
STATISTICAL MECHANICS - EXERCISE 1

1. Let us consider a probability measure p on a �nite state space Ω (take for example Ω = {−1, 1}Λ for some �nite set
Λ if you wish). We de�ne the entropy of the probability measure p by

(1) S(p) = −
∑
σ∈Ω

p(σ) log p(σ).

Let us also assume that we have an energy function E : Ω→ R and that the average energy of the system is �xed, i.e.

(2)
∑
σ∈Ω

E(σ)p(σ) = e

for some �xed e ∈ [minσ E(σ),maxσ E(σ)].

Show that the unique probability measure that maximizes the entropy under the constraint (2) is the Gibbs measure

(3) p(σ) =
e−βE(σ)∑
σ∈Ω e

−βE(σ)

for some unique value of β (there is one exception to the uniqueness of β - what is this?).

Solution: To maximize a function under constraints, we use the method of Lagrange multipliers. Note that in addition
to the energy constraint, we have an implicit constraint that the measure is a probability measure, i.e. that

∑
σ p(σ) = 1

and that p(σ) ≥ 0 and p(σ) ≤ 1. The p(σ) ≤ 1 constraint is baked into the two other constraints (p(σ) ≥ 0 and∑
p(σ) = 1) but we do need to deal with the inequality constraint p(σ) ≥ 0. If you are unfamiliar with the method of

Lagrangian multipliers with inequality constraints, you might look at some book on optimization or just Google it. The
basic idea is that for an inequality constraint f(p) ≥ 0, we add a term λf(p) to the function we wish to optimize and at
the extremal point, one must have λf(p) = 0 so either f(p) = 0 or λ = 0. So we de�ne

(4) Sλ,µ(p) = −
∑
σ

p(σ) log p(σ)− λ

(∑
σ

E(σ)p(σ)− e

)
− µ

(∑
σ

p(σ)− 1

)
−
∑
σ

νσp(σ)

We then have

(5)
∂Sλ,µ(p)

∂p(σ)
= − log p(σ)− 1− λE(σ)− µ− νσ

and this vanishes when

(6) p(σ) = e−1−µ−λE(σ)−νσ .

For the inequality constraints, we had the condition that νσp(σ) must be zero at the critical point so we see that this
is only possible if νσ = 0 for all σ.

Note that this is the unique critical point in our domain and it is simple to check that the Hessian matrix is negative
de�nite so this indeed is unique the global maximum for the entropy.

Using the constraint that we are considering a probability measure, we see that for such a p(σ) we must have

(7) e1+µ =
∑

e−λE(σ)

so

(8) p(σ) =
e−λE(σ)∑
σ e
−λE(σ)

.

The value of λ is determined by the energy constraint:
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(9)
1∑

σ e
−λE(σ)

∑
σ

E(σ)e−λE(σ) = e.

To see that this equation has a unique solution, let us consider

(10) f(λ) =
1∑

σ e
−λE(σ)

∑
σ

E(σ)e−λE(σ).

Di�erentiating, we �nd

f ′(λ) =
−
∑
σ E(σ)2e−λE(σ)

∑
σ e
−λE(σ) +

(∑
σ E(σ)e−λE(σ)

)2(∑
σ e
−λE(σ)

)2
= −〈E(σ)2〉+ 〈E(σ)〉2.

Here we have denoted by 〈·〉 the expectation with respect to the measure p. So we see that f ′ is just the negative of the
variance of E(σ) with respect to our probability measure so it's a strictly negative quantity unless E(σ) is constant. So at
least if E(σ) is not constant, there is at most one solution to the equation for λ. On the other hand, f(∞) = minσ E(σ)
and f(−∞) = maxσ E(σ) so by continuity there is at least one solution in [−∞,∞].

If the E(σ) don't depend on σ, then the Gibbs measure is just the uniform measure and we can choose λ (or β) to
have any value.

