## STATISTICAL MECHANICS - EXERCISE 6

## 1. Prove Wick's theorem.

Solution: Recall that for a Gaussian probability measure with covariance $A^{-1}$, the moments of the measure are given by

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\left.\prod_{i=1}^{2 n} \frac{\partial}{\partial f_{x_{i}}} e^{\frac{1}{2}\left(f, A^{-1} f\right)}\right|_{f=0} \tag{1}
\end{equation*}
$$

Expanding the exponential, we have

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\left.\prod_{i=1}^{2 n} \frac{\partial}{\partial f_{x_{i}}} \sum_{k=0}^{\infty} \frac{\left(f, A^{-1} f\right)^{k}}{2^{k} k!}\right|_{f=0} \tag{2}
\end{equation*}
$$

We see that only the $k=n$ term has $2 n f$ s so it is the only one which survives the differentiation and setting $f=0$. Thus writing out the inner product we have

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\left.\prod_{i=1}^{2 n} \frac{\partial}{\partial f_{x_{i}}} \frac{1}{2^{n} n!}\left(\sum_{\alpha, \beta} f_{\alpha}\left(A^{-1}\right)_{\alpha, \beta} f_{\beta}\right)^{n}\right|_{f=0} \tag{3}
\end{equation*}
$$

or written in another way,

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\left.\prod_{i=1}^{2 n} \frac{\partial}{\partial f_{x_{i}}} \frac{1}{2^{n} n!} \prod_{i=1}^{n} \sum_{\alpha_{i}, \beta_{i}} f_{\alpha_{i}}\left(A^{-1}\right)_{\alpha_{i}, \beta_{i}} f_{\beta_{i}}\right|_{f=0} \tag{4}
\end{equation*}
$$

So we see that only terms with $\left\{\alpha_{1}, \beta_{1}, \ldots, \alpha_{n}, \beta_{n}\right\}=\left\{x_{1}, \ldots, x_{2 n}\right\}$ contribute to the sum. Each such term contributes equally so in fact

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\frac{C_{n}}{2^{n} n!} \sum_{P} \prod_{i=1}^{n} A_{x_{P(2 i-1)}, x_{P(2 i)}} \tag{5}
\end{equation*}
$$

where the sum is over all pairings of the points $\left\{x_{1}, \ldots, x_{2 n}\right\}$ and $C_{n}$ is the number of times a given pairing occurs in (4).

We can deduce $C_{n}$ simply from the symmetries of (4). First of all, we note that since a covariance matrix is a symmetric matrix, we can always swap $\alpha_{i}$ and $\beta_{i}$ so each pair gives a factor of 2 amounting in a factor of $2^{n}$. On the other hand, we can permute the pairs in whatever way we wish so we get a factor of $n!$. There are no other symmetries so $C_{n}=n!2^{n}$. Thus

$$
\begin{equation*}
E\left(\prod_{i=1}^{2 n} \phi_{x_{i}}\right)=\sum_{P} \prod_{i=1}^{n} A_{x_{P(2 i-1)}, x_{P(2 i)}} \tag{6}
\end{equation*}
$$

2. Prove that (in some sense - such as for physicists or as a distribution or something)

$$
\begin{equation*}
(-\Delta)_{x y}^{-1}=\frac{c_{d}}{|x-y|^{d-2}}(1+o(1)) \tag{7}
\end{equation*}
$$

as $|x-y| \rightarrow \infty$ and calculate $c_{d}$.
Solution: Recall that,

$$
\begin{equation*}
G(x)=(-\Delta)_{0, x}^{-1}=\int_{[-\pi, \pi]^{d}} \frac{e^{i p \cdot x}}{\mu(p)} d p \tag{8}
\end{equation*}
$$

where $\mu(p)=\sum_{i=1}^{d}\left(2-2 \cos p_{i}\right)$ and $d p=\prod_{i=1}^{d} \frac{d p_{i}}{2 \pi}$ and $\Delta_{x, y}^{-1}$ is translation invariant. Making a change of variables $p=\frac{q}{|x|}$, we see that

