
where
W(si

V ) =
∏
J

λ2|J |
∏

i=1,2

W (si
−)W (si

+) min
si
−

,si
+

(1 + gJ(si
−, si

+)). (37)

The product over J runs over all the time intervals of Λ\V (so that the variables s1
±, s2

±

are indexed by sites in V ).
Let us insert this representation of Z0(Λ\V |si

V ) in (35) and then expand the product
over J of (1 + g̃J(si

−, si
+)). The result is:

(35) = Z(Λ)−2
∑
X ,J

∑
si
V ,i=1,2

F̃ G̃
∏

X∈X

fX

∏
J∈J

g̃J exp(−H0
V )W(si

V ) (38)

where the sum over J runs over families of intervals J ⊂ Λ\V .
From now on, we can proceed as we did previously: the main observation is again that

if, for each term in (38), we decompose V ∪ (∪J J) into connected components (where
connected is defined in an obvious way: any two sets can be joined by a “connected
path” P = (Zi)n

i=1 where each Zi is either an X or a J and the distance between Zi+1

and Zi is less than 1, ∀i = 1, · · · , n− 1), and if A and B belong to different components,
then that term vanishes. Let us check this: as before, we interchange s1

α and s2
α for

each α in the connected component containing A. F̃ is odd under such an interchange,
while G̃ is even (if A and B belong to different components), and fX , g̃J are obviously
even. Next, observe that W(si

V ) can be factorized into a product of functions, each of
which depends only of si

α for α belonging to a connected component of V . Observe also
that H0

V does not contain terms where X intersects different connected components of
V (since Φ0 has range R and V is defined as a union of R-intervals). So, the two last
factors in (38) factorize over connected components of V , and are therefore also even
under our interchange of s1

α and s2
α.

Hence, for each non-zero term in (38), we can choose a connected path, as defined
above, P = (Zi)n

i=1 where Z1 = A, Zn = B. Then, using the positivity of fX , g̃J , we
bound the sum in (38) by a sum over such paths, and control that sum essentially as in
(9). The exponential decay comes from combining (34), when Zi is an X and (36) when
Zi is a J . The uniqueness of the Gibbs state is proven as in (18); for details, see [4]. %&

3 SRB measures for expanding circle maps.

We start by recalling the standard theory of invariant measures for smooth expanding
circle maps, in a formulation that will be used later. To describe the dynamics, we first
fix a map F : S1 → S1. We take F to be an expanding, orientation preserving C1+δ map
with δ > 0 (i.e. F is differentiable and its derivative is Hölder continuous of exponent δ).
We describe F in terms of its lift to R, denoted by f and chosen, say, with f(0) ∈ [0, 1[.
We assume that

f ′(x) > λ−1 (1)

10



where λ < 1. Note that there exists an integer k > 1 such that

f(x + 1) = f(x) + k ∀x ∈ R. (2)

A probability measure µ on S1 is called an SRB measure if it is F -invariant and
absolutely continuous with respect to the Lebesgue measure. The following results are
well-known for maps F as above (see [28, 7, 20]):

(a) There is a unique SRB measure µ.

(b) For any absolutely continuous probability measure ν, and any continuous function
G, ∫

G ◦ F Ndν →
∫

Gdµ (3)

as N → ∞.

(c) There exists C < ∞, m > 0, such that ∀G ∈ L∞(S1), ∀H ∈ Cδ(S1),

|
∫

G ◦ F nHdµ −
∫

Gdµ
∫

Hdµ| ≤ C‖G‖∞‖H‖δe
−mn, (4)

where Cδ(S1) denotes the space of Hölder continuous functions, with the norm

‖H‖δ = ‖H‖∞ + sup
x,y

|H(x) − H(y)|

|x − y|δ
.

Remark. There are different ways to define an SRB measure. In [11], they are intro-
duced as measures whose restriction on the expanding directions is absolutely continuous
with respect to the Lebesgue measure. Since here the whole phase space S1 is expand-
ing, our definition is natural (besides, with this definition, the SRB measure is unique).
But, as we mentioned in the introduction, one of the most interesting properties of the
SRB measure is that it describes the statistics of the orbits of almost every point, which
means that

1

N

N−1∑
i=0

G ◦ F i(x) →
∫

Gdµ, (5)

for almost every x, and every continuous function G. Note that, if we integrate (5) with
an absolutely continuous probability measure ν, we obtain the Cesaro average of (3).
So, both properties are related to each other.

Let us sketch now the construction of µ. In doing so, we shall establish the connection
with the statistical mechanics of one-dimensional spin systems. This way of constructing
µ may not be the simplest one in the present context, but the connection to statistical
mechanics will be essential in the analysis of coupled maps (see [28, 7, 20] for different
approaches, although the one below is close to [28]).

