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CLASSIFICATION THEORY
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0. Introduction

In the mid 60’s, Michael Morley made a number of findings. E.g. he showed
that if the theory is ω -stable, then a Cantor-Bendixon rank can be defined for types.
This work was continued by Saharon Shelah. During 70’s and 80’s he created single-
handedly a large piece of model theory known as classification theory. The idea
behind this work was to determine for which model classes of the form {A| A |= T} ,
T a complete first-order theory, a structure theorem can be proved. In this paper we
try to give a compact introduction to this topic. We concentrate on cases in which
T is stable, so a large part of classification theory is left outside the scope of this
paper. We also concentrate on ideas and techniques in classification theory, not on
results. So our results are not always the best possible.

All results proved in this paper are from [Sh], but all proofs are not. Some of
the proofs are new and also proofs from [HS1], [HS2] and [Hy] are used.

To read this paper one needs to know the basic concepts of model theory and
how to use them. Also some basic facts from cardinal arithmetics are needed (e.g.
(2κ)κ = 2κ ).

This paper is full of exercises. Usually they are simple but vital parts of the
theory, and so they are often used later in the proofs. If an exercise is not needed
later in this paper, then it is marked by ∗ . If an exercise is more than just checking
definitions, a generous hint is given.

Occasionally we give examples of the concepts we define. The underlying theory
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in those examples is usually either Tω or T2 : Tα = Th((αω, En)n<ω) , where En(η, ξ)
holds if η � (n+ 1) = ξ � (n+ 1).

Under the name Fact, we give additional information.
Throughout this paper we assume that T is a complete theory in a language

L and that T has an infinite model. In order to simplify the notation, we use ’the
monster model technique’, i.e. we work inside M , where M |= T is a saturated
model of power κ , and κ is assumed to be larger than the cardinality of any object
that we come across. So by a model we mean an elementary submodel of M (of
power < κ). We write A , B etc. for these. This means e.g. that if A ⊆ B then
A ≺ B . Similarly by a set we mean a subset of M . We write A , B etc. for these.
By a , b etc. we mean a finite sequence of elements of M . By a ∈ A we mean
a ∈ Alength(a) .

If T is stable, then the existence of M is not a problem (in this paper from
Chapter 2 on). Otherwise we have to assume that the inaccessible cardinals form a
proper class. But this assumption is not ’used’, it is not hard to see how to modify
the definitions and the proofs so that M is not needed.

Our notation is standard. So e.g. Sm(A) is the set of all consistent types over A
in m variables (modulo a change of variables). S(A) = ∪m<ωS

m(A) and by t(a, A)
we mean the type of a over A (in M). We write p(x) when we want to point out,
which are the free variables in the type p . |= φ means M |= φ and φ(M, b) is the
set {a ∈ M| |= φ(a, b)} .

1. Stability and ranks

1.1 Definition.

(i) We say that T is ξ -stable if for all A of power ≤ ξ , |S(A)| ≤ ξ .
(ii) We say that T is stable, if for some infinite ξ , T is ξ -stable.
(iii) If T is stable, then by λ(T ) we mean the least λ such that T is λ-stable.

1.2 Exercise.

(i)∗ For all A , |S1(A)| ≥ |A| .
(ii)∗ Show that the theory of dense linear-orderings without end-points is un-

stable. (Hint: Choose κ so that it is the least cardinal such that ωκ > ξ and extend
the ordering of the tree Q<κ to a linear-order.)

(iii)∗ Show that Tω and T2 are stable.
(iv) If T is ξ -stable and ξ is regular, then for all A of power ≤ ξ , there exists

a saturated model A of power ξ such that A ⊆ A . (Hint: Choose an increasing
continuous sequence Ai , i < ξ , of sets of power ξ such that every type over Ai is
realized in Ai+1 and A ⊆ A0 . Then A = ∪i<ξAi is as wanted.)

Below, when we write φ(x) , we mean that the free variables of φ are contained
in x . When we talk about a formula φ we assume that φ is of the form φ(x, y)
and that we always know, which variables belong to the first sequence and which
belong to the second. When we talk about φ-types, the variables in y are for
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parameters, and x remains free. By ∆ we always mean a finite set of formulas and
if φ(x, y), ψ(x′, y′) ∈ ∆ then x = x′ . When we talk about p∪{φ(x, a)} we of course
assume that x is the sequence of free variables of p .

We will not do, what we said above, in a precise form; We rely on the common
sense of the reader.

1.3 Definition. Let ∆ be a finite set of formulas.
(i) Let A ⊆ B and p ∈ S(B) . We say that p ∆ -splits over A if there are

a, b ∈ B and φ ∈ ∆ such that t(a, A) = t(b, A) and φ(x, a),¬φ(x, b) ∈ p . We write
φ-splits instead of {φ} -splits.

(ii) Let A ⊆ B and p ∈ S(B) . We say that p splits over A if it φ-splits over
A for some φ .

(iii) We say that ∆ is stable, if there are no Ai , i < ω , and a such that for all
i < ω , Ai ⊆ Ai+1 and t(a, Ai+1) ∆ -splits over Ai . We say that φ is stable instead
of {φ} is stable. (Notice that this definition differs from the one given in [Sh], but
as we shall see, they are equivalent.)

(iv) We say that p is an ∆ -type if it is a set of formulas of the form φ(x, a)
or ¬φ(x, b) , a, b ∈ M and φ ∈ ∆ . By t∆(a, A) we mean the complete ∆ -type of a
over A . We write S∆(A) for the set of all complete ∆ -types over A . As above, we
write tφ(a, A) , Sφ(A) and φ-type instead of t{φ}(a, A) , S{φ}(A) and {φ} -type.

1.4 Exercise.

(i) If φ is not stable, then for all κ , there are Ai , i < κ , and a such that for
all i < j < κ , Ai ⊆ Aj and t(a, Ai+1) φ-splits over Ai . (Hint: Use compactness.)

(ii) If every formula is stable, then every finite ∆ is stable.

1.5 Lemma. If φ is not stable, then for all infinite ξ , there is A of power
≤ ξ such that |Sφ(A)| > ξ and so T is not stable.

Proof. Let κ be the least cardinal such that 2κ > ξ . Then κ ≤ ξ . By Exercise
1.4, we can find a , ai and bi , i < κ , such that for all i < κ , t(ai,∪j<i(aj ∪ bj)) =
t(bi,∪j<i(aj ∪ bj)) and |= φ(a, ai) ∧ ¬φ(a, bi) .

By induction on i ≤ κ we define automorphisms fη�i of M , η ∈ 2κ , as follows:
(i) fη�0 = idM ,
(ii) fη�(i+1) = fη�i if η(i) = 0 and otherwise fη�(i+1) is any automorphism of

M such that fη�(i+1)(ai) = fη�i(bi) (or fη�(i+1)(bi) = fη�i(ai)) and for all j < i ,
fη�(i+1)(aj) = fη�i(aj) , fη�(i+1)(bj) = fη�i(bj) ,

(iii) if i is limit, then fη�i is any automorphism of M such that for all j < i ,
fη�i(aj) = fη�(j+1)(aj) and fη�i(bj) = fη�(j+1)(bj) .
Let A =

⋃
i<κ ∪{fη�i(∪j<i(aj ∪ bj)| η ∈ 2κ} and for all η ∈ 2κ , we let pη =

tφ(fη(a), A) . Then |A| = 2<κ and by (ii) above, if η 6= η′ , then pη and pη′ are
contradictory. By the choice of κ , A is as wanted.

1.6 Exercise. If T is ξ -stable and 2κ > ξ , then there are no Ai , i < κ , and
a such that for all i < j < κ , Ai ⊆ Aj and t(a, Ai+1) splits over Ai . (Hint: The
proof of Lemma 1.5 works also here.)
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We say that a type p over A (∆, φ)-splits over B ⊆ A , if there are a, b ∈ A

such that t∆(a, B) = t∆(b, B) , φ(x, a) ∈ p and ¬φ(x, b) ∈ p .

1.7 Lemma. If φ is stable, then for all infinite A , |Sφ(A)| ≤ |A| .

Proof. Let c , ci and di , i < ω , be sequences of new constants and Ci =
∪j<i(cj ∪ dj) . Since φ is stable, there are finite ∆ and n such that the following
set is not consistent

{φ(c, ci) ∧ ¬φ(c, di)| i < n} ∪ {ψ(ci, d) ↔ ψ(di, d)| i < n, d ∈ Ci, ψ ∈ ∆}.

But then for all A and p ∈ Sφ(A) , we can find a finite B ⊆ A such that p does not
(∆, φ)-split over B . Since B and ∆ are finite, S∆(B) is finite and so also

{q ∈ Sφ(A)| p � B ⊆ q, q does not (∆, φ)-split over B}

is finite. Because the number of finite subsets of A is ≤ |A| , the claim follows.

1.8 Definition. For every finite set ∆ of formulas and cardinal ξ (not nec-
essarily infinite), we define R∆(p, ξ) , for all types p , in the following way:

(i) R∆(p, ξ) ≥ 0 if p is consistent.
(ii) R∆(p, ξ) ≥ α + 1 if for all finite q ⊆ p and γ < ξ there are ∆ -types qi ,

i ≤ γ , such that
(a) for all i < j ≤ γ there are φ(x, y) ∈ ∆ and a such that φ(x, a) ∈ qi and

¬φ(x, a) ∈ qj or vice versa (in this case we say that qi and qj are ∆ -contradictory),
(b) for all i ≤ γ , R∆(q ∪ qi, ξ) ≥ α .
(iii) If α is limit, then R∆(p, ξ) ≥ α if R∆(p, ξ) ≥ β for all β < α .

We say that R∆(p, ξ) = α if α is the least ordinal such that R∆(p, ξ) 6≥ α + 1 . If
such α does not exist, then we write R∆(p, ξ) = ∞ . We write R∆(p, ξ) = −1 if p
is not consistent and Rφ for R{φ} .