2. Consider the 1-dim Ising model on {−L, ..., L} with arbitrary boundary conditions σ̄ and a magnetic �eld h:

(11) Hσ̄L,h = −
L+1∑
x=−L

σx−1σx − h
L∑

x=−L
σx,

where σ−L−1 = σ̄−L−1 and σL+1 = σ̄L+1.

a) Show that the magnetization

(12) 〈σx〉σ̄L,h =

∑
σ σxe

−βHσ̄L,h(σ)

Z σ̄L,h

has a non-zero limit as L→∞ and that the limit independent of σ̄. Show that as h→ 0, also the magnetization vanishes.

Also show that the two point function 〈σxσy〉σ̄L,h has a limit as L → ∞ and that the limit is independent of σ̄ and that

correlations 〈σxσy〉h − 〈σx〉h〈σy〉h decay exponentially in |x− y|.

Note: If you are having trouble with the problem, try doing it only in the case of periodic boundary conditions. Some
things might look a bit more symmetric in this case.

b) For a vanishing magnetic �eld, h = 0, calculate an arbitrary correlation function 〈σA〉 in the limit L → ∞ (recall
that σA =

∏
x∈A σx).

Solution:

Remark: One could make use of the Perron-Frobenius theorem in the solution of this problem as we do in problem
3, but here we shall give a constructive proof with most of the gory details.

a) Let us begin by calculating the partition function. We have by de�nition

Z σ̄L,h =
∑
σ−L

· · ·
∑
σL

eβσ̄−L−lσ−Lehβσ−L

(
L∏

x=−L+1

eβσx−1σx+βhσx

)
eβσLσ̄L+1

As in the lectures, we introduce the transfer matrix:

(13) Tσ,σ′ = eβσσ
′+βhσ′ .
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To clarify, these are the entries of a 2x2 matrix. We let σ and σ′ run over −1 and 1 and the matrix notation later on will
be such that in the upper left corner both indeces are +1, upper right corner the second index is positive and the �rst
index is negative and so on.

Let us now consider for example the sum over σ−L+1. The only terms depending on σ−L+1 are the �rst two terms of
the product. So we can just factor everything else out and focus �rst on doing the sum

(14)
∑
σ−L+1

eβσ−Lσ−L+1+βhσ−L+1eβσ−L+1σ−L+2+βhσ−L+2 =
∑
σ−L+1

Tσ−L,σ−L+1
Tσ−L+1,σ−L+2

= (T 2)σ−L,σ−L+2
,

where in the last step we used the de�nition of matrix multiplication. Now we can continue in a recursive manner. We
consider the sum over σ−L+2. The only terms left that are depending on it are (T 2)σ−L,σ−L+2

and eβσ−L+2σ−L+3+βhσ−L+3 =
Tσ−L+2,σ−L+3

. So summing over σ−L+2 and using the de�nition of matrix multiplication gives (T 3)σ−L,σ−L+3
. Continuing

in this manner and doing all the intermediate sums we �nally obtain

(15) Z σ̄L,h =
∑
σ−L

∑
σL

eβσ̄−L−lσ−Lehβσ−L(T 2L)σ−L,σLe
βσLσ̄L+1 .

As in the lectures, if we introduce the vectors f− and f+, where

(16) f−σ = eβσ̄−L−1σ+hβσ

and

(17) f+
σ = eβσσ̄L+1 ,

then again simply by the de�nition of matrix multiplication, we �nd that

(18) Z σ̄L,h = (f−, T 2Lf+),

where (·, ·) is just the standard inner product: (f, g) =
∑
σ fσgσ.

Now that we have a magnetic �eld, the transfer matrix is no longer symmetric: Tσ,σ′ 6= Tσ′,σ, but we can still try
to diagonalize the matrix. After some elementary but tedious calculations (or after using Mathematica), one �nds that
T = ADA−1, where

(19) A =

(
a− b a+ b

1 1

)
,

(20) D =

(
c− d 0

0 c+ d

)
and

(21) A−1 =
1

2b

(
−1 a+ b
1 b− a

)
.