The Perron-Frobenius operator P for F is defined by
∫

G ◦ FHdm =
∫

GPHdm (6)
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for G ∈ L∞(S1), H ∈ L1(S1), and dm being the Lebesgue measure. Let us work in the
covering space R and replace G, H by periodic functions denoted g, h : g(x + n) = g(x),
∀n ∈ Z. We get ∫

[0,1]
g ◦ fhdx =

∫
[0,1]

g(x)Ph(x)dx. (7)

More explicitely,

Ph(x) =
∑
s

h(f−1(x + s))

f ′(f−1(x + s))
(8)

where s ∈ {0, · · · , k − 1} (and k was introduced in (2)). Note that P maps periodic
functions into periodic functions because the sum is periodic even if the summands are
not: indeed, (2) implies that f ′ is periodic and that f−1(x + 1 + k − 1) = f−1(x + k) =
f−1(x) + 1 (so that, if we add 1 to x, it amounts to a cyclic permutation of s).

By (7), the density hµ(x) of the absolutely continuous invariant measure dµ =
hµ(x)dx satisfies Phµ = hµ. We shall construct hµ as the limit, as N → ∞, of P N1.
P N1 has a direct statistical mechanical interpretation which we now derive.

First, iterating (8), we get

(P N1)(x) =
∑

s1,···,sN

N∏
t=1

[f ′(f−1
st

◦ · · · ◦ f−1
s1

(x))]−1 (9)

where f−1
s (x) ≡ f−1(x + s).

From now on, we shall consider x ∈ [0, 1]. We introduce a convenient notation:
x ∈ [0, 1] and s1, · · · , sN in (9) collectively define a configuration on a lattice {0, · · · , N}.
To any subset X ⊂ Z+ associate the configuration space ΩX = ×t∈XΩt where Ωt equals
[0,1] if t = 0, and equals {0, · · · , k − 1} if t > 0. We could use the existence of a Markov
partition for F to write x as a symbol sequence, as is usually done, e.g. in [6], but we
shall not use explicitely this representation.

Let s = (x, s1, · · · , sN) ∈ ΩN . Then (9) reads

(P N1)(x) =
∑

s1···sN

e−HN (s) (10)

with e−HN (s) being the summand in (9). And we want to construct the limit:

∫
[0,1]

g(x)dµ = lim
N→∞

∫
[0,1]

g(x)(P N1)(x)dx = lim
N→∞

∑
s1···sN

∫
[0,1]

g(x)e−HN (s)dx (11)

for any continuous function g.
This is the statistical mechanical representation we want to use. In that language,

dµ is the restriction to the “time zero” phase space of the Gibbs state determined by
H. One can also rewrite the time correlation functions (3) as follows: let dν = hν(x)dx;
then, replacing again G by a periodic function g and F by its lift,

∫
[0,1]

g ◦ fNhνdx =
∫
[0,1]

gP Nhνdx =
∑

(si)N
i=1

∫
[0,1]

g(x) exp(−HN (s))hν(s)dx (12)
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where
hν(s) = hν(f

−1
sN

◦ · · · ◦ f−1
s1

(x)),

and the last equality in (12) follows by iterating (8).
On the other hand, since

∫
Phdx =

∫
hdx, by definition of P (use (7) with g = 1),

one has
∑

(si)N
i=1

∫
[0,1]

exp(−HN (s))hν(s)dx =
∫
[0,1]

P Nhνdx =
∫
[0,1]

hνdx = 1, (13)

since dν is a probability measure. So, using (11, 12), one sees that (3) is translated, in
the statistical mechanics language, into

lim
N→∞

(
∫

G ◦ F Ndν −
∫

Gdµ)

= lim
N→∞

(
∫
[0,1]

gP Nhνdx −
∫
[0,1]

gP N1dx)

= lim
N→∞

(
∑

(si)N
i=1

∫
[0,1]

g(x)e−HN (s)hν(s)dx

− (
∑

(si)N
i=1

∫
[0,1]

g(x)e−HN (s)dx)(
∑

(si)N
i=1

∫
[0,1]

e−HN (s)hν(s)dx))

= 0 (14)

where we used (13) to insert the last factor (which equals one). We shall see below
that the last equality expresses the decay of correlation functions for the Gibbs state
determined by H. A similar observation holds for (4).

One advantage of these representations is that one may use the statistical mechanics
formalism to control the limit. To make the connection with statistical mechanics more
explicit, it is convenient to write HN in terms of many-body interactions. First of all,
from (9, 10), we get

HN =
N∑

t=1

Vt (15)

with
Vt(s) = log(f ′(f−1

st
◦ · · · ◦ f−1

s1
(x))). (16)

We may localize Vt by writing it as a telescopic sum:

Vt(s) =
t∑

l=0

Φ[l,t](s) + Vt(0[0,t]) (17)

where, for l /= 0, t,

Φ[l,t](s) = Vt(s[l,t] ∨ 0[0,l−1]) − Vt(s[l+1,t] ∨ 0[0,l]) (18)

and 0[0,l] denotes the configuration equal to 0 for all i ∈ [0, l] (note that 0 belongs to
the phase space for all i’s). For l = 0, t, Φ[l,t](s) is given by a similar formula, where the
intervals that would appear in (18) as [0,−1] and [t+1, t] are replaced by the empty set.