1.9 Exercise.

(i) If R∆(p, ξ) = ∞ , then R∆(p, ξ) ≥ α , for all ordinals α .
(ii) If p ` q , then R∆(p, ξ) ≤ R∆(q, ξ) .
(iii) If R∆(p, ξ) ≥ α and β < α , then R∆(p, ξ) ≥ β .
(iv) If ξ ≥ ξ′ then R∆(p, ξ) ≤ R∆(p, ξ

′) .
(v) R∆(p, ξ) = min{R∆(q, ξ)| q ⊆ p finite} .
(vi) If p is algebraic, then R∆(p, ω) = 0 .
(vii) If x = y ∈ ∆ and R∆(p, ω) = 0 , then p is algebraic.

1.10 Lemma. Let ξ > 1 be a cardinal and ∆ a finite set of formulas.
(i) There is α such that for all finite p , R∆(p, ξ) ≥ α implies R∆(p, ξ) = ∞ .
(ii) If R∆(p, ξ) = ∞ and p is finite then there are finite p1 and p2 such that

p ⊆ p1 ∩ p2 , for some d and φ ∈ ∆ , φ(x, d) ∈ p1 , ¬φ(x, d) ∈ p2 and R∆(p1, ξ) =
R∆(p2, ξ) = ∞ .

(iii) If for all infinite A , |S∆(A)| ≤ |A| , then for all p , R∆(p, ξ) <∞ .
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Proof. (i) follows immediately from the fact that the number of t(A, ∅) for
finite A , and the number of finite p over a finite A are restricted.

(ii) Immediate by (i) and the definition of R∆ .
(iii) By Exercise 1.9 (v), it is enough to prove this for finite p . But this follows

immediately from (ii).

1.11 Exercise. Let ∆ be a finite set of formulas.
(i) For all finite types p , a ∈ M and φ ∈ ∆ , if R∆(p, 2) < ∞ , then either

R∆(p ∪ {φ(x, a)}, 2) < R∆(p, 2) or R∆(p ∪ {¬φ(x, a)}, 2) < R∆(p, 2) .
(ii) Assume p ⊆ q ∩ r , q, r ∈ S∆(A) and A is finite. If R∆(q, 2) = R∆(r, 2) =

R∆(p, 2) <∞ , then q = r .

We write |T | for the number of L -formulas modulo the equivalence T ` ∀x(φ(x)
↔ ψ(x)) .

1.12 Theorem. The following are equivalent:
(i) T is stable.
(ii) Every formula is stable.
(iii) Every finite ∆ is stable.
(iv) For every φ and infinite A , |Sφ(A)| ≤ |A| .
(v) For every finite ∆ and infinite A , |S∆(A)| ≤ |A| .
(vi) For every finite ∆ , cardinal ξ > 1 and type p , R∆(p, ξ) <∞
(vii) T is ξ -stable for all ξ such that ξ|T | = ξ .

Proof. (i)⇒(ii): This is Lemma 1.5.
(ii)⇒(iii): This is Exercise 1.4 (ii).
(iii)⇒(iv): This follows from Lemma 1.7.
(iv)⇒(v): Every type p ∈ S∆(A) is determined by the sequence (p � φ)φ∈∆ ,

from which the claim follows.
(v)⇒(vi): This is Lemma 1.10 (iii).
(vi)⇒(v): Let p ∈ S∆(A) . By Exercise 1.9 (v), choose finite B ⊆ A such that

(∗) R∆(p � B, 2) = R∆(p, 2).

By Exercise 1.11 (ii), p is determined by p � B and (*). Since for finite B , S∆(B)
is finite and the number of finite subsets of A is |A| , |S∆(A)| ≤ ω × |A| = |A| .

(v)⇒(vii): Assume |A| = ξ and ξ|T | = ξ . Every type p ∈ S(A) is determined
by the sequence (p � φ)φ∈L . So |S(A)| ≤ |

∏
φ∈L Sφ(A)| = |A||T | = ξ .

(vii)⇒(i): Trivial.

1.13 Exercise. If T is stable, then for every cardinal ξ > 1 , finite ∆ and
type p , R∆(p, ξ) < ω . (Hint: By Exercise 1.9 (iv), it is enough to prove the claim
for ξ = 2 . For a contradiction, assume that the claim does not hold for ξ = 2 and
use compactness to show that the following set of formulas is consistent (cη and di
are sequences of new constants):

{¬
∧

φ∈∆, d⊆di

(φ(cη, d) ↔ φ(cη′ , d))| η, η′ ∈ 2ω, η � i = η′ � i, η(i) 6= η′(i)}.)
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1.14 Fact. ([Sh]) If T is not stable, then there is φ(x, y) such that for all
linear-orderings η there are ai ∈ M , i ∈ η , such that |= φ(ai, aj) iff i < j . (Notice
that by the proof of Exercise 1.2 (ii), this φ is not stable.)

We say that p and q are ∆-contradictory if there are φ ∈ ∆ and a such that
φ(x, a) ∈ p and ¬φ(x, a) ∈ q or vice versa.

1.15 Theorem. Assume T is stable. Then

R∆(p ∪ {∨i<nφi}, ω) = maxi<nR∆(p ∪ {φi}, ω).

Proof. By Exercise 1.9 (ii), it is enough to show that for all p , R∆(p∪{∨i<nφi},
ω) ≥ α implies maxi<nR∆(p∪{φi}, ω) ≥ α . We prove this by induction on α . The
cases α = 0 and α is limit, are trivial.

We prove the case α = β + 1: For a contradiction, assume that for all i < n ,
there are a finite pi ⊆ p and ni < ω , which satisfy the following: there are no
pairwise ∆-contradictory qij , j < ni , such that pi ⊆ qij and R∆(q

i
j ∪ {φi}, ω) ≥ β .

Let p∗ = ∪i<npi and n∗ = n · (maxi<nni) . Then p∗ ∪ {∨i<nφi} ⊆ p ∪ {∨i<nφi} is
finite and there are no pairwise ∆-contradictory qi , i < n∗ such that for all i < n∗ ,
p∗ ⊆ qi and for all i < n∗ , there exists j < n , such that R∆(qi ∪ {φj}, ω) ≥ β

(i.e. if qi , i < n∗ , are ∆-contradictory and p∗ ⊆ qi , then for some i < n∗ ,
maxj<nR∆(qi ∪ {φj}, ω) < β ). By the induction assumption there are no pairwise
∆-contradictory qi , i < n∗ such that p∗ ⊆ qi and R∆(qi ∪ {∨j<nφj}, ω) ≥ β . So
R∆(p ∪ {∨i<nφi}, ω) 6≥ α , a contradiction.

1.16 Exercise. Assume T is stable. If p is over A and R∆(p, ω) = α , then
there is q ∈ S(A) such that p ⊆ q and R∆(q, ω) = α . (Hint: By Theorem 1.15,
show that

{¬φ(x, a)| a ∈ A, R∆(p ∪ {φ(x, a)}, ω) < α}

is consistent.)
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PART I: INDEPENDENCE

Forking was invented by S. Shelah in the mid 70’s. Since then, the use of this
concept has dominated research in model theory. In this part we prove the basic
properties of forking in a compact style. We follow the approach of [Sh], so we do not
try to find the simplest way to see the basic properties of forking. The reason for this
is that the author of this paper believes, that it is important to know the relations
between indiscernible sets and ranks, forking, and finite equivalence relations. In
details we do not necessarily follow [Sh], e.g. our definition of forking differs from
the one given in [Sh]. For other approaches to forking, see [Ba], [Bu], [La] and/or
[Pi].

2. Forking

From now on in this paper we assume that T is stable.

2.1 Definition.

(i) We say that a consistent formula φ(x,m) , m ∈ M , forks over A if for all
p = p(x) ∈ S(A) the following holds: If p ∪ {φ(x,m)} is consistent, then there is a
finite ∆ such that for all finite ∆′ ⊇ ∆ , R∆′(p∪{φ(x,m)}, ω) < R∆′(p, ω) . (Notice
that this definition differs from the one given in [Sh], but, as we shall see, they are
equivalent.)

(ii) We say that p forks over A if there is a finite q ⊆ p such that ∧q forks over
A .

(iii) We write a ↓A B if t(a, A ∪B) does not fork over A .

Belove we give an example of forking. We delay, until Exercise 5.12, the proof
that the claims in the example are actually true. (The reader may try to prove this
straight from the definition. It is of course possible, but needs a bit work.)

2.2 Example.

(i) Assume T = Tω . Let a be a singleton. Then t(a, B) forks over A ⊆ B iff
a ∈ B − A or there are n < ω and b ∈ B such that |= En(a, b) but for all c ∈ A

|= ¬En(a, c) .
(ii) Assume T = T2 . Let a be a singleton. Then t(a, B) forks over A ⊆ B iff

a ∈ B − A .

2.3 Exercise.

(i) If p is a consistent type over A then p does not fork over A .
(ii) If p ∈ S(B) forks over A ⊆ B , then there is φ(x, b) ∈ p such that φ forks

over A , especially if a 6 ↓A B then there is finite B′ ⊆ B such that a 6 ↓A B′ .
(iii) If t(a, A) is algebraic, then a ↓A B for all B . (Hint: Use Exercise 1.9 (vi).)

2.4 Lemma. Assume A ⊆ B , t(a, B) is algebraic but t(a, A) is not algebraic.
Then a 6 ↓A B .
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Proof. Choose φ(x, b) ∈ t(a, B) such that φ(x, b) is algebraic. Since t(a, A) is
not algebraic and φ(M, b) is finite, there is ψ(x, c) ∈ t(a, A) such that for all a′ , if
|= φ(a′, b) ∧ ψ(a′, c) , then t(a′, A) is not algebraic. By Exercise 1.9 (vi) and (vii),
φ(x, b) ∧ ψ(x, c) forks over A .