$$
\begin{equation*}
G(x)=|x|^{-d+2} \int_{[-\pi|x|, \pi|x|]^{d}} \frac{e^{i q \cdot \hat{x}}}{|x|^{2} \mu\left(\frac{q}{|x|}\right)} d q, \tag{9}
\end{equation*}
$$

where $\hat{x}=\frac{x}{|x|}$. Noting that $|x|^{2} \mu\left(\mid x\left[^{-1} q\right) \rightarrow q^{2}\right.$, one can show that (interpretation and amount of work this requires depends on how rigorous you want to be)

$$
\begin{equation*}
G(x) \sim|x|^{-d+2} \int_{\mathbb{R}^{d}} \frac{e^{i q \cdot \hat{x}}}{q^{2}} d q . \tag{10}
\end{equation*}
$$

We are of course free to chose the $q$-coordinate system however we wish. Let us choose $q_{1}$ to be parallel to $x$. So we have

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} \frac{e^{i q \cdot \hat{x}}}{q^{2}} d q=\int_{\mathbb{R}^{d-1}} \int_{-\infty}^{\infty} \frac{e^{i q_{1}}}{q_{1}^{2}+q^{2}} \frac{d q_{1}}{2 \pi} d q . \tag{11}
\end{equation*}
$$

Using the residue theorem one finds that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i q_{1}}}{q_{1}^{2}+q^{2}} d q_{1}=\pi \frac{e^{-|q|}}{|q|} \tag{12}
\end{equation*}
$$

and

$$
\begin{aligned}
c_{d} & =\int_{\mathbb{R}^{d}} \frac{e^{i q \cdot \hat{x}}}{q^{2}} d q \\
& =\int_{\mathbb{R}^{d-1}} \int_{-\infty}^{\infty} \frac{e^{i q_{1}}}{q_{1}^{2}+q^{2}} \frac{d q_{1}}{2 \pi} d q \\
& =\frac{1}{2} \int_{\mathbb{R}^{d-1}} \frac{e^{-|q|}}{|q|} d q \\
& =\frac{1}{2} \frac{\alpha_{d}}{(2 \pi)^{d-1}} \int_{0}^{\infty} r^{d-2} e^{-r} d r \\
& =\frac{1}{2} \frac{\alpha_{d}}{(2 \pi)^{d-1}} \Gamma(d-1)
\end{aligned}
$$

Here $\alpha_{d}$ is the volume of the $d-2$ dimensional unit sphere (coming from integrating out the angular variables in our $d-1$ dimensional integral). If you are unfamiliar with the constant $\alpha_{d}$, calculate the $d$-dimensional integral of $e^{-|x|^{2}}$ in two ways - as a product of 1-dimensional integrals and in spherical coordinates. You will find that

$$
\begin{equation*}
\alpha_{d}=\frac{2 \pi^{\frac{d-1}{2}}}{\Gamma\left(\frac{d-1}{2}\right)} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
c_{d}=\frac{\Gamma(d-1)}{\Gamma\left(\frac{d-1}{2}\right)} \frac{1}{2^{d-1} \pi^{\frac{d-1}{2}}} . \tag{14}
\end{equation*}
$$

We can simplify this further by using the following formula:

$$
\begin{equation*}
\frac{\Gamma(2 z)}{\Gamma(z)}=\frac{1}{\sqrt{2 \pi}} 2^{2 z-\frac{1}{2}} \Gamma\left(z+\frac{1}{2}\right) \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
c_{d}=\frac{1}{\sqrt{2 \pi}} 2^{d-1-\frac{1}{2}} \Gamma\left(\frac{d}{2}\right) \frac{1}{2^{d-1} \pi^{\frac{d-1}{2}}}=\frac{\Gamma\left(\frac{d}{2}\right)}{2 \pi^{\frac{d}{2}}} . \tag{16}
\end{equation*}
$$