13



Combining (15, 17), we may write the Hamiltonian as a sum of many-body interac-
tions:

HN(s) =
N∑

t=1

t∑
l=0

Φ[l,t](s) + C (19)

where the constant C =
∑N

t=1 Vt(0[0,t]).
The main point of (19) is that Φ[l,t](s) depends on s only through s[l,t]. In the statis-

tical mechanics language, these are many-body interactions coupling all the variables in
the interval [l, t]. The next Proposition shows that these interactions decay exponentially
with the size of the interval [l, t].

Proposition 2 There exists C < ∞, such that

|Φ[l,t](s)| ≤ Cλδ(t−l). (20)

Proof. This combines two bounds: First, since F is C1+δ, one has

| log f ′(x) − log f ′(y)| ≤ C|x − y|δ (21)

and, by (1),
|f−1

s (x) − f−1
s (y)| ≤ λ|x − y|. (22)

Then, iterating (22), one gets:

|f−1
st

◦ · · · ◦ f−1
sl+1

(x) − f−1
st

◦ · · · ◦ f−1
sl+1

(y)| ≤ λt−l

since |x − y| ≤ 1. Then (20) follows from this and (21), since the s variables in both
terms of (18) (see (16)) coincide in the first t − l places. %&

We can formulate the system here in the language of Section 2 as follows: we write the
interaction as the sum of an interaction Φ0 of finite range R, which does not necessarily
have a small norm plus a long range “tail” Φ1 whose norm can be made as small as we
wish by choosing R large enough. Concretely, choose now R to be the smallest integer
such that

λ
δR
2 < ε. (23)

Then, we define Φ0 as grouping all the Φ[l,t]’s with t − l ≤ R and Φ1 to collect all the
longer range Φ[l,t]’s. Since, for an interval X = [l, t], d(X) = t− l, we easily have (for all
s ∈ Z+) the bound: ∑

X&s

eγd(X)‖Φ1
X‖ ≤ Cε (24)

for γ small enough (e.g. so that eγ ≤ λδ/2) , and where C depends on λδ. Note also
that, here, d(X) = |X|− 1, so that, in this one-dimensional situation, the norms (2.24)
and (2.25) are equivalent. However, we cannot use Theorem 1 directly, because the way
this Theorem is stated, ε depends on Φ0, i.e. on R, and, here, we choose R in (23) in an
ε-dependent way. It turns out that all we would need in the proof of Theorem 1 is that
Rd+1ε is small enough (with d = 0 here), and that is compatible with (23), for R large
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(see [4] for details). Of course, in this example, one can also apply directly the transfer
matrix formalism to infinite-range interactions decaying as in (20), see [25].

In order to prove the decay of the correlation functions (3,4) one proceeds as follows.
First, note that we can approximate the L1 function hν , in the L1 norm, by a smoother
function, h̃ν , e.g. by a Hölder continuous function of exponent δ. Since G in (3,14) is
bounded, this means that we have the following approximation, uniformly in N :

|
∫

G ◦ F Nhνdx −
∫

G ◦ F N h̃νdx| ≤ ‖G‖∞‖hν − h̃ν‖1.

So, it is enough to prove (14) when hν is Hölder continuous.
Thus, we may write a telescopic sum, as in (17):

hν(s) =
N∑

l=0

hν,[l,N ](s) + hν(0[0,N ]) (25)

and one has an exponential decay of the form:

|hν,[l,N ](s)| ≤ Cλδ(N−l) (26)

as in Proposition 2, since hν is Hölder continuous. Now insert (25) in (14), observe that
g(x) depends only on the ”time zero” variable x, while hν,[l,N ](s) depends only on s[l,N ].
Since (14) has the form of correlation function, we can use the exponential decay of the
Gibbs state determined by H, i.e. (2.26) with A = 0 and B = [l, N ], hence d(A, B) = l.
Combining this exponential decay with the exponential decay of hν,[l,N ](s) and with

N∑
l=0

e−mlλδ(N−l) ≤ Ce−m′N (27)

for m′ < min(m, δ| log λ|), one proves (3).
If hν is not Hölder continuous, the limit in (3) is still reached (via our approximation

argument), but not necessarily exponentially. The proof of (4) is similar. One sees also
why, in (4), one requires H to be Hölder continuous, while G is only bounded: in order
to prove exponential decay, we had to use (25, 26).