2.5 Lemma. If φi , i < n , fork over A and p ` ∨i<nφi , then p forks over A .

Proof. Clearly we may assume that p is finite. Let q ∈ S(A) be such that
q ∪ p is consistent. Let I ⊆ n be such that I 6= ∅ , q ∪ p ` ∨i∈Iφi and for all i ∈ I ,
q∪p∪{φi} is consistent (as an exercise, prove the existence of I ). Then for all i ∈ I

there is a finite ∆i such that for all finite ∆′ ⊇ ∆i , R∆′(q∪{φi}, ω) < R∆′(q, ω) . Let
∆ = ∪i∈I∆i . Then for all i ∈ I and finite ∆′ ⊇ ∆, R∆′(q∪p∪{φi}, ω) < R∆′(q, ω) .
By Theorem 1.15, R∆′(q∪p∪{∨i∈Iφi}, ω) < R∆′(q, ω) . Since q∪p ` ∨i∈Iφi(x,mi) ,
Exercise 1.9 (ii) implies that R∆′(q ∪ p, ω) < R∆′(q, ω) .

2.6 Lemma. If p is over B and does not fork over A ⊆ B , then there is
q ∈ S(B) such that p ⊆ q and q does not fork over A .

Proof. By Exercise 2.3 (ii), it is enough to show that the type p∪q is consistent,
where q = {¬φ(x, b)| b ∈ B, φ(x, b) forks over A} . If p ∪ q is not consistent then
there are ¬φi(x, bi) ∈ q , i < n , such that p ` ∨i<nφi(x, bi) . By Lemma 2.5, this
implies that p forks over A , a contradiction.

Before we can prove further properties of forking, we have to study indiscernible
sets and finite equivalence relations.

3. Indiscernible sets

The following fact may help understanding this section. (As an exercise, prove
this fact after reading this Part I.) Assume |= φ(a, b) and t(b, A) is not algebraic. If
we want to test whether φ(x, b) forks over A or not, then we can do the following:
Choose I = {bi| i < ω} , so that {b} ∪ I is indiscernible over A (see the definition
below) and for all i < ω , bi ↓A b ∪

⋃
j<i bj . If |{c ∈ {b} ∪ I| |= φ(a, c)}| = ω (i.e.

φ(a, y) ∈ Av(I, A ∪ a)), then φ(x, b) does not fork over A .

3.1 Definition. Assume I is a set of finite sequences. We say that I is
indiscernible over A if for all ak, bk ∈ I , k < n , a ∈ A and φ(x0, ..., xn−1, y) the
following holds: If for all k < k′ < n , ak 6= ak′ and bk 6= bk′ , then

|= φ(a0, ..., an−1, a) ↔ φ(b0, ..., bn−1, a).

We say that I is indiscernible if it is indiscernible over ∅ .

3.2 Exercise.

(i) If I is infinite indiscernible over A then for all ξ there is J such that |J | = ξ

and I ∪ J is indiscernible over A .
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(ii) Let I = (I, <) be a linearly ordered set. We say that {bi| i ∈ I} is order
indiscernible over A if for all ik, jk ∈ I , k < n , a ∈ A and φ(x0, ..., xn−1, y) the
following holds: If for all k < k′ < n , ik < ik′ and jk < jk′ , then

|= φ(bi0 , ..., bin−1
, a) ↔ φ(bj0 , ..., bjn−1

, a).

Show that if I is infinite and {bi| i ∈ I} is order indiscernible over A , then it is
indiscernible over A . (Hint: Clearly we may assume that if i, j ∈ I and i 6= j

then bm 6= bn (otherwise {bi| i ∈ I} is a singleton) and that A is finite. For a
contradiction assume that the claim does not hold. Show that we may assume that
I = (R, <) and find φ , a ∈ A , n,m and k such that for all i0 < ... < in from R ,
|= φ(bi0 , ..., bin, a) but if ik < i∗ < ik+1 , then

|= ¬φ(bi0 , ..., bim−1
, bi∗ , bim+1

, ..., bin, a).

Let B = A∪{bi| i ∈ Q} and for every irrational r , let pr = tφ(br, B) . Finally show
that if r 6= r′ , then pr 6= pr′ .)

(iii) Assume that {bi| i < ω} and A are such that for all j < i < ω t(bi, A ∪⋃
k<j bk) = t(bj, A ∪

⋃
k<j bk) and t(bi, A ∪

⋃
j<i bj) does not split over A . Then

{bi| i < ω} is indiscernible over A .

3.3 Theorem. If T is ξ -stable, |A| ≤ ξ and I has power > ξ , then there is
J ⊆ I of power > ξ such that J is indiscernible over A .

Proof. We show first:
Claim. There are B , C and p ∈ S(C) such that
(i) A ⊆ B ⊆ C and |C| ≤ ξ ,
(ii) for all C′ ⊇ C of power ξ , there is b ∈ I such that t(b, C′) ⊇ p , b 6∈ C′ and

t(b, C′) does not split over B ,
(iii) for all c there is c′ ∈ C such that t(c′, B) = t(c, B) .
Proof. Assume not. Then by induction on i ≤ ξ , we define Bi of power ≤ ξ

the following way: B0 = A and for limit i , Bi = ∪j<iBi . Assume Bi is defined.
Let Ci ⊇ Bi be such that for all c there is c′ ∈ Ci such that t(c′, Bi) = t(c, Bi) and
|Ci| ≤ ξ . Let p ∈ S(Bi) . Since (ii) above does not hold for Bi , Ci and p , there is
Cp ⊇ Ci of power ξ such that

(*) for every b ∈ I , if b 6∈ Cp and t(b, Cp) ⊇ p , then t(b, Cp) splits over B .
Let Bi+1 =

⋃
p∈S(Bi)

Cp .

Choose b ∈ I so that b 6∈ Cξ . Then by (*), t(b, Bi+1) splits over Bi for all
i < ξ (choose p = t(b, Bi)). This contradicts Exercise 1.6. Claim.

Let B , C and p be as in the claim. For i < ξ+ we define Ji as follows: J0 = ∅
and for limit i , Ji = ∪j<iJj . Assume Ji is defined. Then by (ii) in the claim, we
can find b ∈ I such that b 6∈ C ∪ Ji and t(b, C ∪ Ji) ⊇ p does not split over B . Let
Ji+1 = Ji ∪ {b} . By (iii) in the claim and Exercise 3.2 (ii) and (iii), it is easy to see
that J = ∪i<ξ+Ji is as wanted (exercise).
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3.4 Exercise∗ . Prove so called ∆ -lemma: If Ai , i ∈ I , are finite sets and
{Ai| i ∈ I} is uncountable then there are uncountable J ⊆ I and B such that for all
i, j ∈ J , if i 6= j then Ai ∩Aj = B . (Hint: the theory of an infinite set is ω -stable.)

3.5 Exercise. For all φ(x, y) there is n < ω such that for all indiscernible I
and a either

|{b ∈ I| |= φ(b, a)}| < n

or
|{b ∈ I| |= ¬φ(b, a)}| < n.

(Hint: If not, then by compactness find indiscernible I and a such that |{b ∈ I| |=
φ(b, a)}| = |{b ∈ I| |= ¬φ(b, a)}| = ω , and show that this implies that for every
infinite ξ there is B such that |B| = ξ and |Sφ(B)| = 2ξ .)

3.6 Definition. Let I be an infinite indiscernible set. We define Av(I, A) ,
the average type of I over A , to be the set

{φ(x, a)| a ∈ A, φ ∈ L, |{b ∈ I| |= φ(b, a)}| ≥ ω}.

3.7 Exercise.

(i) If I is an infinite indiscernible set, then Av(I, A) is consistent for all A .
(ii) Assume I is an infinite indiscernible set over A and a 6∈ I . Then I ∪ {a}

is indiscernible over A iff t(a, I ∪ A) = Av(I, I ∪ A) .
(iii) Assume I and J are infinite and I ∪ J is indiscernible. Then for all A ,

Av(I, A) = Av(J,A) .

3.8 Definition. Let I be an infinite indiscernible set over A . We say that I
is based on A , if for all B ⊇ A , Av(I, B) does not fork over A .

The fact in the beginning of this section, may clarify the idea behind Definition
3.8, see also the proof of Theorem 3.9.

3.9 Theorem. Assume A ⊆ B and p ∈ S(B) is non-algebraic and does not
fork over A . Then there is an infinite indiscernible set I based on A such that for
all b ∈ I , t(b, B) = p .

Proof. Let ξ > |B| + ω such that ξ|T | = ξ . Then by Theorem 1.12, T is
ξ -stable and ξ+ -stable. Let A ⊇ B be a saturated model of power ξ+ . Let Ai ,
i < ξ+ , be an increasing continuous sequence of sets of power ξ , such that B ⊆ A0

and ∪i<ξ+Ai = A . For all i < ξ+ , choose ai ∈ A so that t(ai, B) = p and
t(ai, Ai ∪

⋃
j<i aj) does not fork over A . By Lemma 2.4, if i 6= j , then ai 6= aj . So

by Theorem 3.3, we may assume that {ai| i < ξ+} is indiscernible over A .
We show that I = {ai| i < ω} is as wanted. By Lemma 2.4, I is infinite. So it

is enough to show that it is based on A . For this let C ⊇ A . Clearly we may assume
that C − A is finite and so we may assume also that for some i∗ < ξ+ , C ⊆ Ai∗ .
By Theorem 3.3, choose in > i∗ , n ≤ ω , such that {ain | n ≤ ω} is indiscernible
over C . Let J = {ain | n < ω} . Then aiω ↓A C and by Exercise 3.7,

t(aiω , C) = Av(J, C) = Av(I, C).
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3.10 Definition. Assume A ⊆ B and p ∈ S(B) . We say that p strongly
splits over A , if there are bi ∈ B , i < ω , such that {bi| i < ω} is an infinite
indiscernible set over A and for some φ , φ(x, b0),¬φ(x, b1) ∈ p .

