
STATISTICAL MECHANICS - EXERCISE 2

1. Show that in the high temperature case (i.e. small enough β), for any A ⊂ Zd, the correlation function 〈σA〉σ̄Λ
converges as we take Λ→ Zd (take the limit along cubes for simplicity: let Λ = {−L..., L}d and L→∞).

Hint: Proceed as when proving uniqueness of the limit: estimate |〈σA〉σ̄Λ−〈σA〉σ̄Λ′ | by duplicating the summation variable
and show that we are dealing with a Cauchy sequence.

Solution: Let Λ and Λ′ be cubes and Λ ⊂ Λ′. Let us write ΩΛ = {−1, 1}Λ and similarly for ΩΛ′ . We have

(1) 〈σA〉σ̄Λ − 〈σA〉σ̄Λ′ =

∑
σ∈ΩΛ,σ′∈ΩΛ′ (σA − σ

′
A)e−βH

σ̄
Λ(σ)−βHσ̄

Λ′ (σ
′)∑

σ∈ΩΛ,σ′∈ΩΛ′ e
−βHσ̄Λ(σ)−βHσ̄

Λ′ (σ
′)

.

As in the lectures, we write eβ(σxσy+σ′
xσ

′
y) = e−2β(1 + fx,y). Write B̄Λ′ for the set of bonds b intersecting Λ′. While we

can't directly use the same expansion as in the case of the uniqueness of the limit, we can make use of it after a small
trick: in the correlation function let us just multiply the numerator and denominator by the terms e−βσ̄xσ̄y so that Hσ̄Λ(σ)

is formally extended to Λ′ so that outside of Λ σ is de�ned to be σ̄. Call the modi�ed Hamiltonian H̃σ̄Λ′(σ). We then have

(2) 〈σA〉σ̄Λ − 〈σA〉σ̄Λ′ =

∑
σ∈ΩΛ,σ′∈ΩΛ′ (σA − σ

′
A)e−βH̃

σ̄
Λ′ (σ)−βHσ̄

Λ′ (σ
′)∑

σ∈ΩΛ,σ′∈ΩΛ′ e
−βH̃σ̄

Λ′ (σ)−βHσ̄
Λ′ (σ

′)
.

We use the same notation fx,y for the extended Hamiltonian with the understanding that outside of Λ, we replace σ
by σ̄. We can now expand:

(3) 〈σA〉σ̄Λ − 〈σA〉σ̄Λ′ =

∑
B⊂B̄Λ′

∑
σ∈ΩΛ,σ′∈ΩΛ′ (σA − σ

′
A)

∏
b∈B fb∑

σ∈ΩΛ,σ′∈Ω′
Λ

∏
b∈B̄Λ′ (1 + fb)

.

Consider now some B ⊂ B̄Λ′ and let B1 ⊂ B be the collection of bonds connected to A. If this collection does
not intersect ΛC , (σA − σ′A)

∏
b∈B1

fb factors out of the σ, σ′ sum and is antisymmetric under the relabelling of the

the summation variables σ ↔ σ′ and we see that the sum over the spins vanishes. Thus such sets B don't contribute.
Following the same reasoning as in the lecture notes, we �nd that

|〈σA〉σ̄Λ − 〈σA〉σ̄Λ′ | ≤ 2
∑
x∈A

∑
y∈Λ̄′\Λ

∑
P :x→y

(4β)|P |(4)

= 2
∑
x∈A

∑
y∈Λ̄′\Λ

∞∑
n=|x−y|

(4β)n|{P : x→ y||P | = n}|(5)

≤ 2
∑
x∈A

∑
y∈Λ̄′\Λ

∞∑
n=|x−y|

(4β)n|{P : x→ anywhere ||P | = n}|.(6)

Consider now a path starting at some �xed point x. At each step in the path, it has 2d directions it can take. Thus
there are (2d)n paths of length n so

(7)
∑

P :x→y
(4β)|P | ≤

∞∑
n=|x−y|

(8dβ)n ≤ Ce−α|x−y|

So we conclude that for small enough β

(8) |〈σA〉σ̄Λ − 〈σA〉σ̄Λ′ | ≤ 2
∑
x∈A

∑
y∈Λ̄′\Λ

Ce−α|x−y| ≤ 2Ce−αdist(X,ΛC)| ≤ 2|A|
∑

y∈Λ̄′\Λ

Ce−αdist(y,A).

To check that this indeed is a Cauchy sequnce, note that this can be estimated from above by the integral

(9) C ′
∫
L≤|y|≤L′

e−α
′|y|ddy.

1



Switching to spherical coordinates one this bound becomes

(10) C̃

∫ L′

L

rd−1e−α
′rdr

and it is clear we are dealing with a Cauchy sequence.

