
STATISTICAL MECHANICS - EXERCISE 3

1. Go over the Peierls argument for the q-state Potts model, i.e. show that if P(i) is the probability
measure obtained from the limit of the q-state Potts model with boundary conditions i (outside of Λ
each spin has value i), then limβ→∞ P(i)(σ0 6= i) = 0.

Solution: We proceed exactly as in the Ising model. If the spin at the origin is di�erent than that on
the boundary, there must be a contour surrounding the origin. Also as in the case of the Ising model,
we can simply estimate the ratio of the sums over the rest of the contours upwards to one (check the
lecture notes). Thus we conclude that

(1) Pi(σ0 6= i) ≤
∑

γ: γ surrounds 0

e−β|γ| =
∞∑

n=2d

e−βn|{γ : γ surrounds 0 and |γ| = n}|

As in the lecture notes, we estimate the number of contours of a given length surrounding zero by
considering the number of dual bonds at a distance less than n from the origin and multiplying this by
the number of connected sets of dual bonds of length n that contain the dual bond we are considering.
We again get a bound for this number that is of the form Cecn (where c and C are independent of β).
So we �nd

(2) Pi(σ0 6= i) ≤ C
∞∑

n=2d

e−n(β−c) = Ce−2d(β−c) 1

1− e−(β−c) .

This goes to zero as β →∞ uniformly in Λ.

2. Percolation is an idealized model for studying the problem that if you pour a liquid into a porous
material, will it �ow through the sample and come out on the other side. For the model, we consider
a graph (G,E) and state that each edge e ∈ E is open with probability p and closed with probability
1− p. Moreover, this assignment of an edge being open or closed is independent of all the other edges.
A typical question would be that if the graph is the set {0, ..., n}2, with what probability does there
exist a connected path of open edges from {0} × {0, ..., n} to {n} × {0, ..., n} as n→∞ or does there
exist a cluster of open edges connecting 0 to in�nity.

In the lectures it was remarked that using the FK random cluster representation, the q = 1-state
Potts model can be interpreted as percolation. Try to motivate this remark a bit on a level of partition
functions: try to de�ne a partition function for percolation and show that it looks like the partition
function for a random cluster model corresponding to a Potts model. Assuming this identi�cation
between the models, how would you interpret the q → 1 limit of the Potts model correlation function
〈δσx,aδσy ,a〉 − 〈δσx,aδσy ,b〉 for percolation?

Solution: A state in the percolation model is described by the bonds in the graph that are open.
We can identify the collection of open bonds with a unique subgraph of the original graph. So we can
index the states by subgraphs. The weight we give a state comes from the probability of the given
con�guration. Each open edge comes with a weight of p and each closed edge comes with a weight of
1 − p. Let us write E(G′) for the set of edges in G′. Thus the weight of a state we identify with a
subgraph G′ is

(3) P (G′) = p|E(G′)|(1− p)|E(G)|−|E(G′)|

and the partition function for percolation is
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(4) Zperc,G =
∑
G′⊂G

p|E(G′)|(1− p)|E(G)|−|E(G′)|.

Recall that for the FK-random cluster model the partition funciton was given by

(5) ZFK,G =
∑
G′⊂G

qC(G′)(eβ − 1)|E(G′)|,

where C(G′) is the number of connected components of G′. Writing p = 1 − e−β a short calculation
shows that we can write this as

(6) ZFK,G =
1

(1− p)|E(G)|

∑
G′⊂G

qC(G′)(1− p)|E(G)|−|E(G′)|pE(G′).

Constant multiples of partition functions don't generally change the model since they simply cancel
in all correlation functions. So if we ignore the constant and take q → 1, we recover the partition
function of percolation. Note that the partition function for percolation has particularly uninteresting
behavior in p: writing 1 = (p+(1−p)) = (p+(1−p))|E(G)| and the same old expansion for such powers,
we see that Zperc,G = 1.
For the correlation function, let us write

〈δσx,aδσy ,a〉 − 〈δσx,aδσy ,b〉 = 〈1{x ∼ y, σx = a}+ 1{x � y, σx = a, σy = a}〉
− 〈1{x � y, σx = a, σy = b}〉
= P(x ∼ y, σx = a) + P(x � y, σx = a, σy = a)− P(x � y, σx = a, σy = b),

where we have writte x ∼ y for the relation that x and y are in the same cluster. Now my the permutation
symmetry in the Potts model, the probabilities where the points are in di�erent clusters cancel and we
have

(7) 〈δσx,aδσy ,a〉 − 〈δσx,aδσy ,b〉 = P(x ∼ y, σx = a).