3.11 Lemma. Assume A ⊆ B and p ∈ S(B) . If p strongly splits over A ,
then p forks over A .

Proof. Let φ and bi , i < ω , be as in the definition of strong splitting. Let n
be the number given by Exercise 3.5 for φ and let

ψ(x, y0, ..., yn) = φ(x, y0) ∧
∧

0<i≤n

¬φ(x, yi).

Without loss of generality we may assume ψ(x, b0, ..., bn) ∈ p .
We show that ψ(x, b0, ..., bn) forks over A . For this let q ∈ S(A) be such that

q∪{ψ} is consistent. For a contradiction, assume that there is finite ∆ such that φ ∈
∆ and R∆(q∪{ψ}, ω) = R∆(q, ω) = α . By Exercise 1.16, for i < ω , there are types
qi ∈ S(A∪{bi| i < ω}) such that R∆(qi, ω) = α and ψ(x, bi·(n+1), ..., bi·(n+1)+n) ∈ qi .
By the choice of n , there is infinite I ⊆ ω such that qi � φ , i ∈ I , are pairwise
contradictory. But then R∆(q, ω) ≥ α + 1, a contradiction.

3.12 Lemma. Assume A ⊆ B ⊆ C , ξ = (|A|+ 2)|T | and B is ξ+ -saturated.
If a ↓A C , b ↓A C and t(a,B) = t(b,B) , then t(a, C) = t(b, C) .

Proof. Assume not. Choose φ(x, c) , c ∈ C , so that |= φ(a, c) ∧ ¬φ(b, c) . By
Exercise 1.6, choose A′ ⊇ A such that A′ ⊆ B , |A′| ≤ ξ and t(c,B) does not split
over A′ . For all i < ω , choose ci ∈ B so that t(ci, A

′∪
⋃

j<i cj) = t(c, A′ ∪
⋃

j<i cj) .
By Exercise 3.2 (iii), {c} ∪ {ci| i < ω} is indiscernible over A′ and so also over A .
But then either t(a, C) or t(b, C) splits strongly over A . By Lemma 3.11, either
t(a, C) or t(b, C) forks over A , a contradiction.

3.13 Exercise. For all A ⊆ B , the set {t(a, B)| a ∈ M, a ↓A B} has power
≤ ((|A|+ 2)|T |)+ .

4. Finite equivalence relations

We write Aut(A) for the set of all automorphisms of M , which fixes A point-
wise.

4.1 Definition.

(i) We say that a relation R(x) of M is over A if it is definable by some formula
φ(x, a) , a ∈ A .

(ii) We say that φ(x, b) is almost over A if the set {φ(M, f(b))| f ∈ Aut(A)}
is finite. We say that p is almost over A , if every formula φ ∈ p is almost over A .

(iii) We say that an equivalence relation E(x, y) in M is finite, if the number
of equivalence classes is finite. We write FE(A) for the set of all finite equivalence
relation over A .
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4.2 Exercise.

(i)∗ : R = φ(M, b) is over A iff {φ(M, f(b))| f ∈ Aut(A)} is a singleton. (Hint
for ⇐ : First show that |= φ(a, b) iff for all c such that t(c, A) = t(b, A) , |= φ(a, c) .
Then use compactness.)

(ii) If E ∈ FE(A) , then for all a , E(x, a) is almost over A .

4.3 Lemma. φ(x, b) is almost over A iff there is E(x, y) ∈ FE(A) such that

∀x, y(E(x, y)→ (φ(x, b) ↔ φ(y, b))).

(In this case we say that φ(x, b) depends on E .)

Proof. ⇐ : Clearly if t(c, A) = t(b, A) , then φ(x, c) depends on E . So the
cardinality of {φ(M, f(b))| f ∈ Aut(A)} is at most 2n , where n is the number of
equivalence classes of E .

⇒ : Now there is n < ω , such that the set

{θ(yi, a)| θ(yi, a) ∈ t(b, A), i < n} ∪ {¬∀x(φ(x, yi) ↔ φ(x, yj))| i < j < n}

is contradictory. Let n be minimal. Then there is θ(y, a) ∈ t(b, A) such that

{θ(yi, a)| i < n} ∪ {¬∀x(φ(x, yi) ↔ φ(x, yj))| i < j < n}

is contradictory.
We define E(x, y) to be

∀z(θ(z, a) → (φ(x, z) ↔ φ(y, z))).

Clearly φ depends on E and E is over A .
For all i < n − 1, choose bi so that |= θ(bi, a) and for all i < j < n −

1, |= ¬∀x(φ(x, bi) ↔ φ(x, bj)) . For all w ⊆ n − 1, let Ew =
⋂

i∈w φ(M, bi) ∩⋂
i∈(n−1)−w ¬φ(M, bi) . Then for all w ⊆ n− 1 and c, d ∈ Ew , |= E(c, d) (exercise).

So the number of equivalence classes of E is ≤ 2n−1 .

4.4 Exercise.

(i) If φ(x, b) is almost over A , then there are E ∈ FE(A) , n < ω and ai ,
i < n , such that |= ∀x(φ(x, b) ↔ ∨i<nE(x, ai)) .

(ii) If φ(x, b) is almost over A and A is a model, then φ(x, b) is over A . (Hint:
Every equivalence class of a finite equivalence relation over A is represented in A .)

4.5 Lemma.

(i) Assume p ∈ S(B) does not fork over A ⊆ B . If p′ is almost over A and
p ∪ p′ is consistent, then p ∪ p′ does not fork over A .

(ii) Assume q ∈ S(A) , p is almost over A and q ∪ p is consistent. Then for all
finite ∆ , R∆(q ∪ p, ω) = R∆(q, ω) .
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Proof. (i): It is easy to see that if φi , i < n , are almost over A then so does
∧i<nφi . So we may assume that p′ = {φ(x, b)} . Let φ(x, b) depend on E ∈ FE(A)
and choose a so that it realizes p and |= φ(a, b) . Clearly p∪{E(x, a)} ` p∪{φ(x, b)} ,
and so by Lemma 2.5, it is enough to show that p∪{E(x, a)} does not fork over A .

Let ai , i < n , be a maximal sequence such that for all i < n , t(ai, B) = t(a, B) ,
and for i 6= j , ¬E(ai, aj) . Then p ` ∨i<nE(x, ai) . By compactness, there is a finite
r ⊆ p such that

(∗) r ` ∨i<nE(x, ai).

Let q be such that it is finite and r ⊆ q ⊆ p . Clearly it is enough to show that
(∧q) ∧ E(x, a) does not fork over A . Since ∧q does not fork over A , there is
q′ ∈ S(A) such that q′ ∪ q is consistent and for every finite ∆ there is ∆′ ⊇ ∆ such
that R∆′(q′ ∪ q, ω) = R∆′(q′, ω) .

So it is enough to show that for all finite ∆, R∆(q
′ ∪ q ∪ {E(x, a)}, ω) =

R∆(q
′∪q, ω) (this implies that q′∪q∪{E(x, a)} is consistent). By (*), Exercise 1.9 (ii)

and Theorem 1.15, there is i < n such that R∆(q
′∪q∪{E(x, ai)}, ω) = R∆(q

′∪q, ω) .
Since t(a, B) = t(ai, B) , R∆(q

′ ∪ q ∪ {E(x, a)}, ω) = R∆(q
′ ∪ q ∪ {E(x, ai)}, ω) .

(ii): As above, we may assume that p = {φ(x, b)} and choose E ∈ FE(A) and
a so that φ(x, b) depends on E and a realizes q ∪ p . Then q ∪ {E(x, a)} ` q ∪ p
and so by Exercise 1.9 (ii), it is enough to show that

(*) R∆(q ∪ {E(x, a)}, ω) = R∆(q, ω) .

As above we can find ai , i < n , such that for all i < n , t(ai, A) = t(a, A) and
q ` ∨i<nE(x, ai) . By Exercise 1.9 (ii) and Theorem 1.15, there is i < n such that
R∆(q ∪ {E(x, ai)}, ω) = R∆(q, ω) . Since t(a, A) = t(ai, A) , (*) follows.

4.6 Exercise. If p is consistent and almost over A then p does not fork over
A (Hint: Choose a so that it realizes p and apply Lemma 4.5 (i) to t(a, A) ∪ p .)

4.7 Lemma. For all φ(x, y) there is m < ω such that for all infinite indis-
cernible sets I = {bi| i < ω} based on A and n ≥ m ,

φn(x, I) =
∨

w⊆2n−1, |w|=n

(∧i∈wφ(x, bi))

is almost over A .

Proof. Let m be the number given by Exercise 3.5 for φ and n ≥ m . Let
I = {bi| i < ω} be an infinite indiscernible set based on A . For a contradiction,
assume φn(x, I) is not almost over A . Let ξ = ((|A|+ 2)|T |)++ . By compactness,
we can find Ii , i < ξ , copies of I over A such that φn(x, Ii) are pairwise non-
equivalent. So for all i < j , we can choose aij such that |= φn(aij , Ii)∧¬φn(aij, Ij) .
Let B = A ∪

⋃
i<j<ξ aij . Then for all i < j < ξ , Av(Ii, A) = Av(Ij, A) and by the

choice of m , Av(Ii, B) 6= Av(Ij, B) . Since I is based on A , for all i < ξ , Av(Ii, B)
does not fork over A . This contradicts Exercise 3.13.
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4.8 Lemma. Assume A ⊆ B and B is (|A|+ω)+ -saturated. If p, q ∈ Sm(B) ,
p 6= q and both p and q do not fork over A , then there is E ∈ FE(A) such that
p(x) ∪ q(y) ` ¬E(x, y) .