Here we have introduced the following terms

(22) a =
1

2
(−e2β + e2β+2βh),

(23) b =
1

2

√
e4β + 4e2βh − 2e2βh+4β + e4βh+4β

(24) c = eβ cosh(βh)

and

(25) d = e−β−hβb.
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We thus �nd that

(26) Z σ̄L,h =

(
AT f−,

(
(c− d)2L 0

0 (c+ d)2L

)
A−1f+

)
.

For the vectors AT f− and A−1f+ we �nd

(27) AT f− =

(
a− b 1
a+ b 1

)(
eβσ̄−L−1+βh

e−βσ̄−L−1−βh

)
=

(
(a− b)eβσ̄−L−1+βh + e−βσ̄−L−1−βh

(a+ b)eβσ̄−L−1+βh + e−βσ̄−L−1−βh

)
=:

(
v1

v2

)
and

(28) A−1f+ =
1

2b

(
−1 a+ b
1 b− a

)(
eβσ̄L+1

e−βσ̄L+1

)
=

1

2b

(
−eβσ̄L+1 + (a+ b)e−βσ̄L+1

eβσ̄L+1 + (b− a)e−βσ̄L+1

)
=:

(
u1

u2

)
.

So we �nd that

(29) Z σ̄L,h = (c− d)2Lu1v1 + (c+ d)2Lu2v2.

The thing to note here is that |c+ d| > |c− d| and |b| > |a| so u2v2 > 0 and we see that

(30) Z σ̄L,h = (c+ d)2Lu2v2 + o((c+ d)2L).

Let us now turn to the magnetization and proceed as we did in the case where there was no �eld. We �nd that

(31)
∑
σ−L

· · ·
∑
σL

σxe
−βHσ̄L,h =

∑
σ−L

∑
σx

∑
σL

eβσ̄−L−lσ−Lehβσ−L(TL+x)σ−L,σxσx(TL−x)σxσLe
βσLσ̄L+1

Again simply by the de�nition of matrix multiplication we have

(32)
∑
σx

(TL+x)σ−L,σxσx(TL−x)σxσL =

(
TL+x

(
1 0
0 −1

)
TL−x

)
σ−L,σL

.

Thus we can write the magnetization as

(33) 〈σx〉σ̄L,h =

(
f−, TL+x

(
1 0
0 −1

)
TL−xf+

)
(f−, T 2Lf+)

=

(
AT f−, DL+xA−1

(
1 0
0 −1

)
ADL−xA−1f+

)
(c+ d)2Lu2v2 + o((c+ d)2L)

To simplify this, we �rst note that

(34) A−1

(
1 0
0 −1

)
A = −1

b

(
a a+ b

b− a −a

)
.

Thus

(35) DL+xA−1

(
1 0
0 −1

)
ADL−x =

1

b

(
−a(c− d)2L −(a+ b)(c− d)L+x(c+ d)L−x

(a− b)(c− d)L−x(c+ d)L+x a(c+ d)2L

)
.

Using the fact that |c+ d| > |c− d| we see that in the L→∞ limit, we have

(36) lim
L→∞

〈σx〉σ̄h,L =
1

u2v2

(
AT f−,

a

b

(
0 0
0 1

)
A−1f+

)
=
a

b
.

Let us see if this result makes any sense at all. First of all, it is independent of the boundary conditions. A second
thing to note is that it is independent of the point x. This makes sense since in the model the interactions and the �eld
do not depend on the point x so there is no real reason to expect that the magnetization would depend on it. In fact the
model is translation invariant in the limit (but before taking the limit, the boundary conditions break the translation
invariance). We further note that |a| < |b| so the magnetization is a number of absolute value less than one. This makes
sense since the spin takes values ±1 so its average value shouldn't be able to have values outside of [−1, 1]. Finally we
note that a changes its sign at h = 0 which again makes sense: as we reverse the direction of the magnetic �eld, the
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spins should also �ip so the direction of the magnetization should reverse too. Also a = 0 when h = 0 so this is at least
consistent with our previous result that there is no magnetization when we don't have a magnetic �eld.