Note that this is just the inverse of the volume of the $d$-dimensional unit sphere.
3. Consider a graph with vertices $x, y, x_{1}, \ldots, x_{n}$, simple edges $\left\{x, x_{1}\right\},\left\{x_{1}, x_{n}\right\}$ and $\left\{x_{n}, y\right\}$ and double edges from $x_{i}$ to $x_{i+1}$ (so the graph looks like there is a straight line (going through $x, x_{1}, x_{n}, y$ ) and a chain of loops attached to it. Calculate the value of this graph and then sum the values over $n$.

Solution: Let us call our graph $G_{n}$. Let us begin by calculating the symmetry factor. There are $n$ vertices we can connect $x$ to. After this there are $n-1$ vertices we can connect $y$ to. For each vertex we are connecting to $x$, there are 4 edges we can perform the connection with. Similarly for $y$. After this is done, there are 9 ways left we can connect $x_{1}$ to $x_{n}, x_{1}$ to $x_{2}$ and $x_{n}$ to $x_{n-1}$. We then just continue counting combinations step by step and we find that the symmetry factor is

$$
\begin{equation*}
n\left(G_{n}\right)=(n \cdot(n-1) 4 \cdot 4 \cdot 3 \cdot 3) \cdot\left((n-2)(n-3) 4^{2} \cdot 3^{2}\right) \cdots 2=2 \cdot 12^{n} n!. \tag{17}
\end{equation*}
$$

The last factor of 2 comes from the fact that at the last step, there are only two ways to connect the points.

Using the standard rules for calculating the value of a diagram, we have

$$
\begin{equation*}
\operatorname{val}\left(G_{n}\right)=\sum_{x_{1}, \ldots, x_{n}} C\left(x_{1}-x\right) C\left(y-x_{n}\right) C\left(x_{n}-x_{1}\right) \prod_{i=1}^{n-1} C\left(x_{i+1}-x_{i}\right)^{2} \tag{18}
\end{equation*}
$$

Writing $C$ in terms of its Fourier transform: $C(x)=\int d p e^{i p \cdot x} \hat{C}(p)$, we have

$$
\begin{equation*}
\operatorname{val}\left(G_{n}\right)=\sum_{x_{1}, \ldots, x_{n}} \int^{2 n+1} \prod_{i=1}^{2}\left(d p_{i} \hat{C}\left(p_{i}\right)\right) e^{i p_{1} \cdot\left(x_{1}-x\right)} e^{i p_{2} \cdot\left(y-x_{n}\right)} e^{i p_{3} \cdot\left(x_{n}-x_{1}\right)} \prod_{j=1}^{n-1} e^{i p_{2 j+2} \cdot\left(x_{j+1}-x_{j}\right)} e^{i p_{2 i+3} \cdot\left(x_{j+1}-x_{j}\right)} . \tag{19}
\end{equation*}
$$

Noting that the sums amount to $\delta$-functions, we see that

$$
\begin{aligned}
\operatorname{val}\left(G_{n}\right)=\int & \prod_{i=1}^{2 n+1}\left(d p_{i} \hat{C}\left(p_{i}\right)\right) e^{-i p_{1} \cdot x} e^{i p_{2} y} \delta\left(p_{1}-p_{3}-p_{4}-p_{5}\right) \delta\left(-p_{2}+p_{3}+p_{2 n}+p_{2 n+1}\right) \\
& \times \prod_{j=1}^{n-2} \delta\left(-p_{2 j+2}-p_{2 j+3}+p_{2 j+4}+p_{2 j+5}\right)
\end{aligned}
$$