Proof. Choose φ(x, b) , b ∈ B , such that φ(x, b) ∈ p and ¬φ(x, b) ∈ q .
Claim. There is ψ(x, d) , d ∈ B , such that it is almost over A and ψ(x, d) ∈ p

and ¬ψ(x, d) ∈ q .
Proof. If t(b, A) is algebraic, then we can let ψ(x, c) = φ(x, b) . So we may

assume that t(b, A) is not algebraic. By Theorem 3.9, let I ⊆ B be an infinite
indiscernible set over A such that it is based on A and for all c ∈ I , t(c, A) = t(b, A) .
Clearly we may assume that b ∈ I . By Lemma 4.7, for some n , φn(x, I) is almost
over A . By Lemma 3.11, φn(x, I) ∈ p and ¬φn(x, I) ∈ q . Claim.

By Lemma 4.3, choose E ∈ FE(A) so that ψ(x, d) depends on E . Clearly E

is as wanted.

4.9 The finite equivalence relation theorem. If p, q ∈ Sm(B) , p 6= q

and both p and q do not fork over A ⊆ B , then there is E ∈ FE(A) such that
p(x) ∪ q(y) ` ¬E(x, y) .

Proof. Assume not. Then there are a and b such that a realizes p , b realizes
q and for all E ∈ FE(A) , |= E(a, b) . Let C ⊇ B be (|A| + ω)+ -saturated model.
By Exercise 4.2 (ii), Lemma 4.5 (i) and Lemma 2.6, there are a′ and b′ such that
a′ realizes p , b′ realizes q , a′ ↓A C , b′ ↓A C and for all E ∈ FE(A) , |= E(a′, a) ∧
E(b′, b) . Clearly this contradicts Lemma 4.8.

4.10 Definition.

(i) We define stp(a, A) , the strong type of a over A , to be the set

{E(x, a)| E ∈ FE(A)}.

By stp(a, A) = stp(b, A) we mean, that for all E ∈ FE(A) , |= E(a, b) .
(ii) We say that p ∈ S(A) is stationary, if for all a, b and B ⊇ A the following

holds: if t(a, A) = t(b, A) = p , a ↓A B and b ↓A B , then t(a, B) = t(b, B) .

Notice that stp(a, A) is not over A (but it is almost over A).

4.11 Exercise.

(i) If A ⊆ B , stp(a, A) = stp(b, A) , a ↓A B and b ↓A B , then t(a, B) = t(b, B) .
(ii) stp(a, A) ` t(a, A) .
(iii) If A is a model, then t(a,A) ` stp(a,A) . (Hint: Exercise 4.4 (ii).)
(iv) If A is a model, then every p ∈ S(A) is stationary.
(v) For all A ⊆ B and a , there is b such that stp(b, A) = stp(a, A) and b ↓A B .

(Hint: Exercise 4.6 and Lemma 2.6.)
(vi) For all A ⊆ B and C , there is an automorphism f ∈ Aut(A) such that

for all a ∈ C , stp(f(a), A) = stp(a, A) and f(a) ↓A B . (Hint: For every singleton
a ∈ C , choose a new constant ca . For a = (a0, ..., an) , write ca = (ca0

, ..., can−1
) .
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By (v), for a ∈ C , choose ba so that stp(ba, A) = stp(a, A) and ba ↓A B . Then, by
(i) above, show that the following set is consistent:

{E(ca, a)| a ∈ C, E ∈ FE(A)} ∪ {φ(ca, d)| φ(x, d) ∈ t(ba, B)}.)

5. Further properties of forking

In this section we collect the rewards of the hard work done in the two previous
sections.

5.1 Lemma. Assume A ⊆ B and a ↓A B . Then for all finite ∆ and
1 < ξ ≤ ω ,

R∆(t(a, B), ξ) ≥ R∆(stp(a, A), ξ).

Proof. We prove only the case ξ = 2, the other cases are similar. In order to
simplify the notation we assume that ∆ = {φ} . By Exercise 1.13, Rφ(stp(a, A), 2) =
n < ω . So by compactness, for all η ∈ 2n , there is aη such that

(i) stp(aη, A) = stp(a, A) ,
(ii) for all m < n and ξ ∈ 2m , there is bξ such that if η, η′ ∈ 2n , η � m = η′ �

m = ξ and η(m) 6= η′(m) , then |= ¬(φ(aη, bξ) ↔ φ(aη′ , bξ)) .
By Exercise 4.11 (vi), we may assume that for all η ∈ 2n , aη ↓A B . But then by
Exercise 4.11 (i), for all η ∈ 2n , t(aη, B) = t(a, B) and so (ii) above, implies that
R∆(t(a, B), 2) ≥ n .

5.2 Theorem. Assume A ⊆ B . Then a ↓A B iff for all finite ∆ ,

R∆(t(a, B), ω) = R∆(t(a, A), ω).

Proof. From right to left the claim follows immediately from the definition of
forking and Exercise 1.9 (ii). We prove the other direction: By Exercise 1.9 (ii), it is
enough to show that for all finite ∆, R∆(t(a, B), ω) ≥ R∆(t(a, A), ω) . By Lemma
5.1, it is enough to show that for all finite ∆, R∆(stp(a, A), ω) ≥ R∆(t(a, A), ω) .
This follows from Lemma 4.5 (ii) (and Exercise 1.9 (ii)).

5.3 Exercise.

(i) Assume A ⊆ B ⊆ C . Then a ↓A C iff a ↓A B and a ↓B C .
(ii) For every B and a , there is A ⊆ B of power < |T |+ such that a ↓A B .

(Hint: By Exercise 1.9 (v), for every finite ∆ there is finite A∆ ⊆ B such that
R∆(t(a, A∆), ω) = R∆(t(a, B), ω) .)

(iii) There are no increasing continues sequence Ai , i < |T |+ , and a such that
a 6 ↓Ai

Ai+1 for all i .

5.4 Lemma. Assume B is a model. If a ↓B b then b ↓B a .
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Proof. Assume not. Let ξ = |B||T | . For all i < ξ+ , choose ai and bi so that
t(ai,B) = t(a,B) , ai ↓B

⋃
j<i(aj∪bj) , t(bi,B) = t(b,B) and bi ↓B ai∪

⋃
j<i(aj ∪bj) .

Then by Exercise 4.11 (iv), t(bi,B∪aj) forks over B iff j > i . Clearly this contradicts
Theorem 3.3.

5.5 Theorem. For all A , a and b , a ↓A b implies b ↓A a .

Proof. Let B ⊇ A be a model. Choose b′ so that t(b′, A) = t(b, A) and
b′ ↓A B . Clearly we may assume that b′ = b (move B by an automorphism of M ,
if necessary). Choose a so that stp(a′, A) = stp(a, A) and a′ ↓A B ∪ b . Then by
Exercise 4.11 (i),

(*) t(a′, A ∪ b) = t(a, A ∪ b) .
By Exercise 5.3 (i) and Lemma 5.4, b ↓B a′ . Since b ↓A B , Exercise 5.3 (i) implies
b ↓A a′ , from which the claim follows by (*).

5.6 Exercise. Show that a ∪ b ↓B C iff a ↓B C and b ↓B∪a C . (Hint: Use
Theorem 5.5 and Exercise 5.3 (i).)

We finish this section by giving two characterizations for non-forking.

We prove the following lemma for Exercise 5.8 (ii) below.

5.7 Lemma. Assume a ∪ b ↓A B . Then a ↓A b iff a ↓B b .

Proof. From right to left this follows immediately from Exercise 5.3 (i). So we
prove the other direction. By a∪ b ↓A B and Theorem 5.5, B ↓A a∪ b . By Exercise
5.3 (i), B ↓A∪b a . By Theorem 5.5, a ↓A∪b B . By Exercise 5.3 (i) and a ↓A b ,
a ↓A B ∪ b . By Exercise 5.3 (i) again, a ↓B b .

For all sets A , we write A ↓B C if for all a ∈ A , a ↓B C . Notice that by
Exercise 5.6, if A = rng(a) , then A ↓B C iff a ↓B C .

5.8 Exercise.

(i) Assume that A is a model, for all i < j < ω , t(ai,A) = t(aj,A) and for all
i < ω , ai ↓A ∪j<iaj . Show that {ai| i < ω} is indiscernible over A . (Hint: Show
first that for all i < ω , ai ↓A ∪{aj | j < ω, j 6= i} and then, by using Exercise 4.11
(iv), prove by induction on n , that every sequence of length n of different elements
has the same type over A than (ai)i<n .)

(ii) If for all i < j < ω , stp(ai, A) = stp(aj, A) and for all i < ω , ai ↓A ∪j<iaj ,
then {ai| i < ω} is indiscernible over A . (Hint: By Exercise 4.11 (vi), choose a
model A ⊇ A so that A ↓A ∪i<ωai and apply Lemma 5.7 and (i) above.)

(iii)∗ Why cannot we prove (ii) as (i) was proved?

5.9 Definition. We say that A is strongly ξ -saturated, if for all a and A ⊆ A
of power < ξ , there is b ∈ A such that stp(b, A) = stp(a, A) .

5.10 Lemma. Assume ξ > |T | . If A is ξ -saturated, then A is strongly
ξ -saturated.
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Proof. Let A ⊆ A be of power < ξ and a arbitrary. Choose a model B ⊆ A
of power < ξ such that A ⊆ B . Choose b ∈ A so that t(b,B) = t(a,B) . By Exercise
4.11 (iii), b is as wanted.

5.11 Theorem. Assume A ⊆ B . Then a ↓A B iff for all C ⊇ B there is b
such that t(b, B) = t(a, B) and t(b, C) does not split strongly over A .

Proof. From left to right this follows from Lemmas 2.6 and 3.11. We prove the
other direction: For a contradiction assume a 6 ↓A B . Let ξ = |T |+ |A| and C ⊇ B

be a ξ+ -saturated model. Choose b so that t(b, B) = t(a, B) and t(b, C) does not
split strongly over A . Since a 6 ↓A B , we can choose c ∈ B ⊆ C so that b 6 ↓A c .