Remark: Things are a bit simpler if we take periodic boundary conditions. In this case, one can make use of the
periodicity to write the transfer matrix as a symmetric matrix and diagonalization and everything related to it is simpler.
Moreover with periodic boundary conditions, the model is translation invariant already before we take the limit. So we
know that 〈σx〉 is independent of x. Thus we can write

(37) 〈σx〉L,h =

∑
x〈σx〉L,h

2L
=

1

2L
∂h logZL,h

and life is a bit simpler (very short extra exercise: check that with periodic boundary conditions the magnetization is
given by the partial derivative of the free energy with respect to the magnetic �eld as claimed above).

Returning to the 2-point function for general boundary conditions we follow the same old arguments. After writing
out the de�nition, we �nd that for x < y

(38) 〈σxσy〉σ̄L,h =

(
f−, TL+x

(
1 0
0 −1

)
T y−x

(
1 0
0 −1

)
TL−yf+

)
Z σ̄L,h

Inserting our diagonalization decomposition for T and using our previous result that

(39) A−1

(
1 0
0 −1

)
A = −1

b

(
a a+ b

b− a −a

)
we �nd

〈σxσy〉σ̄L,h =
1

b2Z σ̄L,h

(
AT f−, DL+x

(
a a+ b

b− a −a

)
Dy−x

(
a a+ b

b− a −a

)
DL−yA−1f+

)
.

For the matrix product we �nd

DL+x

(
a a+ b

b− a −a

)
Dy−x

(
a a+ b

b− a −a

)
DL−y =(

(b2 − a2)(c+ d)y−x(c− d)2L−y+x + a2(c− d)2L a(a+ b)((c− d)L+y(c+ d)L−y − (c− d)L+x(c+ d)L−x)
a(b− a)((c− d)L−x(c+ d)L+x − (c− d)L−y(c+ d)L+y) (b2 − a2)(c+ d)2L−y+x(c− d)y−x + a2(c+ d)2L

)
.

Again we use the fact that
∣∣∣ c−dc+d

∣∣∣ < 1 so in the limit we have

lim
L→∞

〈σxσy〉σ̄L,h =
1

b2

(
AT f−,

(
0 0
0 (b2 − a2)(c+ d)x−y(c− d)y−x + a2

)
A−1f+

)
u2v2

=
b2 − a2

b2

(
c− d
c+ d

)y−x
+
a2

b2
.

Thus for the limit of the correlation function we �nd

(40) 〈σxσy〉h − 〈σx〉h〈σy〉h =
b2 − a2

b2

(
c− d
c+ d

)y−x
.

So we have found that the correlation function has a limit which is independent of the boundary conditions. Moreover,
it decays exponentially as claimed. If setting h = 0 in our result gives the result derived in the lectures, the risk that we
made some mistakes in our calculation is at least slightly smaller so let us check this. Recall that for h = 0, a = 0, b = 1,
c = eβ and d = e−β . Thus

(41) 〈σxσy〉h=0 − 〈σx〉h=0〈σy〉h=0 =

(
eβ − e−β

eβ + e−β

)|y−x|
= (tanhβ)|y−x| = e(log tanh β)|y−x|

which is the same as in the lecture notes.
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b) The approach to the probelm should be clear by now. Let us write A ⊂ {−L, ..., L} as A = {x1, ..., xn} where
xi < xi+1 Then

(42)

〈σA〉σ̄L =

〈
n∏
i=1

σxi

〉σ̄
L

=

(
f−, TL+x1

(
1 0
0 −1

)
T x2−x1

(
1 0
0 −1

)
T x3−x2

(
1 0
0 −1

)
· · ·
(

1 0
0 −1

)
TL−xnf+

)
Z σ̄L

.

