
STATISTICAL MECHANICS - EXERCISE 10

1. a) Let z1, ..., zn be centered jointly Gaussian random variables with a translation invariant cova-
riance Γt, where t ∈ [0,∞) is a parameter. Let us assume that Γt is a smooth function of t. Let µΓt(dz)
be the law of the random vector z = (z1, ..., zn).

For any smooth enough function F , calculate

(1)
d

dt

∫
F (z)µΓt(dz)

b) How would you try to extend this to the case where z is a Gaussian field on Rd?

Hint: In this and the next problem you might have to think about stuff like differentiating functions of
functions. Take a physicist’s approach and don’t worry too much about the details of defining functional
derivatices, just try to think of δF

δz(x)
as the natural generalization of a partial derivative ∂F

∂zx
.

Solution: Let us write

(2) It =

∫
F (z)µΓt(dz) =

∫
F (z)

e−
1
2
zT Γ−1

t z√
(2π)ndet(Γt)

dz.

Diagonalizing, we note that there is a positive definite symmetric matrix Ct so that Ct · Ct = Γt.
Changing the integration variable to w = C−1

t z, we find

(3) It =

∫
F (Ctw)µId(dw),

where µId is the Gaussian measure with the identity matrix as the covariance matrix. Differentiating,
we find

d

dt
It =

∫ ∑
i

(∂iF )(Ctw)
∑
j

(
d

dt
Ct

)
ij

wjµId(dw)

=
∑
i,j

(
d

dt
Ct

)
ij

∫
(∂iF )(Ctw)

(
− ∂

∂wj

)
µId(dw)

=
∑
i,j

(
d

dt
Ct

)
ij

∫
∂

∂wj
(∂iF )(Ctw)µId(dw)

=
∑
i,j

(
d

dt
Ct

)
ij

∫ ∑
k

(∂k∂iF )(Ctw)

(
∂

∂wj
(Ctw)k

)
µId(dw)

=
∑
i,j

(
d

dt
Ct

)
ij

∫ ∑
k

(∂k∂iF )(Ctw)

(
∂

∂wj

∑
l

(Ct)k,lwl

)
µId(dw)

=
∑
i,k

((
d

dt
Ct

)
Ct

)
i,k

∫
(∂k∂iF )(Ctw)µId(dw)

=
∑
i,k

((
d

dt
Ct

)
Ct

)
i,k

∫
∂k∂iF (z)µΓt(dz).

When Ct commutes with d
dt
Ct, we see that Ct ddtCt = 1

2
d
dt

Γt and we have in fact
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(4)
d

dt
It =

1

2

∑
i,k

(
d

dt
Γt

)
(i− k)

∫
∂k∂iF (z).µΓt(dz).

b) Taking the square root of Γt can be done in the continuum case as well in some generality, but
a rigorous definition requires some functional analysis and we will skip it now. Given this piece of
information, the argument goes through pretty much in the same manner and for the case that the
square root commutes with its derivative, the following formula should be believable at least at a
heuristic level:

(5)
d

dt
It =

1

2

∫
dxdy

(
d

dt
Γt

)
(x− y)

∫
δ

δz(x)

δ

δz(y)
F (z)µΓt(dz).

If you are unfamiliar with functional differentiation, check Wikipedia.

2. In this problem we shall do our renormalization continuously instead of in steps as we have done
so far. Don’t worry too much about the rigorous details. As usual, there might be some errors in the
statement of the problem.

Consider the covariance G in Fourier space:

(6) Ĝ(p) =
χ(p)

p2
,

where χ(p) = e−p
2 . As usual in the renormalization industry, we split the covariance into two parts:

(7) Ĝ(p) =
χ(esp)

p2
+
χ(p)− χ(esp)

p2
= e2sĜ(esp) + Γs.

We then start with some interaction potential V0 and define

(8) e−Vs(φ) =

∫
e−V0(e−s(d−2)φ(e−s·)+z)µΓs(dz).

a) Show that we have a semigroup property:

(9) e−Vs+t(φ) =

∫
e−Vs(e−t(d−2)Φ(e−t·)+z)µΓt(dz).

b) Using this, calculate

(10)
d

ds
Vs =

d

dt
Vs+t

∣∣∣∣
t=0

.

Remark: Again, don’t worry too much about the functional differentiation. Try to think of it like all
the rules of finite dimensional calculus hold.

c) Linearize around V = 0 and show that : φ4 : is an eigenvector.

Solution: a) By the definition of Vs, we have

(11)
∫
e−Vs(e−t(d−2)φ(e−t·)+z)µΓt(dz) =

∫ ∫
e−V0(e−s(d−2)(e−t(d−2)φ(e−se−t·)+z1)+z2)µΓt(dz1)µΓs(dz2).

We then note that
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(12) Γ̂t+s(p) =
χ(p)− χ(et+sp)

p2
= Γ̂t(p) +

χ(etp)− χ(et+sp)

p2
= Γ̂t(p) + e2tΓ̂s(e

tp).

Thus in real space,

(13) Γt+s(x) = Γt(x) +

∫
dpeip·xe2tΓ̂s(e

tp) = Γt(x) + e−(d−2)tΓs(e
−tx).