Taking the percolation limit, we see that the correlation function is simply the probability that the
two points are in the same cluster.

3.

Consider again the Ising model in high temperature with no external �eld and for simplicity, free
boundary conditions.

a) In the last exercise session, we proved that the correlation function 〈σXσY 〉−〈σX〉〈σY 〉 decays expo-
nentially in dist(X, Y ). Let us do this again, but this time using the polymer expansion. Extrapolating
the arguments from the lectures, one can write

(8) 〈σX〉Λ =
∑

B:∂B=X

ρ(B) exp

 ∑
C:C∩B 6=∅

f(C)


Using this try to describe a diagrammatic expansion for 〈σXσY 〉 − 〈σX〉〈σY 〉 and estimate the cor-

relation function using this expansion. Note that you can use all the regularity results on f and so
on.

2



b) Consider 〈σxσyσzσw〉 − 〈σxσy〉〈σzσw〉 − 〈σxσz〉〈σyσw〉 − 〈σxσw〉〈σyσz〉. Use the polymer expansion
on this and try to describe a diagrammatic expansion using the polymer expansion. How does the
correlation function decay?

c) De�ne the cumulant in the following manner:

(9) 〈σA〉c =
∑

π∈Part(A)

(−1)|π|+1
∏
B∈π

〈σB〉,

where Part(A) is the set of partitions of A.

What kind of diagrammatic expansion would you expect the cumulant to have in the polymer ex-
pansion?

Solution:

a)

Remark: The problem could have been a bit more explicit. The sum over B in the polymer expansion
is not over arbitrary B. Recall that the point of the polymer expansion is to get rid of vacuum bubbles
- that is loops that are not connected to any of the �xed points (in the case of the 2-point function
it was the points x and y and for us it is the points in X or Y ). For the 2-point function, getting rid
of vacuum bubbles resulted in B being a connected set: the only graphs B with ∂B = {x, y} without
and vacuum bubbles are either connected graphs connecting x to y or graphs with two components,
one containting x and the other containing y. In each of the components, one could make use of the
Z2 symmetry to notice that they sum to 0 so we are only left with connected graphs. In the general
case, we can't restric to connected graphs. We can still have graphs with several components if each
component is connected to an even amount of points. But what the polymer expansion guarrantees is
that we don't have to take into account vacuum bubbles. We shall suppress these constraints in the
summation symbols.

Using the polymer expansion, we have (we suppress the index Λ)

〈σXσY 〉 − 〈σX〉〈σY 〉 =
∑

B:∂B=X∪Y

ρ(B)e
∑

C:C∩B 6=∅ f(C)

−
∑

B1,B2:∂B1=X,∂B2=Y

ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2).

Let us now examine what the sets B with ∂B = X ∪Y look like. One possibility is that B = B1∪B2

where B1 and B2 are disjoint and ∂B1 = X and ∂B2 = Y . If this is not the case, B has a component
connecting a point in X to a point in Y . To simplify notation, let us write X ∼B Y for such a case. So
we can write the �rst sum as

(10)
∑

B1,B2:∂B1=X,∂B2=Y,B1∩B2=∅

ρ(B1 ∪B2)e
∑

C:C∩(B1∪B2)6=∅ f(C) +
∑

B:∂B=X∪Y,X∼BY

ρ(B)e
∑

C:C∩B 6=∅ f(C).

Note that since B1 and B2 are disjoint in the �rst sum, ρ(B1∪B2) = ρ(B1)ρ(B2) and
∑

C:C∩(B1∪B2)6=∅ =∑
C:C∩B1 6=∅+

∑
C:C∩B2 6=∅.

On the other hand, we can split the 〈σX〉〈σY 〉 sum into two parts: one where the Bi are disjoint and
another where they overlap. The disjoint part cancels with a term from the 〈σXσY 〉 sum so we have

〈σXσY 〉 − 〈σX〉〈σY 〉 =
∑

B:∂B=X∪Y,X∼BY

ρ(B)e
∑

C:C∩B 6=∅ f(C)

−
∑

B1,B2:∂B1=X,∂B2=Y,B1∩B2 6=∅

ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2).
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Inside the second sum, let us insert the number one disguised in a slightly diguised form

∑
B1,B2:∂B1=X,∂B2=Y,B1∩B2 6=∅

∑
B:∂B=X∪Y,X∼BY

1(B! ∪B2 = B)ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2).

Under the condition B1 ∪B2 = B, we have ρ(B1)ρ(B2) = (tanh β)|B|(tanh β)|B1∩B2| and

(11)
∑

C1:C1∩B1 6=∅

f(C1) +
∑

C2:C2∩B2 6=∅

f(C2) =
∑

C:C∩B 6=∅

f(C)−
∑

C′:C′∩(B1∩B2)6=∅

f(C ′).