2. Prove clustering in the high temperature case: for small enough β and for any X,Y ⊂ Zd

(11) |〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ| ≤ Ce−αdist(X,Y )

for some α,C > 0 independent of Λ and σ̄.

Solution: Since we are dealing with a given Λ and σ̄, let us suppress these indices in the Hamiltonian. We note �rst
that we can write

(12) 〈σXσY 〉σ̄Λ =

∑
σ,σ′ σXσY e

−β(H(σ)+H(σ′))∑
σ,σ′ e−β(H(σ)+H(σ′))

,

since the sums over σ′ just cancel. On the other hand,

(13) 〈σX〉σ̄Λ〈σY 〉σ̄Λ =

∑
σ,σ′ σXσ

′
Y e
−β(H(σ)+H(σ′))∑

σ,σ′ e−β(H(σ)+H(σ′))

so

(14) 〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ =

∑
σ,σ′(σXσY − σXσ′Y )e−β(H(σ)+H(σ′))∑

σ,σ′ e−β(H(σ)+H(σ′))
.

Just by relabelling the summation indices, we can write this as

(15) 〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ =

∑
σ,σ′(σ′Xσ

′
Y − σ′XσY )e−β(H(σ)+H(σ′))∑
σ,σ′ e−β(H(σ)+H(σ′))

so by adding these two expressions, we �nd

(16) 〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ =
1

2

∑
σ,σ′(σX − σ′X)(σY − σ′Y )e−β(H(σ)+H(σ′))∑

σ,σ′ e−β(H(σ)+H(σ′))
.

Let us now proceed as in the lectures: write eβ(σxσy+σ′
xσ

′
y) = e−2β(1 + fx,y) and let B̄Λ be the collection of bonds b

intersecting Λ. Then

(17) e−β(H(σ)+H(σ′) =
∏
b∈B̄Λ

e−2β(1 + fb) = e−2β|B̄Λ|
∑
B⊂B̄Λ

∏
b∈B

fb.

Thus

(18) 〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ =
1

2

∑
B⊂B̄Λ

∑
σ,σ′(σX − σ′X)(σY − σ′Y )

∏
b∈B fb∑

σ,σ′
∏
b∈B̄Λ

(1 + fb)

Consider now any B ⊂ B̄Λ. Let B1 ⊂ B be the set of bonds that are not connected to both X and Y (we also interpret
a bond to be connected to both X and Y if it is connected to say X and the boundary and if there exists a path from
the boundary to Y ). The sum over the σ and σ′ now factorizes:

(19)
∑
σ,σ′

(σX − σ′X)(σY − σ′Y )
∏
b∈B

fb =
∑

σx,σ′
x:x∈B1∪X∪Y

(σX − σ′X)(σY − σ′Y )
∏
b∈B1

fb
∑

σx,σ′
x:x∈B\B1

∏
b∈B\B1

fb.

Let us assume for de�niteness, that in this case, it is the set X that is not connected to the boundary. Then the
sum factorizes further, we can sum over the spins in the set X and those connected to the set X. Since the boundary
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conditions don't play a role and we aren't connected to Y , we can independently switch the names of the summation
variables σ ↔ σ′ at these points. Since fb is symmetric with respect to σ and σ′, this just changes the total sign of the
term in the sum. So we conclude that for such a B

(20)
∑
σ,σ′

(σX − σ′X)(σY − σ′Y )
∏
b∈B

fb = −
∑
σ,σ′

(σX − σ′X)(σY − σ′Y )
∏
b∈B

fb = 0.

So in the expansion, we only have to worry about sets B that contain paths from X to Y or paths from X to the
boundary and from Y to the boundary.

Noting that |(σX − σ′X)(σY − σ′Y )| ≤ 4, we can proceed exactly as in the lecture notes to �nd

(21) |〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ| ≤ 2
∑
P

(4β)|P |,

where P is either a path from X to Y or it has two components: one from X to the boundary and another from Y to
the boundary. So we see that

(22)
∑
P

(4β)|P | =
∑
x∈X

∑
y∈Y

∑
P :x→y

(4β)|P | +
∑
x∈X

∑
y∈Y

∑
z1∈∂Λ

∑
z2∈∂Λ

∑
P1:x→z1

∑
P2:y→z2

(4β)|P1|+|P2|.

To estimate the sums over the paths, we note that

(23)
∑

P :x→y
(4β)|P | =

∞∑
n=|x−y|

(4β)n|{P : x→ y||P | = n}| ≤
∞∑

n=|x−y|

(4β)n|{P : x→ anywhere ||P | = n}|.