Plugging this in gives the semigroup property.

b) We have now (you can check that indeed C2
t = Γt with a simple calculation)

(14) Ct(x− y) =

∫
dpeip·(x−y)

√
χ(p)− χ(etp)

p2
.

From this representation, it is a straightforward calculation to check that Ct commutes with ∂tCt. Thus
we can use (4) from problem 1. Using the semigroup property, we have

∂

∂t
Vs+t

∣∣∣∣
t=0

= − 1

e−Vs

(
e−Vs(φ)

∫
dx

δVs
δφ(x)

(−(d− 2)φ(x)− x · ∇φ(x)) + ∂t

∫
e−Vs(φ+z)µΓt(dz)

∣∣∣∣
t=0

)
=

∫
dx

δVs
δφ(x)

((d− 2)φ(x) + x · ∇φ(x)) +
1

2

∫
dxdy

(
d

dt
Γt

∣∣∣∣
t=0

)
(x− y)

δVs(φ)

δφ(x)

δVs(φ)

δφ(y)

c) The linearized version of the renormalization map is

(15) LsV =

∫
µΓs(dz)V (e−s(d−2)φ(e−s·) + z).

We wish to show that V =
∫
dx : φ(x)4 : is an eigenvector for this mapping. In a similar manner as

in the lecture notes and the next problem, write Ψ(x) = e−s(d−2)φ(e−sx). Let C be the covariance of Ψ.
By the definition of normal ordering (note that we normal order with respect to the covariance C + Γs)

: (Ψ(x) + z(x))4 : = (Ψ(x) + z(x))4 − 6(C(0) + Γs(0))(Ψ(x) + z(x))2 + 3(C(0) + Γs(0))2

= Ψ(x)4 + 4Ψ(x)z(x)3 + 6Ψ(x)2z(x)2 + 4Ψ(x)3z(x) + z(x)4

− 6(C(0) + Γs(0))(Ψ(x)2 + 2Ψ(x)z(x) + z(x)2) + 3(C(0) + Γs(0))2.

Integrating this with respect to µΓs (and noting that
∫
µΓs(dz)z(x)2 = Γs(0),

∫
µΓs(dz)z(x)4 =

3Γs(0)2 and integrals of odd powers are zero), we find for V =
∫

: φ4 :

LsV =

∫
dx
(
Ψ(x)4 + 6Γs(0)Ψ(x)2 + 3Γs(0)2 − 6(C(0) + Γs(0))(Ψ(x)2 + Γs(0)) + 3(C(0) + Γs(0))2

)
=

∫
dx(Ψ(x)4 − 6C(0)Ψ(x)2 + 3C(0)2)

=

∫
dx : Ψ(x)4 :

=

∫
dx : (e−s(d−2)φ(e−sx))4 :

= edse−4s(d−2)

∫
dx : φ(x)4 :

= e−3ds+8sV.
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So indeed V is an eigenvector.

Remark: The formulation of the problem was incorrect once again. It is fixed here.

3. Show that if we Wick order the interaction: V =
∫
dx : φ(x)4 :, then there are no tadpole diagrams

in the expansion of RV (tadpole diagrams being those containing loops coming from Z lines).

Solution: A loop coming from a Z-line corresponds to a factor of Γ(0) so let us show that such terms
don’t emerge in the expansion of RV . The general philosophy is that Wick ordering removes loops
and considering cumulants leads to connected graphs so it might be reasonable to expect that even
a correlation function of the form (we are using the notation of the lecture notes - see page 100 and
onwards)

(16)

〈
m∏
i=1

: (Ψ(xi) + Z(xi))
4 :

〉
Z

.

would not contain terms of the form Γ(0). Note that here we wick order with respect to the whole
covariance Σx,y = E((Ψ(x) +Z(x))(Ψ(y) +Z(y))) = Γ(x− y) +C(x− y) (let us also write C(x− y) =
E(Ψ(x)Ψ(y))), but we only integrate out the field Z (the terms appearing in the expansion of RV are
linear combinations of such correlation functions).

The generating functional of such correlation functions is

(17)

〈
:
m∏
i=1

e(Ji,Ψ+Z) :

〉
Z

.

Using the definition of Wick ordering, we see that

(18) :
m∏
i=1

e(Ji,Ψ+Z) :=
m∏
i=1

e(Ji,Ψ+Z)e−(Ji,(C+Γ)Ji) = e(
∑

i Ji,Ψ)−
∑

i(Ji,(C+Γ)Ji)+(
∑

i Ji,Z).

Then by the basic identity of Gaussian integrals we find〈
:
m∏
i=1

e(Ji,Ψ+Z) :

〉
Z

= e(
∑

i Ji,Ψ)− 1
2

∑
i(Ji,(C+Γ)Ji)e−

1
2

∑
i,j(Ji,ΓJj)

= e(
∑

i Ji,Ψ)− 1
2

∑
i(Ji,CJi)e−

1
2

∑
i6=j(Ji,ΓJj)

Since in the (Ji,ΓJj) term we always have i 6= j, we only get terms of the form Γ(xi− xj) with i 6= j
in the correlation functions (which are given by functional derivatives of the generating functional).
Thus there are no Γ(0) terms in even this type of correlation functions so certainly there are none in
the expansion of RV .
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