For all i < ξ+ , choose ci so that stp(ci, A) = stp(c, A) and ci ↓A c ∪
⋃

j<i cj .

Then by Exercise 5.8 (ii), {c} ∪ {ci| i < ξ+} is indiscernible over A . Since t(b, C)
does not split strongly over A , b 6 ↓A ci for all i < ξ+ . Because ci ↓A

⋃
j<i cj ,

b 6 ↓
A∪

⋃
j<i

cj
ci (exercise). This contradicts Exercise 5.3 (iii).

5.12 Exercise∗ .

(i) Assume A is λ(T ) -saturated model and B ⊇ A . Then a ↓A B iff there is
A ⊆ A of power < λ(T ) such that t(a, B) does not split over A . (Hint: Notice that
by Theorem 5.11 and Exercises 1.6 and 4.11 (iv), it is enough to show the following:
If A ⊆ A is such that |A| < λ(T ) and t(a,A) does not split over A , then there is b
such that t(b,A) = t(a,A) and t(b, B) does not split over A . Furthermore, if c is
another such sequence, then t(c, B) = t(b, B) . This not easy.)

(ii) Assume I is an infinite indiscernible set. Show that Av(I, I ∪ A) does
not fork over I and that Av(I, I) is stationary. (Hint: Show that it is enough to
prove that if t(a, I) = Av(I, I) and t(a, I ∪ b) 6= Av(I, I ∪ b) then a 6 ↓I b . Then
for a contradiction assume that this does not hold and choose ai , i < ω , so that
t(ai, I ∪a∪

⋃
j<i aj) = Av(I, I ∪a∪

⋃
j<i aj) and ai ↓I∪a∪

⋃
j<i

aj
b . Show that then

b ↓I a ∪
⋃

i<ω ai and that this contradicts Theorem 5.11.)
(iii) Prove that the claims in Example 2.2 are true. (Hint for (i): Clearly we may

assume that a 6∈ A . Let q′ be the set of formulas En(x, b) such that b ∈ B and there
is c ∈ A , such that |= En(b, c)∧En(a, c) . Let q = t(a, A)∪q′∪{¬En(x, b)| En(x, b) 6∈
q′} ∪ {x 6= b| b ∈ B} . Show first that if p ∈ S(B) and q 6⊆ p , then p forks over
A . Then show that there is exactly one p ∈ S(B) , such that q ⊆ p . Finally apply
Lemma 2.6. Notice that above we proved that every p ∈ S1(A) is stationary.

Hint for (ii): As (i), except now the type t(a, A) need not be stationary. So
instead of one, define a set Q of types q ∈ S(B) such that if p ∈ S(B) − Q then
p forks over A and if some q ∈ Q forks over A , then every q ∈ Q forks over A .
Notice that if t(a, B) forks over A ⊆ B and f ∈ Aut(A) , then t(f(a), f(B)) forks
over A .)

5.13 Definition. Assume p ∈ S(B) . We say that ψ(y) defines p � φ(x, y) ,
if for all b ∈ B , φ(x, b) ∈ p iff |= ψ(b) . If in addition, ψ is almost over A ⊆ B , we
say that p � φ is definable almost over A . If for all φ , p � φ is definable almost over
A , then we say that p is definable almost over A .
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5.14 Theorem.

(i) If p ∈ S(B) does not fork over A ⊆ B , then p is definable almost over A .

(ii) p ∈ S(B) does not fork over A ⊆ B iff for all C ⊇ B , there is q ∈ S(C)
such that p ⊆ q and q is definable almost over A .

Proof. (i): If p � A is algebraic, then the claim is easy (if a realizes p , then
φ(a, y) is almost over A). So we assume that p � A is not algebraic. By Lemma
2.4, p is not algebraic. By Theorem 3.9, choose an infinite indiscernible I based on
A so that for all a ∈ I , t(a, B) = p . Let φ = φ(x, y) be arbitrary. By Lemma 4.7,
there is n such that φn(I, y) is almost over A . Trivially φn(I, y) defines p � φ .

(ii): From left to right this follows from Lemma 2.6 and (i). For the other
direction, let ξ = |T | + |A| . Choose ξ+ -saturated C ⊇ B and q ⊇ p definable
almost over A . For a contradiction assume that q forks over A . Choose φ(x, b) ∈ q

so that it forks over A . For i < ξ+ , choose bi so that stp(bi, A) = stp(b, A) and
bi ↓A ∪j<ibj . Since q � φ is definable almost over A and stp(bi, A) = stp(b, A) ,
φ(x, bi) ∈ q for all i < ξ+ . Let a realize q . Then for all i < ξ+ , a 6 ↓A bi . Because
bi ↓A ∪j<ibj , a 6 ↓

A∪
⋃

j<i
bj
bi . This contradicts Exercise 5.3 (iii).

Theorem 5.14 (ii) is often used as a definition of forking.

5.15 Exercise∗ .

(i) If B is a model and p ∈ S(B) is definable almost over A ⊆ B , then for
all C ⊇ B , there is q ∈ S(C) such that p ⊆ q and q is definable almost over A .
(Hint: For all φ , choose ψφ so that it is almost over A and defines p � φ and choose
Eφ ∈ FE(A) so that ψφ depends on Eφ . Show that

{φ(x, c)| ∃b ∈ B(|= Eφ(b, c) ∧ φ(x, b) ∈ p)}

is the wanted q .)

(ii) If B is a model, then p ∈ S(B) does not fork over A ⊆ B iff p is definable
almost over A .

6. An example of the use of forking

To give an example of the use of forking we prove a structure theorem for a class
of theories. Since our knowledge of classification theory is still somewhat limited,
the class must be very simple. Our class will be the class of theories which are
trivial, superstable and unidimensional. An example of such theory is the theory of
an equivalence relation which says that the number of equivalence classes is infinite
and each equivalence class has size n , n < ω . Although our class of theories is as
simple as one can think of, in the proof of the structure theorem, many ideas from
the proofs of ’the proper structure theorems’ are present.
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6.1 Definition.

(i) A theory is superstable if it is stable and there are no Ai , i < ω , and a such
that for all i < ω , Ai ⊆ Ai+1 and a 6 ↓Ai

Ai+1 .

(ii) A stable theory is trivial if for all a, b, c and A , a 6 ↓A b ∪ c and b ↓A c

imply that a 6 ↓A b or a 6 ↓A c .

(iii) Assume p, q ∈ S(A) . We say that p is almost orthogonal to q if for all a
and b the following holds: If a realizes p and b realizes q then a ↓A b . We say that
p is orthogonal to q if for all a, b and B ⊇ A the following holds: If a realizes p , b
realizes q , a ↓A B and b ↓A B then a ↓B b .

(iv) A stable theory is unidimensional if for all A and p, q ∈ S(A) , the following
holds: If p and q are not algebraic, then p is not orthogonal to q .

6.2 Exercise∗ .

(i) Show that T2 is superstable but Tω is not.

(ii) Assume T = Tω . Show that non-algebraic types p, q ∈ S(A) are orthogonal
iff there are n < ω and a ∈ A such that En(x, a) ∈ p but En(x, a) 6∈ q or vice versa
(i.e. p 6= q ). Conclude that Tω is not unidimensional.

(iii) Show that Tω is trivial. (Hint: Modify Example 2.2 so that it holds for all
finite sequences a .)

6.3 Fact. ([Hr]) Every unidimensional stable theory is superstable.

6.4 Lemma. Assume T is trivial. If p, q ∈ S(A) are almost orthogonal, then
they are orthogonal.

Proof. Assume not. Choose a, b and B ⊇ A so that a realizes p , b realizes q ,
a 6 ↓B b and

(*) a ↓A B and b ↓A B .

Then a 6 ↓A B ∪ b and so triviality and (*) imply that a 6 ↓A b , a contradiction.

6.5 Lemma. Assume T is superstable and C ⊆ B . If C 6= B , then there is
a singleton b ∈ B − C and φ(x, c) , c ∈ C , such that |= φ(b, c) and for all b′ ∈ B

and c′ ∈ C , if t(c′, ∅) = t(c, ∅) , |= φ(b′, c′) and b′ 6 ↓c′ C , then b′ ∈ C .

Proof. If not then we can easily find φi(x, ci) , i < ω , such that for all i < ω ,
∧j≤iφi(x, ci) is consistent and φi(x, ci) forks over ∪j<icj . Clearly this contradicts
the assumption that T is superstable.

6.6 Definition. Assume κ is a cardinal, not necessarily infinite. We write
A ⊆κ B , if for all C ⊆ A of power < κ and b ∈ B , there is a ∈ A such that
t(a, C) = t(b, C) .

6.7 Exercise∗ .

(i) For all B and regular (infinite) κ , there is A such that A ⊆κ B and
|A| ≤ κ|T | .

(ii) If B is a model and A ⊆ω B , then A is a model.
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6.8 Theorem. Assume T is trivial, superstable and unidimensional and B
is a model. Choose any A ⊆1 B and ai ∈ B − A , i < α , so that (ai)i<α is a
maximal sequence satisfying the following: for all i < α , ai ↓A ∪j<iaj . Then
B = acl(A ∪

⋃
i<α ai) .