Again we plug in the decomposition for T and we notice we'll be dealing with product of diagonal matrices and matrices
of the form

(43) A−1

(
1 0
0 −1

)
A.

In the case where there is no magnetic �eld, the matrix A is much simpler: a = 0 and b = 1. We �nd that

(44) A−1

(
1 0
0 −1

)
A = −

(
0 1
1 0

)
.

Thus our correlation function is

(45)(
AT f−, DL+x1

(
0 −1
−1 0

)
Dx2−x1

(
0 −1
−1 0

)
Dx3−x2

(
0 −1
−1 0

)
· · ·Dxn−xn−1

(
0 −1
−1 0

)
DL−xnA−1f+

)
Z σ̄L

.

To calculate this, we �rst calculate

(46) Dm

(
0 −1
−1 0

)
=

(
0 −(eβ − e−β)m

−(eβ + e−β)m 0

)
.

Let us �rst consider the case where n is even: n = 2k. Then we can pair consecutive matrices of this form in the
product and we see that

DL+x1

(
0 −1
−1 0

)
Dx2−x1

(
0 −1
−1 0

)
Dx3−x2

(
0 −1
−1 0

)
· · ·Dxn−xn−1

(
0 −1
−1 0

)
=

( ∏k
i=1(eβ + e−β)x2i−x2i−1(eβ − e−β)x2i−1−x2i−2 0

0
∏k
i=1(eβ − e−β)x2i−x2i−1(eβ + e−β)x2i−1−x2i−2

)
,

where we have written x0 = −L. The vectors AT f− and A−1f+ are much simpler now that we don't have a �eld:

(47) AT f− = 2

(
− sinh(βσ̄−L−1)
cosh(βσ̄−L−1)

)
A−1f+ =

(
− sinh(βσ̄L+1)
cosh(βσ̄L+1)

)
.

Thus for even n we �nd

〈σA〉σ̄L =
2 sinh(βσ̄−L−1) sinh(βσ̄L+1)(eβ − e−β)L−xn

∏k
i=1(eβ + e−β)x2i−x2i−1(eβ − e−β)x2i−1−x2i−2

2 sinh(βσ̄−L−1) sinh(βσ̄L+1)(eβ − e−β)2L + 2 cosh(βσ̄−L−1) cosh(βσ̄L+1)(eβ + e−β)2L

+
2 cosh(βσ̄−L−1) cosh(βσ̄L+1)(eβ + e−β)L−xn

∏k
i=1(eβ − e−β)x2i−x2i−1(eβ + e−β)x2i−1−x2i−2

2 sinh(βσ̄−L−1) sinh(βσ̄L+1)(eβ − e−β)2L + 2 cosh(βσ̄−L−1) cosh(βσ̄L+1)(eβ + e−β)2L
.

Noting that eβ−e−β
eβ+e−β

< 1, we see that the only thing that survives the L→∞ limit is

(48) lim
L→∞

〈σA〉σ̄L = (eβ + e−β)−xn(eβ − e−β)x2−x1(eβ + e−β)x1

k∏
i=2

(eβ − e−β)x2i−x2i−1(eβ + e−β)x2i−1−x2i−2 .

To simplify this a bit, we note that
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(49) (eβ+e−β)−xn+x1

k∏
i=2

(eβ+e−β)x2i−1−x2i−2 =

2k∏
i=2

(eβ+e−β)−xi+xi−1

k∏
i=2

(eβ+e−β)x2i−1−x2i−2 =

k∏
i=1

(eβ+e−β)−x2i+x2i−1

so for the correlation function we �nd

(50)

〈
2k∏
i=1

σxi

〉
=

k∏
i=1

(tanhβ)x2i−x2i−1 .