Let us define $q_{i}=p_{2 i+2}$ for $i \geq 1, p_{1}=p, q=p_{3}$. The $\delta$-functions imply that $p_{2 i+1}=p-q-q_{i}$ so

$$
\begin{aligned}
\operatorname{val}\left(G_{n}\right) & =\int d p d q \int \prod_{i=1}^{n-1} d q_{i}\left(\hat{C}\left(q_{j}\right) \hat{C}\left(p-q-q_{j}\right)\right) \hat{C}(p) \hat{C}(q) \\
& \times \int d p_{2} \delta\left(-p_{2}+q+(p-q)\right) e^{-i p \cdot x} e^{i p_{2} \cdot y} \hat{C}\left(p_{2}\right) \\
& =\int d p e^{-i p \cdot(x-y)} \hat{C}(p) \hat{C}(-p) \int d q \hat{C}(q) I(p-q)^{n},
\end{aligned}
$$

where $I(p)=\int d q \hat{C}(q) \hat{C}(p-q)$. Thus for the sum over all such graphs we find

$$
\begin{aligned}
& \sum_{n=2}^{\infty} \frac{(-\lambda)^{n}}{n!} 2 \cdot 12^{n} n!\int d p e^{-i p \cdot(x+y)} \hat{C}(p) \hat{C}(-p) \int d q \hat{C}(q) I(p-q)^{n} \\
& =2 \int d p e^{-i p \cdot(x-y)} \hat{C}(p) \hat{C}(-p) \int d q \hat{C}(q) \frac{I(p-q)^{2}}{1+12 \lambda I(p-q)}
\end{aligned}
$$

Note that since $\hat{C}(p) \leq \frac{1}{r}, I(p) \leq \frac{A}{r^{2}}$ for some constant $A$. So for small enough $\lambda, 12 \lambda I(p-q)$ is less than one and the geometric series converges as we claim above.
4. Show that for a general connected graph, the number of integrals in the Fourier representation we are left with after getting rid of the $\delta$-functions is the number of independent cycles in the graph.

Solution: By Euler's theorem, for a connected graph one has $n$ (vertices) $-n$ (edges) $+n$ (loops) $=1$. Let us write $V$ for the number of internal vertices, $I$ for the number of internal edges and $E$ for the number of external edges. Of course $n($ edges $)=I+E$ and $n($ vertices $)=V+E$. Thus $L=n($ loops $)=I-V+1$.

We note that while there are $V \delta$-functions coming from the 'local conservation of momentum', there is in fact a certain redundancy in them - there is also a 'global conservation of momentum': the total sum of Fourier modes incoming and outgoing to a graph is zero. Thus the number of relevant $\delta$-functions in the integral is in fact $V-1$. After integrating them out, we are left with $I-(V-1)=L$ integrals.
5. Show that

$$
\int \frac{1}{(q-p)^{2} q^{2}} d q \sim\left\{\begin{array}{c}
\mathcal{O}(1), d \geq 5  \tag{20}\\
\log |p|, d=4 \\
|p|^{d-4}, d \leq 3
\end{array}\right.
$$

Solution: We shall use a trick (attributed to Feynman) commonly used in physics when evaluating Feynman diagrams. From a simple calculation, it follows that one can write (for positive $x$ and $y$ )

$$
\begin{equation*}
\frac{1}{x y}=\int_{0}^{1} d \alpha \frac{1}{(\alpha x+(1-\alpha) y)^{2}} \tag{21}
\end{equation*}
$$

Using this and changing the order of integration, we find that

$$
\begin{aligned}
\int \frac{1}{(q-p)^{2} q^{2}} d q & =\int_{0}^{1} d \alpha \int d q \frac{1}{\left(\alpha q^{2}+(1-\alpha)(q-p)^{2}\right)^{2}} \\
& =\int_{0}^{1} d \alpha \int d q \frac{1}{\left(\alpha q^{2}+(1-\alpha) q^{2}-2(1-\alpha) q \cdot p+(1-\alpha) p^{2}\right)^{2}} \\
& =\int_{0}^{1} d \alpha \int d q \frac{1}{\left(q^{2}-2(1-\alpha) q \cdot p+(1-\alpha) p^{2}\right)^{2}}
\end{aligned}
$$