Proof. Let C = acl(A∪
⋃

i<α ai) . For a contradiction, assume C 6= B . Choose
b and φ(x, c) as in Lemma 6.5. Choose c′ ∈ A so that t(c′, ∅) = t(c, ∅) . Since C is
algebraicly closed, t(b, C) is not algebraic. So we can find a 6∈ C such that |= φ(a, c′)
and a ↓A C . Then t(a, C) is not algebraic and since T is unidimensional, t(a, C)
is not orthogonal to t(b, C) . By Lemma 6.4, we may assume that a 6 ↓C b . Choose
ψ(x, d, b) , d ∈ C , so that it forks over C and |= ψ(a, d, b) . Since B is a model, we
can choose a′ ∈ B so that |= φ(a′, c′) ∧ ψ(a′, d, b) . Then a′ 6 ↓C b and so a′ 6∈ C .
So by the choice of φ(x, c) , a′ ↓c′ C . Since c′ ∈ A , a′ ↓A C . This contradicts the
maximality of (ai)i<α .

6.9 Exercise∗ . We write I(κ, T ) for the number of non-isomorphic models
in {A |= T | |A| = κ} . Assume T is trivial, superstable and unidimensional theory.

Then for all β , I(ℵβ, T ) ≤ |ω + β|(2
|T |) . (Hint: Use Theorem 6.8 and show first

that the isomorphism type of B is determined by the isomorphism type of A ∪⋃
i<α ai . Show then that if A is a model then the isomorphism type of A∪

⋃
i<α ai

is determined by the isomorphism type of A and the cardinals κp , p ∈ S(A) , where
κp = |{i < α| ai realizes p}| . Finally count the number of possible choices of A and
(κp)p∈S(A) , in the case A is chosen to be as small as possible.)

Notice that usually |ω+ β|(2
|T |) is very small compared to ℵβ , and so it is also

very small compared to 2ℵβ , which is the maximal number of models any theory
can have in power ℵβ .

6.10 Fact. Our structure theorem and the estimate of the number of models
are very weak (in every cardinality the number of models is ≤ 2(2

|T |) ). The idea in
this section was to demonstrate the use of forking.
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PART II: PRIME MODELS

In many cases, as in section 6, by using the independence notion studied in
the previous part, we can find a ’base’ for every model of T . To get a structure
theorem, we need to show that this ’base’ determines the structure of the model.
Prime (primary) models provide a method to do this. In section 6, we assumed
triviality in order to be able to use algebraic closure instead of prime models.

7. General isolation notion

We will construct the required prime models by using isolation as a tool. It
depends on the properties of T , which isolation notion F is the right one. So in
order to avoid repeating same arguments several times, our approach is axiomatic.
When reading the axioms, one may keep in his mind the following two examples:
(p, A) ∈ F s

λ if (p, A) ∈ Pλ (see below) and p � A ` p and (p, A) ∈ F
f
λ if (p, A) ∈ Pλ

and p does not fork over A . In the next section we give more examples.
Let λ be an infinite cardinal and Pλ be the class of those pairs (p, A) such that

|A| < λ and for some B ⊇ A , p ∈ S(B) . Let Fλ ⊆ Pλ be such that Axioms I-IX
below are satisfied. We write (t(C,B), A) ∈ Fλ if for all c ∈ C , (t(c, B), A) ∈ Fλ .

Ax I: If rng(a) = rng(b) , then (t(a, B), A) ∈ Fλ iff (t(b, B), A) ∈ Fλ and for
all automorphisms f , (p, A) ∈ Fλ iff (f(p), f [A]) ∈ Fλ .

Ax II: If a ∈ A ⊆ B and |A| < λ , then (t(a, B), A) ∈ Fλ .
Ax III: If A ⊆ B ⊆ C ⊆ dom(p) , |B| < λ and (p, A) ∈ Fλ , then (p � C,B) ∈

Fλ .
Ax IV: If (t(a ∪ b, B), A) ∈ Fλ , then (t(a, B), A) ∈ Fλ .
Ax V: If |C| < λ and (t(a ∪ C,B), A) ∈ Fλ , then (t(a, B ∪ C), A ∪ C) ∈ Fλ .
Ax VI: If A,B ⊆ C , (t(b, C ∪ a), B) ∈ Fλ and (t(a, C), A) ∈ Fλ , then (t(a, C ∪

b), A) ∈ Fλ .
Ax VII: If A ⊆ B , (t(a, B ∪ C), A ∪ C) ∈ Fλ and (t(C,B), A) ∈ Fλ , then

(t(a ∪ C,B), A) ∈ Fλ .
Ax VIII: If Bi , i < δ , is increasing sequence of sets, p ∈ S(∪i<δBi) and for all

i < δ , (p � Bi, A) ∈ Fλ , then (p, A) ∈ Fλ .
Ax IX: If (p, A) ∈ Fλ and dom(p) ⊆ B , then there are A′ ⊆ B and q ∈ S(B)

such that p ⊆ q and (q, A′) ∈ Fλ .

7.1 Definition.

(i) We say that (A, (ai, Bi)i<α) is an Fλ -construction over A if for all i < α ,
(t(ai, Ai), Bi) ∈ Fλ , where Ai = A∪

⋃
j<i aj . We say that C is Fλ -constructible over

A if there is an Fλ -construction (A, (ai, Bi)i<α) over A such that C = A∪
⋃

i<α ai .
(ii) We say that C is (Fλ, κ) -saturated if for all B ⊆ C of power < κ and

p ∈ S(B) the following holds: if for some A , (p, A) ∈ Fλ , then p is realized in C .
We say that C is Fλ -saturated if it is (Fλ, |C|

+) -saturated.
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(iii) We write µ(Fλ) for the least cardinal µ such that for all κ ≥ µ and C , if
C is (Fλ, µ) -saturated then it is (Fλ, κ) -saturated. If such µ does not exist, then
we write µ(Fλ) = ∞ .

(iv) We say that C is Fλ -primary ((Fλ, κ) -primary) over A if it is Fλ -con-
structible over A and Fλ -saturated ((Fλ, κ) -saturated).

(v) We say that C is Fλ -primitive over A if for all Fλ -saturated B ⊇ A there
is an elementary embedding f : C → B such that f � A = idA . We say that C is
Fλ -prime over A if it is Fλ -primitive and Fλ -saturated.

7.2 Exercise.

(i) Show that for all A and κ , there is an (Fλ, κ) -primary set over A and if
µ(Fλ) <∞ then there is also an Fλ -primary set over A . (Hint: Use Ax IX.)

(ii) Show that if C is Fλ -constructible over A , then it is Fλ -primitive over A
and so Fλ -primary sets over A are Fλ -prime over A .

7.3 Fact. ([Sh]) In many cases, Fλ -prime models are Fλ -primary. E.g. If T
is superstable, then for all λ and A , F a

λ -prime models over A are F a
λ -primary over

A . (For F a
λ , see section 10.)

Notice that in Exercise 7.2, only axioms AX I and Ax IX and the assumption
µ(Fλ) < ∞ were used. (In (ii) only Ax I is needed.) In most cases this exercise
together with Lemma 10.7 and Exercise 10.9 are all we need to know about primary
models to prove a structure theorem. However, if all the axioms are satisfied and λ

is regular, then a lot more is known about Fλ -primary models. In the case of our
structure theorem in section 11, all the axioms are satisfied and λ = ω , which is a
regular cardinal and this is used in order to make the proof short. For an alternative
way of proving a structure theorem, see [HS2]. See also Exercise 11.9 (i).

From now on in this section, we assume that λ is regular.

Let (A, (ai, Bi)i<α) be an Fλ -construction. We say that X ⊆ α is closed if for
all i ∈ X , Bi ⊆ A ∪

⋃
j∈X aj .

7.4 Lemma. If (A, (ai, Bi)i<α) is an Fλ -construction and X ′ ⊆ α is of power
< λ , then there is closed X ⊆ α such that X ′ ⊆ X and |X | < λ .

Proof. We construct a tree (forest) R such that it’s first level consists of ele-
ments of X ′ and if i ∈ R then the set of the immediate successors of i is (a copy
of) Bi . Clearly R does not have infinite branches and since λ is regular, each level
of R is of power < λ . But then |R| < λ (if λ = ω use König’s lemma). Clearly R

is closed.

7.5 Definition. We say that C is Fλ -atomic over A if for all c ∈ C , there is
B ⊆ A such that (t(c, A), B) ∈ Fλ .

7.6 Theorem. (λ regular) If C is Fλ -constructible over A then it is Fλ -
atomic over A .
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Proof. Let (A, (ai, Bi)i<α) be an Fλ -construction of C . By Ax IV, we may
assume that for all i < α , ai ∩ Ai = ∅ (Ai = A ∪

⋃
j<i aj ).

Claim. If X ⊆ α is closed and |X | < λ , then there is B ⊆ A such that
(t(∪i∈Xai, A), B) ∈ Fλ .

Proof. We prove this by induction on i = ∪{j + 1| j ∈ X} ≤ α . The case i is
limit is left as an exercise. (Hint: Use Ax III, the assumption that λ is regular and
the fact that for all j < i , X∩j is closed.) So assume that the claim holds for i . We
prove it for i+1. For this let X ⊆ α be closed, |X | < λ and ∪{j+1| j ∈ X} = i+1.
Let D = ∪{aj |j ∈ X ∩ i} . By the induction assumption, there is B′ such that
(t(D,A), B′) ∈ Fλ . Let B = B′ ∪ (Bi ∩A) . By Ax VII and Ax III, B is as wanted.
Claim.

Now let c ∈ C . Choose a ∈ A and b ∈ C − A such that c = a ∪ b . By Ax
IV, we may assume that there is finite X ′ ⊆ α such that b = ∪i∈X′ai . By Lemma
7.4, there is closed X ⊆ α such that X ′ ⊆ X and |X | < λ . By Claim, we can
choose B′ so that (t(b, A), B′) ∈ Fλ . Let B = B′ ∪ a . By Ax VII, Ax II and Ax
III, (t(c, A), B) ∈ Fλ .

7.7 Lemma. Let (A, (ai, Bi)i<α) be an Fλ -construction.
(i) For all β < α , (Aβ, (ai, Bi)β<i<α) is an Fλ -construction (Aβ = A∪

⋃
i<β ai ).