So we �nd that

(12) 〈σXσY 〉 − 〈σX〉〈σY 〉 =
∑

B:∂B=X∪Y,X∼BY

ρ(B)e
∑

C:C∩B 6=∅ f(C)g(B,X, Y ),

where

(13) g(B,X, Y ) =

1−
∑

B1,B2:∂B1=X,∂B2=Y,B1∩B2 6=∅

1(B = B1 ∪B2)ρ(B1 ∩B2)e
∑

C′:C′∩(B1∩B2)6=∅ f(C′)

 .

So we have deduced an expansion for 〈σXσY 〉 − 〈σX〉〈σY 〉 where we sum over all graphs which have
X ∪ Y as a boundary, no vacuum bubbles and contain a path connecting a point in X to a point in Y .
Each graph B is then weighted by the term ρ(B)e

∑
C:C∩B 6=∅ f(C)g(B,X, Y ).

To estimate this, we make some very crude estimates. First of all, we use Lemma 4.5 from the

lecture notes and the resoning below equation (4.15) to see that |ρ(B1 ∩ B2)e
∑

C′:C′∩(B1∩B2)6=∅ f(C′)| ≤
(2 tanh β)|B1∩B2| ≤ 2 tanh β. Then we note that since we are summing over two subsets of B, there are
at most 2|B| × 2|B| terms in the sum so |g(B,X, Y )| ≤ 2 tanh β4|B|. Thus we �nd that for small enough
β

|〈σXσY 〉 − 〈σX〉〈σY 〉| ≤
∑

B:∂B=X∪Y,X∼BY

(2 tanh β)|B|4|B|

≤
∞∑

n=dist(X,Y )

(8 tanh β)n|{B : |B| = n, ∂B = X ∪ Y,X ∼B Y }|.

To estimate the number of such sets B, note that since we have no vacuum bubbles, each point in X
is connected to a point in X or to one in Y . Moreover, since |B| = n, the length of each path must be
less than n. So we conclude that

(14)

|{B : |B| = n, ∂B = X∪Y,X ∼B Y }| ≤
∏

a∈X∪Y

∑
b∈X∪Y

|{P : a→ b : |P | ≤ n}| ≤ (C(|X|+|Y |)(2d)n)|X|+|Y |,

where we used the familiar estimate for a number of paths from a point to another. What this estimate
gives is that the size of the set is some number (depending on X and Y ) to power n. Thus by making
β small enough, we �nd that the correlation function decays exponentially in dist(X, Y ).

b) Using the polymer expansion we write

(15) 〈σxσyσzσw〉 =
∑

B:∂B={x,y,z,w}

ρ(B)e
∑

C:C∩B 6=∅ f(C).
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The Z2 symmetry implies that the only types of B that don't sum to zero are the following: either B
is connected or it has two components B1 and B2 which are disjoint and ∂Bi contains two of the points
x, y, z, w (∂B1 and ∂B2 are disjoint). Thus we �nd

〈σxσyσzσw〉 =
∑

B:∂B={x,y,z,w},B connected

ρ(B)e
∑

C:C∩B 6=∅ f(C)+

+
∑

B1,B2:∂B1={x,y}∂B2={z,w},B1∩B2=∅,Bi connnected

ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2)

+ other possible pairings.

With similar reasoning,

〈σxσy〉〈σzσw〉 =
∑

B1,B2:∂B1={x,y}∂B2={z,w},B1∩B2=∅,Bi connnected

ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2)

+
∑

B1,B2:∂B1={x,y}∂B2={z,w},B1∩B2 6=∅,Bi connnected

ρ(B1)ρ(B2)e
∑

C1:C1∩B1 6=∅ f(C1)+
∑

C2:C2∩B2 6=∅ f(C2).

So we see that in the correlation function we are interested in, the terms with B1 and B2 disjoint
cancel. As in a), we combine the remaining sums into one and are left with a sum

(16)
∑

B:∂B={x,y,z,w},B connected

ρ(B)e
∑

C:C∩B 6=∅ f(C)g(B, x, y, z, w).

Writing things out in detail and following the reasoning in a) estimate g, we see that the decay of
the correlations is controlled by the minimum distance between the points in {x, y, z, w}. So we see
that correlations decay exponentially in this minimum distance (though it might be that using �ner
estimates we could get faster decay, since our arguments only give an upper bound).

c) Based on the arguments used in a) and b) it should be at least plausable that a cancellation
occurse and the only graphs that contribute are connected ones.

Remark. I'll try to write out a proper proof for this fact at some point.
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