
STATISTICAL MECHANICS - EXERCISE 6

1. Prove Wick’s theorem.

Solution: Recall that for a Gaussian probability measure with covariance A−1, the moments of the
measure are given by
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Expanding the exponential, we have
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We see that only the k = n term has 2n fs so it is the only one which survives the differentiation
and setting f = 0. Thus writing out the inner product we have
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or written in another way,

(4) E

(
2n∏
i=1

φxi

)
=

2n∏
i=1

∂

∂fxi

1

2nn!

n∏
i=1

∑
αi,βi

fαi(A
−1)αi,βifβi

∣∣∣∣∣
f=0

So we see that only terms with {α1, β1, ..., αn, βn} = {x1, ..., x2n} contribute to the sum. Each such
term contributes equally so in fact
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where the sum is over all pairings of the points {x1, ..., x2n} and Cn is the number of times a given
pairing occurs in (4).

We can deduce Cn simply from the symmetries of (4). First of all, we note that since a covariance
matrix is a symmetric matrix, we can always swap αi and βi so each pair gives a factor of 2 amounting
in a factor of 2n. On the other hand, we can permute the pairs in whatever way we wish so we get a
factor of n!. There are no other symmetries so Cn = n!2n. Thus
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2. Prove that (in some sense - such as for physicists or as a distribution or something)
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as |x− y| → ∞ and calculate cd.

Solution: Recall that,
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and ∆−1
x,y is translation invariant. Making a change

of variables p = q
|x| , we see that
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|x| . Noting that |x|2µ(|x[−1q) → q2, one can show that (interpretation and amount of work
this requires depends on how rigorous you want to be)

(10) G(x) ∼ |x|−d+2

∫
Rd

eiq·x̂

q2
dq.

We are of course free to chose the q-coordinate system however we wish. Let us choose q1 to be
parallel to x. So we have
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Using the residue theorem one finds that
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Here αd is the volume of the d− 2 dimensional unit sphere (coming from integrating out the angular
variables in our d − 1 dimensional integral). If you are unfamiliar with the constant αd, calculate the
d-dimensional integral of e−|x|2 in two ways - as a product of 1-dimensional integrals and in spherical
coordinates. You will find that
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We can simplify this further by using the following formula:
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Note that this is just the inverse of the volume of the d-dimensional unit sphere.

3. Consider a graph with vertices x, y, x1, ..., xn, simple edges {x, x1}, {x1, xn} and {xn, y} and double
edges from xi to xi+1 (so the graph looks like there is a straight line (going through x, x1, xn, y) and a
chain of loops attached to it. Calculate the value of this graph and then sum the values over n.

Solution: Let us call our graph Gn. Let us begin by calculating the symmetry factor. There are n
vertices we can connect x to. After this there are n− 1 vertices we can connect y to. For each vertex we
are connecting to x, there are 4 edges we can perform the connection with. Similarly for y. After this
is done, there are 9 ways left we can connect x1 to xn, x1 to x2 and xn to xn−1. We then just continue
counting combinations step by step and we find that the symmetry factor is

(17) n(Gn) = (n · (n− 1)4 · 4 · 3 · 3) · ((n− 2)(n− 3)42 · 32) · · · 2 = 2 · 12nn!.

The last factor of 2 comes from the fact that at the last step, there are only two ways to connect the
points.

Using the standard rules for calculating the value of a diagram, we have

(18) val(Gn) =
∑

x1,...,xn

C(x1 − x)C(y − xn)C(xn − x1)
n−1∏
i=1
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Writing C in terms of its Fourier transform: C(x) =
∫
dpeip·xĈ(p), we have
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∑
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Noting that the sums amount to δ-functions, we see that

val(Gn) =

∫ 2n+1∏
i=1

(dpiĈ(pi))e
−ip1·xeip2yδ(p1 − p3 − p4 − p5)δ(−p2 + p3 + p2n + p2n+1)

×
n−2∏
j=1

δ(−p2j+2 − p2j+3 + p2j+4 + p2j+5).

Let us define qi = p2i+2 for i ≥ 1, p1 = p, q = p3. The δ-functions imply that p2i+1 = p− q − qi so
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val(Gn) =

∫
dpdq

∫ n−1∏
i=1

dqi(Ĉ(qj)Ĉ(p− q − qj))Ĉ(p)Ĉ(q)

×
∫
dp2δ(−p2 + q + (p− q))e−ip·xeip2·yĈ(p2)

=

∫
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where I(p) =
∫
dqĈ(q)Ĉ(p− q). Thus for the sum over all such graphs we find
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.

Note that since Ĉ(p) ≤ 1
r
, I(p) ≤ A

r2
for some constant A. So for small enough λ, 12λI(p− q) is less

than one and the geometric series converges as we claim above.

4. Show that for a general connected graph, the number of integrals in the Fourier representation we
are left with after getting rid of the δ-functions is the number of independent cycles in the graph.

Solution: By Euler’s theorem, for a connected graph one has n(vertices)-n(edges)+n(loops)=1. Let
us write V for the number of internal vertices, I for the number of internal edges and E for the number
of external edges. Of course n(edges)= I +E and n(vertices)= V +E. Thus L = n(loops)= I − V + 1.

We note that while there are V δ-functions coming from the ’local conservation of momentum’, there
is in fact a certain redundancy in them - there is also a ’global conservation of momentum’: the total
sum of Fourier modes incoming and outgoing to a graph is zero. Thus the number of relevant δ-functions
in the integral is in fact V − 1. After integrating them out, we are left with I − (V − 1) = L integrals.

