(q)dq =

∫
dqql

∫
dk

2π
eikqρ̂(k)

=

∫
dq

∫
dk

2π

((
1

i

d

dk

)l
eikq

)
ew(k)

=

∫
dq

∫
dk

2π
eikq

(
−1

i

d

dk

)l
ew(k)

=

∫
dkδ(k)

(
−1

i

d

dk

)l
ew(k)

=

(
−1

i

d

dk

)l
ew(k)

∣∣∣∣∣
k=0

.

Here we used some tricks such as integration by parts which requires some regularity from ρ, but
we won’t focus on that.

First of all ρ is the density of a probability measure, so
∫
ρ = 1. This implies that ew(0) = 1

so w(0) = w0 = 0. Secondly, we assumed ρ to be centered:
∫
qρ(q)dq = 0. This implies that

w′(0)ew(0) = 0 so we want w′(0) = w1 = 0. Finally we wanted unit variance. Thus
∫
q2ρ(q)dq = 1

and −(w′′(0)ew(0) + (w′(0))2ew(0)) = −w′′(0) = −w2 = 1. So we see that for the fixed point,
the only possibility is that λ2 = 2, w2 = −1 and wj = 0 for all other j, i.e. w(k) = −1

2
k2 and

ρ̂(k) = e−
1
2
k2 . Inverting the Fourier transform

ρ(q) =

∫
dk

2π
eikqe−

1
2
k2 =

1√
2π
e−

1
2
q2 , (11)

so we see that the only possible fixed point satisfying our asssumptions (and some decent amount
of regularity) is the standard normal distribution.

Note that if we didn’t assume that the distribution is centered, we could have gotten something
with w1 6= 0. This would be in the scope of the law of large numbers instead of the central limit
theorem.
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c) Consider now w∗ - the Gaussian fixed point and consider a perturbation to this: δw. Let us
assume that δw can be expanded as a power series around zero and that w∗+ δw corresponds to a
ρ of the form we have been considering - i.e. if δw(k) =

∑∞
j=0

1
j!
δwjk

j, then δw0 = δw1 = δw2 = 0.
We then have

(Tλ(w∗ + δw))(k) = w∗(k) +
∞∑
j=3

1

j!
21− j

2 δwjk
j. (12)

From the point of view of eigenvalues and eigenvectors, kj is an eigenvector with eigenvalue
21− j

2 . For j ≥ 3, these eigenvalues are all less than one (and positive) so we see that any such
perturbation δw is irrelevant in the RG-point of view: T nλ δw → 0 as n→∞. So we see that with
sufficient regularity assumptions, we have convergence to the normal distribution.

Remark: The original formulation of the problem was slightly incorrect again. The function
is not exactly (−∆ + N−2) but it is something very similar - we could also think of F being the
covariance of the discrete two dimensional Gaussian free field.

4. Let N be a positive integer and for x, y ∈ Z2 define x ∼N y if x − y ∈ (NZ)2. Let τ be
an exponentially distributed random variable with parameter N−2 and let {wm}∞m=0 be a simple
random walk on Z2 independent of τ . Let

F (x, y) = Ex

(
τ∑

m=0

1(wm ∼N y)

)
. (13)

Compare F to (−∆+N−2)−1, where ∆ is the lattice Laplacian with period N in both directions.

Solution: 4. Just calculating, we find

Ex

(
τ∑

m=0

1(wm ∼N y)

)
=
∞∑
n=0

P (τ ∈ [n, n+ 1))
n∑

m=0

P x(wm ∼N y)

=
∞∑
m=0

∞∑
n=m

(
e−

n
N2

(
1− e−

1
N2

))
P x(wm ∼N y)

=
∞∑
m=0

e−
m
N2P x(wm ∼N y)

=
∑
z∈Z2

∞∑
m=0

e−
m
N2P x(wm = y +Nz).

Let ψ(p) be the characteristic function of a single step in our simple random walk:

ψ(p) = E(eip·X) =
1

4
(eip1 + e−ip1 + eip2 + e−ip2) =

1

2
(cos p1 + cos p2). (14)

As P x(wm = y) is an m-fold convolution of the distributions of the elementary steps in the
random walk, we see that the Fourier representation of this function is just the mth power of ψ.
Thus
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Ex

(
τ∑

m=0

1(wm ∼N y)

)
=
∑
z∈Z2

∞∑
m=0

1

(2π)2

∫
[−π,π]2

e−
m
N2ψ(p)meip·(y−x+Nz)dp

=
∑
z∈Z2

1

(2π)2

∫
[−π,π]2

eip·(y−x+Nz)

1− e−
1
N2ψ(p)

dp.

Note that for p ∈ [− π
N
, π
N

]2,

1

(2π)2

∑
z∈Z2

eiNp·z = δ(Np) =
1

N2
δ(p). (15)

On the other hand, the summand is 2π
N

periodic (in both directions) as a function in p. Thus
performing the integration of the delta functions the z-sum gives we have

Ex

(
τ∑

m=0

1(wm ∼N y)

)
=

1

N2

∑
p:pi=

2πni
N

,|ni|≤N2

eip·(y−x)

1− e−
1
N2ψ(p)

. (16)

To leading order in N−2, this agrees with (−∆ +N−2).
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