Let us now turn to the case where n is odd: n = 2k + 1. The approach is similar, but now we will not be able to pair
all the matrices as before. We shall still do the pairing for the �rst 2k matrices. After doing the pairing, we are left with
the expression

(51) 〈σA〉σ̄L =
(AT f−,MA−1f+)

Z σ̄L
,

where

M =

( ∏k
i=1(eβ + e−β)x2i−x2i−1(eβ − e−β)x2i−1−x2i−2 0

0
∏k
i=1(eβ − e−β)x2i−x2i−1(eβ + e−β)x2i−1−x2i−2

)

×

(
0 −(eβ − e−β)x

2k+1−x2k

−(eβ + e−β)x
2k+1−x2k

0

)(
(eβ − e−β)L−x

2k+1

0
0 (eβ + e−β)L−x2k+1

)
=

(
0 p
q 0

)
where

(52) p = −(eβ − e−β)x
2k+1−x2k

(eβ + e−β)L−x2k+1

k∏
i=1

(eβ + e−β)x2i−x2i−1(eβ − e−β)x2i−1−x2i−2

and

(53) q = −(eβ + e−β)x
2k+1−x2k

(eβ − e−β)L−x
2k+1

k∏
i=1

(eβ − e−β)x2i−x2i−1(eβ + e−β)x2i−1−x2i−2 .

Note that neither p nor q contains both of the terms (eβ + e−β)L+x1 and (eβ + e−β)L−x2k+1 . Thus

(54)
1

(eβ + e−β)2L
M → 0

as L→∞ so we see that 〈σA〉 = 0 if A is a set with an odd amount of elements. As a conclusion, we have now calculated
the limit of all possible correlation functions and showed that the limit is independent of the boundary conditions.

3. Consider now a d+ 1 dimensional Ising model on {−M, ...,M}d ×{−L, ..., L} with no magnetic �eld and arbitrary
boundary conditions σ̄ in the L-direction and periodic boundary conditions in the other directions (so we are on a
cylinder of length L). Show that in the limit L → ∞ (while M is kept �xed), the magnetization vanishes (for any
boundary condition). Calculate also the limit of the two point function 〈σxσy〉 and show that it is independent of the
boundary conditions in the L direction and decays exponentially in |x− y|.

Hint: You might �nd some use in the Perron-Frobenius theorem.

Solution: Our approach relies on the idea that this model shouldn't di�er too much from the one dimensional Ising
model so we'll try to make things look like it as much as possible. We begin by collecting the spins located at points with
the same coordinate along the L-direction: for x ∈ {−L, ..., L} de�ne Sx to be the (2M + 1)d-dimensional vector with
entries (Sx)y = σ(x,y) for any y ∈ {−M, ...,M}d. The Hamiltonian in terms of these vectors is

(55) Hσ̄L,M = −
L+1∑
x=−L

∑
y∈{−M,...,M}d

(Sx−1)y(Sx)y −
L∑

x=−L

∑
y,y: |y−y′|=1

(Sx)y(Sx)y′ ,
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where at x = ±(L+ 1) we need to use the boundary conditions in the L direction σ̄ and in the last sum over y and y′ we
take into account the periodic boundary conditions in the M directions. Let us introduce the following notation to save
us some writing: for any (2M + 1)d-dimensional vectors (indexed by the points y ∈ {−M, ...,M}d) S and S′ we de�ne

(56) E(S,S′) = −
∑

y∈{−M,...,M}d
S′ySy

and

(57) E(S) = −
∑

y,y: |y−y′|=1

SySy′ .

So now

(58) Hσ̄L,M =

L+1∑
x=−L

E(Sx,Sx−1) +

L∑
x=−L

E(Sx).

We now introduce a matrix that will turn out to have a similar role as the transfer matrix in the 1-dimensional case.
We de�ne

(59) TS,S′ = e−βE(S,S′)−βE(S).

Let us now try to calculate the partition function in this notation:

(60) Z σ̄L,M =
∑
S−L

· · ·
∑
SL

e−βE(S−L−1,S−L)−βE(S−L)

(
L∏

x=−L+1

e−βE(Sx−1,Sx)−βE(Sx)

)
e−βE(SL,SL+1).