5. Show that

(20)
∫

1

(q − p)2q2
dq ∼

 O(1), d ≥ 5
log |p|, d = 4
|p|d−4, d ≤ 3

.

Solution: We shall use a trick (attributed to Feynman) commonly used in physics when evaluating
Feynman diagrams. From a simple calculation, it follows that one can write (for positive x and y)

(21)
1

xy
=

∫ 1

0

dα
1

(αx+ (1− α)y)2
.

Using this and changing the order of integration, we find that∫
1

(q − p)2q2
dq =

∫ 1

0

dα

∫
dq

1

(αq2 + (1− α)(q − p)2)2

=

∫ 1

0

dα

∫
dq

1

(αq2 + (1− α)q2 − 2(1− α)q · p+ (1− α)p2)2

=

∫ 1

0

dα

∫
dq

1

(q2 − 2(1− α)q · p+ (1− α)p2)2
.

We then perform a change of variable to get rid of the inner product: let x = q − (1 − α)p. Then
x2 = q2 − 2(1− α)p · q + (1− α)2p2 and
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(22)
∫

1

(q − p)2q2
dq =

∫ 1

0

dα

∫
dx

1

(x2 + α(1− α)p2)2
.

Noting that the relevant contribution will come when q (and p) are close to zero, we get the leading
behavior by considering any fixed bounded domain that contains a suitably large neighborhood of zero.
So let us fix the integration domain (for the x integral) to be spherically symmetric around zero: take a
ball B(0, r). We then go into polar coordinates and find (note the abuse of notation: first x is a vector
and then a scalar)

(23)
∫

1

(q − p)2q2
dq = cd

∫ 1

0

dα

∫ r

0

xd−1

(x2 + α(1− α)p2)2
dx.

We then make a change of variables in this: write x =
√
α(1− α)p2y. We find

(24)
∫

1

(q − p)2q2
dq = cd

∫ 1

0

dα(α(1− α)p2)
d
2
−2

∫ r√
α(1−α)p2

0

yd−1

(y2 + 1)2
dy.

As p→ 0, the y integral behaves like

(25)
∫ r√

α(1−α)p2

1

yd−5dy.

Now if d ≥ 5, the y-integral gives something proportional to ((α(1 − α))p2)−
d−4
2 which cancels with

the prefactor so we see that the whole integral is bounded. For d = 4, the y integral gives something
proportional to − log(α(1 − α)) + log |p|. The prefactor is equal to one and the α-dependent part is
integrable so we find that indeed for d = 4, we have logarithmic divergence. For d ≤ 3, the y-integral
is bounded in p. The α-integral converges when the dimension is strictly larger than 2 in which case
we find the behavior to be |p|d−4 as claimed. In the d = 1 and d = 2 cases, the integral seems to be
divergent even with the p term.

6. Show that the λ→∞, r → −∞ limit with a suitable relation between λ and r of the Ginzburg-
Landau model is the Ising model. More precisely, consider the generating function for the correlation
functions of the GL-model in finite volume:

(26) Z(h) =

∫ ∏
x∈ΛL

dφxe
−HGL(φ)e−

∑
x φxhx

and show that after suitably rescaling Z, h and φ one gets the generating function for the correlation
functions of the Ising model in the λ→∞ and r → −∞ limit.

Solution: We begin by writing the Hamiltonian in a form more suggestive of the Ising model (ek is
the unit vector in the k direction):

−H(φ) = −1

2

∑
x,k

(φ(x+ ek)− φ(x))2 − r

2

∑
x

φ(x)2 − λ
∑
x

φ(x)4

=
∑
x,k

φ(x)φ(x+ ek)−
(r

2
+ d
)∑

x

φ(x)2 − λ
∑
x

φ(x)4

=
∑
x,k

φ(x)φ(x+ ek)− λ
∑
x

(
φ(x)2 +

r + 2d

4λ

)2

+ |ΛL|
(r + 2d)2

16λ
.

Define α =
√
|r+2d|

4λ
and K = exp(λα4). Then for small enough r (so that α is negative)
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(27) Z(h) = K |ΛL|
∫ ∏

x∈ΛL

(
dφ(x)eh(x)φ(x)e−λ(φ(x)2−α2)2

)∏
x,k

eφ(x)φ(x+ek).

Let us first rescale φ and h: define ϕ = φ
α
and b = αh. We then have

(28) Z(h) = K |ΛL|α|ΛL|
∫ ∏

x∈ΛL

(
dϕ(x)eb(x)ϕ(x)e−λα

4(ϕ(x)2−1)2
)∏
x,k

eα
2ϕ(x)ϕ(x+ek).

We then make use of the Gaussian approximation to the δ-function:

(29)
√
t

π
e−tx

2 → δ(x)

as t→∞. We define

(30) Zλ,α
Ising(b) =

1

K |ΛL|α|ΛL|

( π

λα4

) 1
2
|ΛL|

Z(h)

and the Gaussian approximation gives

Zα
Ising(b) = lim

λ→∞
Zλ,α
Ising(b)

=

∫ ∏
x∈ΛL

(
dϕ(x)eb(x)ϕ(x)δ(ϕ(x)2 − 1)

)∏
x,k

eα
2ϕ(x)ϕ(x+ek)

=
∏
x∈ΛL

∑
ϕx∈{−1,1}

e
∑
x b(x)ϕ(x)eα

2
∑
x∼y ϕ(x)ϕ(y),

where x ∼ y means that x and y are nearest neighbors. Note that this is precisely of the Ising form
with inverse temperature β = α2.
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