We then perform a change of variable to get rid of the inner product: let $x=q-(1-\alpha) p$. Then $x^{2}=q^{2}-2(1-\alpha) p \cdot q+(1-\alpha)^{2} p^{2}$ and

$$
\begin{equation*}
\int \frac{1}{(q-p)^{2} q^{2}} d q=\int_{0}^{1} d \alpha \int d x \frac{1}{\left(x^{2}+\alpha(1-\alpha) p^{2}\right)^{2}} \tag{22}
\end{equation*}
$$

Noting that the relevant contribution will come when $q$ (and $p$ ) are close to zero, we get the leading behavior by considering any fixed bounded domain that contains a suitably large neighborhood of zero. So let us fix the integration domain (for the $x$ integral) to be spherically symmetric around zero: take a ball $B(0, r)$. We then go into polar coordinates and find (note the abuse of notation: first $x$ is a vector and then a scalar)

$$
\begin{equation*}
\int \frac{1}{(q-p)^{2} q^{2}} d q=c_{d} \int_{0}^{1} d \alpha \int_{0}^{r} \frac{x^{d-1}}{\left(x^{2}+\alpha(1-\alpha) p^{2}\right)^{2}} d x \tag{23}
\end{equation*}
$$

We then make a change of variables in this: write $x=\sqrt{\alpha(1-\alpha) p^{2}} y$. We find

$$
\begin{equation*}
\int \frac{1}{(q-p)^{2} q^{2}} d q=c_{d} \int_{0}^{1} d \alpha\left(\alpha(1-\alpha) p^{2}\right)^{\frac{d}{2}-2} \int_{0}^{\frac{r}{\sqrt{\alpha(1-\alpha) p^{2}}}} \frac{y^{d-1}}{\left(y^{2}+1\right)^{2}} d y \tag{24}
\end{equation*}
$$

As $p \rightarrow 0$, the $y$ integral behaves like

$$
\begin{equation*}
\int_{1}^{\frac{r}{\sqrt{\alpha(1-\alpha) p^{2}}}} y^{d-5} d y \tag{25}
\end{equation*}
$$

Now if $d \geq 5$, the $y$-integral gives something proportional to $\left((\alpha(1-\alpha)) p^{2}\right)^{-\frac{d-4}{2}}$ which cancels with the prefactor so we see that the whole integral is bounded. For $d=4$, the $y$ integral gives something proportional to $-\log (\alpha(1-\alpha))+\log |p|$. The prefactor is equal to one and the $\alpha$-dependent part is integrable so we find that indeed for $d=4$, we have logarithmic divergence. For $d \leq 3$, the $y$-integral is bounded in $p$. The $\alpha$-integral converges when the dimension is strictly larger than 2 in which case we find the behavior to be $|p|^{d-4}$ as claimed. In the $d=1$ and $d=2$ cases, the integral seems to be divergent even with the $p$ term.
6. Show that the $\lambda \rightarrow \infty, r \rightarrow-\infty$ limit with a suitable relation between $\lambda$ and $r$ of the GinzburgLandau model is the Ising model. More precisely, consider the generating function for the correlation functions of the GL-model in finite volume:

$$
\begin{equation*}
Z(h)=\int \prod_{x \in \Lambda_{L}} d \phi_{x} e^{-H_{G L}(\phi)} e^{-\sum_{x} \phi_{x} h_{x}} \tag{26}
\end{equation*}
$$

and show that after suitably rescaling $Z, h$ and $\phi$ one gets the generating function for the correlation functions of the Ising model in the $\lambda \rightarrow \infty$ and $r \rightarrow-\infty$ limit.