As in the 1-dimensional case, we introduce vectors for the boundary conditions (these are now indexed by vectors S):

(61) f−S = e−βE(S−L−1,S)−βE(S)

(62) f+
S = e−βE(SL+1,S).

Exactly as in the 1-dimensional case, we simply use the de�nition of matrix multiplication to write the partition
function as a suitable inner product:

(63) Z σ̄L,M = (f−, T 2Lf+).

One might hope to be able to do what we did in the 1-dimensional case, i.e. just diagonalize T and calculate everything
relevant, but diagonalization is not as simple now that we are dealing with much larger matrices. In stead, we shall rely
on some less constructive methods, namely we shall use the Perron-Frobenius theorem. Look it up on Wikipedia or some
other source if you are unfamiliar with it.

The theorem states (among other things) that if A is a matrix with only positive entries, then there is a positive
eigenvalue λ so that every other eigenvalue has absolute value stricly less than λ, the eigenspace corresponding to λ is
one-dimensional and

(64) lim
k→∞

1

λk
Ak = vwT ,

where v is a positive (i.e. all of its entries are positive) right eigenvector corresponding to λ: Av = rv, w is a positive left
eigenvector: wTA = rwT and vwT is a projection to the eigenspace corresponding to λ normalized so that wT v = 1.

In our case, T is a matrix with strictly positive entries so we can make use of the Perron-Frobenius theorem. Let us
write λ for the eigenvalue discussed in the theorem and v and w for the vectors. So using the theorem, we see that

(65) lim
L→∞

Z σ̄L,M
λ2L

= (f−, vwT f+) = (f−, v)(w, f+).

Since v and w have strictly positive entries as do f±, we see that this limit is positive.
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Let us now turn to the magnetization. Let x ∈ {−L, ..., L} and y ∈ {−M, ...,M}d. Similarly to the 1-dimensional case,
we have

(66) 〈σ(x,y)〉σ̄L,M =
1

Z σ̄L,M

∑
S−L

∑
Sx

∑
SL

f−S−L(TL+x)S−L,Sx(Sx)y(TL−x)Sx,SLf
+
SL
.

We thus �nd that

(67) lim
L→∞

∑
S−L

∑
Sx

∑
SL
f−S−L(TL+x)S−L,Sx(Sx)y(TL−x)Sx,SLf

+
SL

λ2L
= (f−, v)(w, f+)

∑
Sx

wSx(Sx)yvSx .

So we see that the magnetization has a limit and it is independent of the boundary conditions:

(68) 〈σ(x,y)〉M =
∑
Sx

wSx(Sx)yvSx .

We still wish to show that this is zero. To do this, we �rst of all note that the expectation is linear - a property which
is preserved in the limit: 〈−σ(x,y)〉M = −〈σ(x,y)〉M . On the other hand, E(−S,−S′) = E(S,S′) and E(−S) = E(S) so
T−S,−S′ = TS,S′ . Let us now just rename all the dummy summation variables: S→ −S, we �nd

(69) 〈−σ(x,y)〉σ̄L,M =
1

Z σ̄L,M

∑
S−L

∑
Sx

∑
SL

f̂−S−L(TL+x)S−L,Sx(Sx)y(TL−x)Sx,SL f̂
+
SL
,

where

(70) f̂−S = e−βE(−S−L−1,SL)−βE(S)

and

(71) f̂+
S = e−βE(−SL+1,S).

So calculating the negative of the magnetization just amounts to calculating the magnetization with �ipped boundary
conditions. But we have already showed that the magnetization converges and the limit is independent of the boundary
conditions. Thus

(72) lim
L→∞

〈−σ(x,y)〉σ̄L,M = 〈σ(x,y)〉M .

