STATISTICAL MECHANICS - EXERCISE 9

1. Let ϕ be a centered Gaussian random varible with respect to both the measures μ and ν . Let $E_{\mu}(\phi^2) = \sigma_{\mu}^2$ and $E_{\nu}(\phi^2) = \sigma_{\nu}^2$. Denote by : :_{μ} normal ordering with respect to the measure μ . Show that

(1)
$$: \phi^{n}:_{\mu} = \sum_{m=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \frac{n!}{2^{m} m! (n-2m)!} : \phi^{n-2m}:_{\nu} (\sigma_{\nu}^{2} - \sigma_{\mu}^{2})^{m}.$$

2. Let ϕ and ψ be centered Gaussian random variables. Show that

(2)
$$E(:\phi^n::\psi^m:) = \delta_{nm} n! E(\phi\psi)^n.$$

3. Consider the model where the Fourier transform of the covariance is $\frac{\chi(\frac{p}{A})}{p^2+r}$ and $\chi(p) = e^{-p^2}$. Consider the Feynman graph with four external legs, two vertices and one internal loop (see page 63 in the lecture notes - the graph labeled by 2m = 4, N = 2). Show that for d < 4, the value of this graph is bounded as $\Lambda \to \infty$, for d = 4, it diverges logarithmically - its value goes like log Λ and for d > 4 it behaves like Λ^{d-4} .

4. Consider a translation invariant kernel $K(x_1, x_2, x_3, x_4)$ and the potential

(3)
$$V = \int K(x_1, x_2, x_3, x_4) : \prod_{i=1}^4 \phi(x_i) : \prod_{i=1}^d dx_i$$

where K is such that $V \in \mathcal{K}_{\lambda}$. Show that we can write this as $a \int : \phi(x)^4 : dx + \tilde{V}$, where $\tilde{V} \in \mathcal{K}_{\frac{\lambda}{2}}$ is irrelevant.