Solution: We begin by writing the Hamiltonian in a form more suggestive of the Ising model ( $e_{k}$ is the unit vector in the $k$ direction):

$$
\begin{aligned}
-H(\phi) & =-\frac{1}{2} \sum_{x, k}\left(\phi\left(x+e_{k}\right)-\phi(x)\right)^{2}-\frac{r}{2} \sum_{x} \phi(x)^{2}-\lambda \sum_{x} \phi(x)^{4} \\
& =\sum_{x, k} \phi(x) \phi\left(x+e_{k}\right)-\left(\frac{r}{2}+d\right) \sum_{x} \phi(x)^{2}-\lambda \sum_{x} \phi(x)^{4} \\
& =\sum_{x, k} \phi(x) \phi\left(x+e_{k}\right)-\lambda \sum_{x}\left(\phi(x)^{2}+\frac{r+2 d}{4 \lambda}\right)^{2}+\left|\Lambda_{L}\right| \frac{(r+2 d)^{2}}{16 \lambda} .
\end{aligned}
$$

Define $\alpha=\sqrt{\frac{|r+2 d|}{4 \lambda}}$ and $K=\exp \left(\lambda \alpha^{4}\right)$. Then for small enough $r$ (so that $\alpha$ is negative)

$$
\begin{equation*}
Z(h)=K^{\left|\Lambda_{L}\right|} \int \prod_{x \in \Lambda_{L}}\left(d \phi(x) e^{h(x) \phi(x)} e^{-\lambda\left(\phi(x)^{2}-\alpha^{2}\right)^{2}}\right) \prod_{x, k} e^{\phi(x) \phi\left(x+e_{k}\right)} . \tag{27}
\end{equation*}
$$

Let us first rescale $\phi$ and $h$ : define $\varphi=\frac{\phi}{\alpha}$ and $b=\alpha h$. We then have

$$
\begin{equation*}
Z(h)=K^{\left|\Lambda_{L}\right|} \alpha^{\left|\Lambda_{L}\right|} \int \prod_{x \in \Lambda_{L}}\left(d \varphi(x) e^{b(x) \varphi(x)} e^{-\lambda \alpha^{4}\left(\varphi(x)^{2}-1\right)^{2}}\right) \prod_{x, k} e^{\alpha^{2} \varphi(x) \varphi\left(x+e_{k}\right)} \tag{28}
\end{equation*}
$$

We then make use of the Gaussian approximation to the $\delta$-function:

$$
\begin{equation*}
\sqrt{\frac{t}{\pi}} e^{-t x^{2}} \rightarrow \delta(x) \tag{29}
\end{equation*}
$$

as $t \rightarrow \infty$. We define

$$
\begin{equation*}
Z_{I s i n g}^{\lambda, \alpha}(b)=\frac{1}{K^{\left|\Lambda_{L}\right| \alpha} \alpha^{\left|\Lambda_{L}\right|}}\left(\frac{\pi}{\lambda \alpha^{4}}\right)^{\frac{1}{2}\left|\Lambda_{L}\right|} Z(h) \tag{30}
\end{equation*}
$$

and the Gaussian approximation gives

$$
\begin{aligned}
Z_{\text {Ising }}^{\alpha}(b) & =\lim _{\lambda \rightarrow \infty} Z_{\text {Ising }}^{\lambda, \alpha}(b) \\
& =\int \prod_{x \in \Lambda_{L}}\left(d \varphi(x) e^{b(x) \varphi(x)} \delta\left(\varphi(x)^{2}-1\right)\right) \prod_{x, k} e^{\alpha^{2} \varphi(x) \varphi\left(x+e_{k}\right)} \\
& =\prod_{x \in \Lambda_{L}} \sum_{\varphi_{x} \in\{-1,1\}} e^{\sum_{x} b(x) \varphi(x)} e^{\alpha^{2} \sum_{x \sim y} \varphi(x) \varphi(y)},
\end{aligned}
$$

where $x \sim y$ means that $x$ and $y$ are nearest neighbors. Note that this is precisely of the Ising form with inverse temperature $\beta=\alpha^{2}$.