So by linearity, we see that 〈σ(x,y)〉M = −〈σ(x,y)〉M and 〈σ(x,y)〉M = 0.

To calculate the 2-point function, let x1 ≤ x2 and y1, y2 ∈ {−M, ...,M}d. We have

(73) 〈σ(x1,y1)σ(x2,y2)〉σ̄L,M =
1

Z σ̄L,M

∑
S−L

∑
Sx1

∑
Sx2

∑
SL

f−S−L(TL+x1)S−L,Sx1
(Sx1

)y1
(T x2−x1)Sx1 ,Sx2

(Sx2
)y2

(TL−x2)Sx2 ,SL
f+
SL
.

Using Perron-Frobenius once again, we see that

(74) lim
L→∞

〈σ(x1,y1)σ(x2,y2)〉σ̄L,M =
∑
Sx1

∑
Sx2

wSx1
(Sx1

)y1
(T x2−x1)Sx1 ,Sx2

(Sx2
)y2
vSx2

λ−(x2−x1).

So we see that the 2-point function converges and is independent of the boundary conditions. Using the Perron-
Frobenius theorem, we can write

(75) λ−(x2−x1)T x2−x1 = vwT +A(x2 − x1),

where A(x)→ 0 as x→∞. Thus

(76) 〈σ(x1,y1)σ(x2,y2)〉M =
∑
Sx1

wSx1
(Sx1

)y1
vSx1

∑
Sx2

wSx2
(Sx2

)y2
vSx2

+
∑
Sx1

∑
Sx2

wSx1
(Sx1

)y1
(A(x2−x1))Sx1 ,Sx2

(Sx2
)y2
vSx2

.
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We already proved (although indirectly) that

(77) 〈σ(x,y)〉M =
∑
Sx

wSx(Sx)yvSx = 0

so in fact,

(78) 〈σ(x1,y1)σ(x2,y2)〉M =
∑
Sx1

∑
Sx2

wSx1
(Sx1)y1(A(x2 − x1))Sx1

,Sx2
(Sx2)y2vSx2

.

Thus to prove that the two-point function decays exponentially, we only need to check that A decays exponentially in
some sense (for example if it decays exponentially in some norm, then using some standard estimates such as the triangle
inequality, Cauchy-Scwarz inequality and the equivalence of norms in �nite dimensional normed spaces, we see that the
2-point function decays exponentially).

Let us look at the de�nition of A a bit more carefully. Through a similarity transform, we can always bring T into
Jordan normal form. Let Jk = λk1k +Nk be the Jordan blocks, where λk is an eigenvalue, 1k is a unit matrix of suitable
size and Nk is a nilpotent matrix. There is a unique block corresponding to λ and for all the other blocks, |λk| < λ. The
Jordan blocks of T x2−x1 are then Jx2−x1

k . Let us consider what Jx2−x1

k looks like for large x2−x1. Performing a binomial
expansion (which is valid as a unit matrix commutes with everything),

(79) Jx2−x1

k =

x2−x1∑
m=0

(x2 − x1)!

m!(x2 − x1 −m)!
λmk N

x2−x1−m
k

For each k, there are only say αk non-zero terms in this sum (αk independent of x2 − x1) since Nk is nilpotent. Using
some elementary estimation, we can then check that

(80) ||λ−(x2−x1)Jx2−x1

k || ≤ Ck(x2 − x1)αk
(
|λk|
λ

)x2−x1

≤ C̃kqx2−x2

k ,

where 0 < qk < 1, C̃k is independent of x2 − x1 and maxk C̃k is some �nite number since we have only some �xed �nite
number of Jordan blocks and similarly q∗ = maxk qk < 1. We can use any matrix norm here we wish since they are all
equivalent - di�erent norms just give rise to a di�erent C̃k. We can thus write A(x2−x1) in terms of these blocks and its
norm will be bounded by some constant times q∗x2−x1 . By our previous remarks, we conclude that the 2-point functions
decays exponentially.
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