Consider now a path starting at some �xed point x. At each step in the path, it has 2d directions it can take. Thus
there are (2d)n paths of length n so

(24)
∑

P :x→y
(4β)|P | ≤

∞∑
n=|x−y|

(8dβ)n ≤ Ce−α|x−y|

for small enough β. So we conclude that

(25)
∑
x∈X

∑
y∈Y

∑
P :x→y

(4β)|P | ≤ C|X||Y |e−αdist(X,Y )

and

(26)
∑
x∈X

∑
y∈Y

∑
z1∈∂Λ

∑
z2∈∂Λ

∑
P1:x→z1

∑
P2:y→z2

(4β)|P1|+|P2| ≤ C2|X||Y ||∂Λ|2e−α(dist(X,∂Λ)+dist(Y,∂Λ)).

For large L, dist(X, ∂Λ) ∼ L and |∂Λ| ∼ Ld−1 so we see that for large enough L,

(27) |∂Λ|2e−α(dist(X,∂Λ)+dist(Y,∂Λ)) ≤ e−α̃dist(X,Y )

and

(28) |〈σXσY 〉σ̄Λ − 〈σX〉σ̄Λ〈σY 〉σ̄Λ| ≤ C̃|X||Y |e−α̃dist(X,Y ).

3. Let Λ ⊂ Zd and x ∈ Λ. Let us assume that we have some con�guration of contours in Λ. For a path P from x to
ΛC , de�ne N(P ) to be the number of times the path crosses a contour. Show that for any two such paths P and P ′,
N(P )−N(P ′) is an even number.

Solution: Let us have two such paths P and P ′. Let y, y′ ∈ ΛC and consider a path P ′′ : y → y′ so that P ′′ travels
only in ΛC . Let us then form the loop L = P ∪P ′ ∪P ′′. By the de�nition of a contour, L can cross each contour only an
even amount of times. Thus N(L) is an even number. On the other hand, N(L) = N(P ) +N(P ′) +N(P ′′). Since P ′′ is
a path in ΛC , N(P ′′) = 0. Thus N(P ) +N(P ′) is an even number as is N(P )−N(P ′) = N(P ) +N(P ′)− 2N(P ′).

4. What is the appropriate way to de�ne a contour when d ≥ 3? Prove Lemma 4.4 and relations (4.7) and (4.8) from
the lecture notes in the case that d ≥ 3.

3



Solution: The idea behind the de�nition is that we wish to construct the equivalents of loops (some sort of d − 1
dimensional closed surfaces) without any internal "walls" or external legs. For d = 2 the condition was that a contour is
a connected union of dual bonds so that each point in the dual lattice belongs to only an even number of dual bonds. For
example, if a point belonged to only one dual bond, it would be at the tip of a bond which would mean that we aren't
dealing with a loop. If a point belonged to three bonds, it would mean that there would be an internal wall (drawing
pictures might help).

Let us try to think what the condition that we are dealing with loops (closed surfaces) in three dimension should be.
The simplest object we could form from plaquettes is just connecting one after another in a single direction. So that we
could modify this into a closed surface, we must at least attach the two end edges to each other. This is similar to the idea
that we can form a loop from a segment by attaching the end points. With this analogue it would seem natural to try
de�ne a contour as a connected collection of plaquettes so that each edge belongs to only an even number of plaquettes.
Indeed after drawing some pictures, it becomes clear that the condition that no edge belongs to a single plaquette means
that there are no external plaquettes hanging from our contour or holes in it. The condition that no edge belongs to three
plaquettes implies that there are no internal walls.

For higher dimensions, drawing pictures becomes hard, but the idea remains the same. We are interested in connected
collections of d−1 dimensional plaquettes (unit hypersquares or however you wish to call them). The regularity condition
is that no d− 2 dimensional "edge" should belong to an odd number of plaquettes.

The statement of Lemma 4.4 was that if for a spin con�guration σ we de�ne C(σ) to be the collection of bonds b
intersecting Λ so that if b = {x, y}, then σx 6= σy, then the dual object C∗(σ) which consists of the plaquettes dual to
these bonds, can be decomposed into a unique disjoint union of contours. Conversely, any disjoint collection of contours
de�nes a spin con�guration.

The proof of this is almost the same as in the 2-d case: consider a �xed edge in a connected component of the union
and form a loop around it where the loop consists of the bonds in the original lattice. Take a product of all spins of
the bonds. Just as in the 2-d case, the product is 1 so the power of −1 is an even number and this number corresponds
precisely to how many plaquettes the edge is adjacent to. The other direction is identical to the 2-d case.

Formulae (4.7) and (4.8) follow immediately from the lemma.
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