STATISTICAL MECHANICS - EXERCISE 6

1. Prove Wick’s theorem.

Solution: Recall that for a Gaussian probability measure with covariance A~!, the moments of the
measure are given by
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Expanding the exponential, we have
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We see that only the & = n term has 2n fs so it is the only one which survives the differentiation
and setting f = 0. Thus writing out the inner product we have
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or written in another way,
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So we see that only terms with {«ay, f1, ..., an, B} = {21, ..., T2, } contribute to the sum. Each such
term contributes equally so in fact
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where the sum is over all pairings of the points {z1,...,x2,} and C), is the number of times a given
pairing occurs in (4).

We can deduce C,, simply from the symmetries of (4). First of all, we note that since a covariance
matrix is a symmetric matrix, we can always swap «; and 3; so each pair gives a factor of 2 amounting
in a factor of 2". On the other hand, we can permute the pairs in whatever way we wish so we get a
factor of n!. There are no other symmetries so C,, = n!2". Thus
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2. Prove that (in some sense - such as for physicists or as a distribution or something)
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as |xr — y| — oo and calculate c¢y.

Solution: Recall that,
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where p(p) = Zl (2= 2cosp;) and dp =[], i and A}, is translation invariant. Making a change
of variables p = = |, we see that
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where & = ;. Noting that |2[*4(|z['q) — ¢*, one can show that (interpretation and amount of work
this requires depends on how rigorous you want to be)
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We are of course free to chose the g-coordinate system however we wish. Let us choose ¢; to be
parallel to x. So we have

zq:c “11 d
(11) / dg _/ / g
Rd q° ri-1 ) oo G+ @+ q?2om

Using the residue theorem one finds that
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Here o is the volume of the d — 2 dimensional unit sphere (coming from integrating out the angular
variables in our d — 1 dimensional integral). If you are unfamiliar with the constant a4, calculate the
d-dimensional integral of e~ 17" in two ways - as a product of 1-dimensional integrals and in spherical
coordinates. You will find that
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We can simplify this further by using the following formula:
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Thus
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Note that this is just the inverse of the volume of the d-dimensional unit sphere.
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3. Consider a graph with vertices z,y, 21, ..., T, simple edges {z, x1 }, {1, x,} and {z,, y} and double
edges from x; to z;41 (so the graph looks like there is a straight line (going through z, x, z,,y) and a
chain of loops attached to it. Calculate the value of this graph and then sum the values over n.

Solution: Let us call our graph G,,. Let us begin by calculating the symmetry factor. There are n
vertices we can connect x to. After this there are n — 1 vertices we can connect y to. For each vertex we
are connecting to x, there are 4 edges we can perform the connection with. Similarly for y. After this
is done, there are 9 ways left we can connect z; to z,, x; to x93 and x,, to z,_;. We then just continue
counting combinations step by step and we find that the symmetry factor is
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The last factor of 2 comes from the fact that at the last step, there are only two ways to connect the
points.

Using the standard rules for calculating the value of a diagram, we have
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Writing C' in terms of its Fourier transform: C(z) = [ dpe™™ e (p), we have
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Noting that the sums amount to d-functions, we see that
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Let us define ¢; = poiio for i > 1, py = p, ¢ = p3. The d-functions imply that py; 1 =p —q — ¢; so
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where I(p) = [ dqC(q)C(p — q). Thus for the sum over all such graphs we find
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Note that since C'(p) < L I(p) < 4 for some constant A. So for small enough A, 12A\I(p — q) is less
than one and the geometric series converges as we claim above.

4. Show that for a general connected graph, the number of integrals in the Fourier representation we
are left with after getting rid of the d-functions is the number of independent cycles in the graph.

Solution: By Euler’s theorem, for a connected graph one has n(vertices)-n(edges)+n(loops)=1. Let
us write V' for the number of internal vertices, I for the number of internal edges and E for the number
of external edges. Of course n(edges)= I + E and n(vertices)= V + E. Thus L = n(loops)=1 —V + 1.

We note that while there are V' d-functions coming from the "local conservation of momentum’, there
is in fact a certain redundancy in them - there is also a 'global conservation of momentum’: the total
sum of Fourier modes incoming and outgoing to a graph is zero. Thus the number of relevant §-functions
in the integral is in fact V' — 1. After integrating them out, we are left with I — (V' — 1) = L integrals.
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Solution: We shall use a trick (attributed to Feynman) commonly used in physics when evaluating
Feynman diagrams. From a simple calculation, it follows that one can write (for positive x and y)
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We then perform a change of variable to get rid of the inner product: let z = ¢ — (1 — «)p. Then
?>=¢-2(1-a)p-q+ (1 —a)’*? and
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Noting that the relevant contribution will come when ¢ (and p) are close to zero, we get the leading
behavior by considering any fixed bounded domain that contains a suitably large neighborhood of zero.
So let us fix the integration domain (for the z integral) to be spherically symmetric around zero: take a
ball B(0,r). We then go into polar coordinates and find (note the abuse of notation: first x is a vector
and then a scalar)
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We then make a change of variables in this: write z = y/a(1 — a)p?y. We find
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As p — 0, the y integral behaves like
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Now if d > 5, the y-integral gives something proportional to ((a(1 — «))p?)~ 2 which cancels with
the prefactor so we see that the whole integral is bounded. For d = 4, the y integral gives something
proportional to —log(a(l — «)) + log |p|. The prefactor is equal to one and the a-dependent part is
integrable so we find that indeed for d = 4, we have logarithmic divergence. For d < 3, the y-integral
is bounded in p. The a-integral converges when the dimension is strictly larger than 2 in which case
we find the behavior to be |p|?* as claimed. In the d = 1 and d = 2 cases, the integral seems to be
divergent even with the p term.

6. Show that the A — oo, r — —oo limit with a suitable relation between A and r of the Ginzburg-
Landau model is the Ising model. More precisely, consider the generating function for the correlation
functions of the GL-model in finite volume:
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and show that after suitably rescaling Z, h and ¢ one gets the generating function for the correlation
functions of the Ising model in the A — oo and r — —oo limit.

Solution: We begin by writing the Hamiltonian in a form more suggestive of the Ising model (e is
the unit vector in the k direction):
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Define av = 4/ ‘Tjjd and K = exp(Aa?). Then for small enough r (so that « is negative)
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Let us first rescale ¢ and h: define ¢ = g and b = ah. We then have
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We then make use of the Gaussian approximation to the d-function:
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where x ~ y means that z and y are nearest neighbors. Note that this is precisely of the Ising form
with inverse temperature = o2