4 Coupled map lattices.

We consider now a lattice of coupled expanding circle maps. The phase space M =
(S1)Z

d
i.e. M is the set of maps z = (zj)j∈Zd from Zd to the circle.

To describe the dynamics, we first consider a map F : S1 → S1 as in Section 3. We
let F : M → M denote the Cartesian product F = Xi∈ZdFi where Fi is a copy of F . F
is called the uncoupled map.

The second ingredient in the dynamics is given by the coupling map A : M → M.
This is taken to be a small perturbation of the identity in the following sense. Let Aj
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be the projection of A on the jth factor and let aj denote the lift of Aj : Aj = e2πiaj .
We take, for example,

aj(x) = xj + ε
∑
k

g|j−k|(xj , xk)

where g is a periodic C1+δ function in both variables, with exponential falloff in |j − k|.
We shall come back later on the reasons for considering this somewhat unusual model
(see Remark 3 below). More general examples of such A′s can be found in [4, 3] (note,
however, that in [3], we restricted ourselves to analytic maps).

The coupled map T : M → M is now defined by

T = A ◦ F .

We are looking for “natural” T -invariant measures on M. For this, write, for Λ ⊂ Zd,
MΛ = (S1)Λ, and let mΛ be the product of Lebesgue measures.

Definition 1 A Borel probability measure µ on B is a SRB measure if

(a) µ is T -invariant

(b) The restriction µΛ of µ to BΛ is absolutely continuous with respect to mΛ for all
Λ ⊂ Zd finite.

Remark 1. This is a natural extension to infinite dimensions of the notion of SRB
measure, given in section 3, since each S1 factor can be regarded as an expanding
direction. However, unlike the situation for single maps, we do not show that the SRB
measure is unique (although we expect it to be so). In [4], we prove a weaker result,
namely that there is a unique “regular” SRB measure. We also show that (3.3) holds
for ν being a “regular” measure, but we have not extended (3.5). The extension of (3.4)
is given below.

Our main result is:

Theorem 2 Let F and A satisfy the assumptions given above. Then there exists ε0 > 0
such that, for ε < ε0, T has an SRB measure µ. Furthermore, µ is invariant and
exponentially mixing under the space-time translations: there exists m > 0, C < ∞,
such that, ∀B, D ⊂ Zd, |B|, |D| < ∞ and ∀G ∈ L∞(MB), ∀H ∈ Cδ(MD),

|
∫

G ◦ T nHdµ −
∫

Gdµ
∫

Hdµ| ≤ C‖G‖∞‖H‖δe
−m(n+d(B,D)), (1)

where d(B, D) is the distance between B and D and C depends on d(B), d(D).

Remark 2. The proof combines the ingredients from the previous two sections. We first
derive a formula for the Perron-Frobenius operator of T which is similar to (3.9, 3.10).
And we express the Hamiltonian in terms of potentials as in (3.19), using a telescopic
sum. The decay of the potentials is proven again using the Hölder continuity of the
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differential of T and the expansivity of F . We may write the potential Φ as a sum
of two terms, as in Theorem 1, Φ0 + Φ1, with Φ0 one-dimensional and of finite range
and ‖Φ1‖2 small, but on a “space-time” Zd+1

+ lattice. And, using Theorem 1 (which
can trivially be extended to this lattice), we construct the SRB measure and prove the
exponential decay of correlations. For a discussion of previous work on this problem, see
[4].

Remark 3. One would like to extend this Theorem to coupled maps of the interval
[0, 1] into itself, where the uncoupled map is not smooth, but, say, of bounded variation.
Indeed, all examples were phase transitions are expected to occur are of this form (see
e.g. [22, 24]). Moreover, the theory for a single map can easily be extended to maps of
bounded variation [7]. Also, one would like to consider more general couplings A, like
the standard diffusive coupling.

However, such extensions seem rather difficult, because even if the uncoupled map
happens to have a Markov partition, the couplings tend to destroy these partitions.
This is basically the reason for considering circle maps instead of expanding maps of
the interval. We did not use explicitely the existence of a Markov partition, but we
used it implicitely because no characteristic functions appeared in the formula (3.9) for
the Perron-Frobenius operator (compare with the formula for P in [7]). The reader
should not be misled by the fact that, in the statistical mechanics part of the argument
(Section 2), we could handle a general transitive matrix A, defining a subshift. Indeed
this is a short-range hard-core interaction, in the statistical mechanics language, while
the appearance of characteristic functions in the Perron-Frobenius operator may give
rise to an infinite range hard core, and this is much more difficult to control.

Note, however, that existence results on SRB measures in this more general context
were obtained in [21]. But there are no results on the exponential decay of correlation
functions. Also, Blank has constructed examples of “pathological” behaviour for coupled
non-smooth maps with arbitrarily weak coupling [1].
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