(ii) If D ⊆ A ∪
⋃

i<α ai is of power < λ , then there are Ci , i < α , such that
(A ∪D, (ai, Ci)i<α) is an Fλ -construction.

Proof. (i) is immediate so we prove (ii): By (i), Theorem 7.6, Ax III and
the assumption that λ is regular, for all i < α we can find C′

i such that (t(ai ∪
D,Ai), C

′
i) ∈ Fλ . Let Ci = C′

i ∪D . Then by Ax V, (t(ai, Ai ∪D), Ci) ∈ Fλ .

7.8 Exercise. For l ∈ {1, 2} , let (Al, (ali, B
l
i)i<αl) be an Fλ -construction of

an Fλ -primary set Cl over Al . Assume that f is an elementary function such that
A1 ⊆ dom(f) ⊆ C1 , A2 ⊆ rng(f) ⊆ C2 , |dom(f)−A1| < λ and |rng(f)−A2| < λ .

(i) For all i < α1 , there is an elementary function g ⊇ f such that dom(g) =
dom(f) ∪ a1i . (Hint: Use Lemma 7.7 (ii) and Theorem 7.6.)

(ii) For all i < α1 , there is an elementary function g ⊇ f and closed X ⊆ α1

and Y ⊆ α2 such that i ∈ X , dom(g) = A1 ∪
⋃

i∈X a1i and rng(g) = A2 ∪
⋃

i∈Y a
2
i .

(Hint: Use (i) and Lemma 7.4.)

7.9 Lemma. Let (A, (ai, Bi)i<α) be an Fλ -construction and s : β → α be
one-one and onto. If for all i < β , Bs(i) ⊆ A ∪

⋃
j<i as(j) , then (A, (as(i), Bs(i))i<β)

is an Fλ -construction.

Proof. Let i < β . For all j ≤ α , we write Dj = A ∪ Bs(i) ∪
⋃
{as(k)| k <

i, s(k) < j} . By induction on j ≤ α , we show that (t(as(i), Dj), Bs(i)) ∈ Fλ . This
is enough, since Dα = A ∪

⋃
k<i as(k) .

If j ≤ s(i) + 1, then Dj ⊆ A ∪
⋃

k<s(i) ak and so by Ax III, the claim follows.
If j is limit, then the claim follows from the induction assumption and Ax VIII. So
assume j = k + 1 and k > s(i) . We may also assume that Dj = Dk ∪ {ak} , since
otherwise there is nothing to prove. Then there is m < i such that s(m) = k . By
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the assumption on s , Bk ⊆ Dk . Then by Ax III, (t(ak, Dk ∪ as(i)), Bk) ∈ Fλ . By
the induction assumption and Ax VI, the claim follows.

7.10 Lemma. For l ∈ {1, 2} , let (A, (ali, B
l
i)i<αl) be an Fλ -construction of an

Fλ -primary set Cl over A . Assume that f is an elementary function and X l ⊆ αl ,
i ∈ {1, 2} , are closed sets such that dom(f) = A∪

⋃
i∈X1 a1i , rng(f) = A∪

⋃
i∈X2 a2i

and f � A = idA . Then for all i∗ < α1 , there are an elementary function g ⊇ f and
closed Y l ⊆ αl such that X1 ∪ {i∗} ⊆ Y 1 , X2 ⊆ Y 2 , dom(g) = A ∪

⋃
i∈Y 1 a1i and

rng(g) = A ∪
⋃

i∈Y 2 a2i .

Proof. Clearly we may assume that i∗ 6∈ X1 For l ∈ {1, 2} , let βl be the
order type of X l and γl be the order type of αl − X l . Let δl = βl + γl and
sl : δl → αl be such that for all i < βl , sl(i) is the i :th member of X l and for
all i < γl , sl(βl + i) is the i :th member of αl − X l . Then s1 and s2 satisfy the
assumptions of Lemma 7.9 and so by Lemma 7.9, 7.7 (i) and Exercise 7.8 (ii), we can
find an elementary function g ⊇ f and closed Zl ⊆ γl such that (s1)−1(i∗) ∈ Z1 ,
dom(g) = dom(f) ∪

⋃
i∈Z1 a1s1(β1+i) and rng(g) = rng(f) ∪

⋃
i∈Z2 a2s2(β2+i) . Let

Y l = X l ∪ sl[Zl] . Clearly g and Y l , l ∈ {1, 2} , are as wanted.

7.11 Theorem. (λ regular) Fλ -primary sets over A are unique up to iso-
morphism over A .

Proof. Let (A, (bi, Bi)i<β) be an Fλ -construction of an Fλ -primary set B over
A and let (A, (ci, Ci)i<γ) be an Fλ -construction of an Fλ -primary set C over A .
By induction on i ≤ α = max{β, γ} , we choose elementary functions fi and closed
sets Xi ⊆ β and Yi ⊆ γ such that

(i) f0 = idA , X0 = Y0 = ∅ ,
(ii) for all i < j , fi ⊆ fj , Xi ⊆ Xj and Yi ⊆ Yj ,
(iii) dom(fi) = A ∪

⋃
k∈Xi

bk and rng(fi) = A ∪
⋃

k∈Yi
ck ,

(iv) if i < β , then i ∈ Xi+1 and if i < γ , then i ∈ Yi+1 .
If i is limit, we let fi = ∪j<ifj , Xi = ∪j<iXj and Yi = ∪j<iYj . Clearly these are
as wanted. If i = j + 1, then the existence of fi , Xi and Yi follows from Lemma
7.10. Clearly fα is an elementary function from B onto C and fα � A = idA .

8. Examples of isolatation notions

We recall that we have assumed that T is stable.

8.1 Definition.

(i) As already mentioned, we define F s
λ to be the set of all pairs (p, A) ∈ Pλ

such that p � A ` p .
(ii) We define F t

λ to be the set of all pairs (p, A) ∈ Pλ which satisfy the following:
there is q ⊆ p � A such that |q| < λ and q ` p .

Notice that F t
ω -isolation is the usual isolation notion.
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8.2 Lemma. If λ > |T | , then F s
λ satisfies Ax IX.

Proof. Assume not. Let p , A and B exemplify this. Then for all η ∈ 2≤λ , we
can find pη and Aη ⊆ B such that

(i) p() = p � A and A() = A ,

(ii) for all η , pη ∈ S(Aη) , Aη_(0) = Aη_(1) and |Aη_(0) − Aη| < ω ,

(iii) if η is an initial segment of ξ , then pη ⊆ pξ ,

(iv) if α = length(η) is limit, then pη = ∪β<αpη�β ,

(v) for all η , pη_(0) is contradictory with pη_(1) .

By Exercise 1.11 (ii), we can find η ∈ 2λ such that for all α < λ there is a singleton
∆ for which R∆(pη�(α+1) � ∆, 2) < R∆(pη�α � ∆, 2). Since λ > |T | , there are
infinite X ⊆ λ and a singleton ∆ such that for all α ∈ X , R∆(pη�(α+1) � ∆, 2) <
R∆(pη�α � ∆, 2), a contradiction.

8.3 Exercise.

(i) Show that F s
λ satisfies the axioms Ax I-VIII.

(ii)∗ Show that F t
λ satisfies the axioms Ax I-VIII and if T is λ-stable, then

it satisfies also Ax IX. (Hint for Ax IV: If q(x, y) ` t(a ∪ b, B) , then {∃y ∧ r| r ⊆
q finite} ` t(a, B) . This idea works also in the case of Ax VII. Hint for Ax VIII:
Notice that p � B0 ` p . Hint for Ax IX: Assume not. Essentially as in the proof
of Lemma 8.2, construct a tree of height κ , where κ is the least cardinal such that
2κ > λ . Use the tree to show that T is not λ-stable.)

8.4 Lemma. µ(F s
λ) ≤ λ .

Proof. Assume C is (F s
λ , λ)-saturated. We show that C is (F s

λ , |C|
+)-satu-

rated. For this let (p, A) ∈ F s
λ be such that dom(p) ⊆ C . Then (p � A,A) ∈ F s

λ

and so there is c ∈ C which realizes p � A . But then c realizes p .

8.5 Exercise.

(i)∗ µ(F t
λ) ≤ λ .

(ii) Show that every Fλ -saturated set is a model, if the following holds: For all
B and a formula φ(x) over B , if |= ∃xφ , then there are A ⊆ B and p ∈ S(B) such
that φ ∈ p and (p, A) ∈ Fλ .

(iii) C is an F s
λ -saturated set iff it is a λ-saturated model.

(iv)∗ Assume T is ω -stable. Then C is an F t
ω -saturated set iff it is a model.

9. Spectrum of stability

To continue our studies of prime models, we need more knowledge on stability.

9.1 Definition. Let κ(T ) be the least cardinal κ such that there are no Ai ,
i < κ , and a such that for all i < j , Ai ⊆ Aj and a 6 ↓Ai

Aj .
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9.2 Exercise.

(i) κ(T ) ≤ |T |+ . (Hint: Use Theorem 5.2 and the idea from the proof of Lemma
8.2.)

(ii) For all A and p ∈ S(A) , there is B ⊆ A of power < κ(T ) such that p does
not fork over B .

9.3 Lemma. If ξ<κ(T ) > ξ , then T is not ξ -stable.

Proof. Choose κ < κ(T ) so that ξ<κ = ξ < ξκ . Then there are ai , i < κ , and
a such that for all i < κ , a 6 ↓∪j<iaj

ai . Let < be a well-ordering of ξ≤κ such that

if η is an initial segment of η′ , then η < η′ . For all η ∈ ξ≤κ , choose aη so that
(i) for all η ∈ ξκ , the function that takes ai to aη�i and a to aη is elementary,
(ii) for all η ∈ ξ≤κ , if α = length(η) , then aη ↓∪β<αaη�β

∪{aη′ | η′ < η} .
Then the following holds: If η ∈ ξκ and α < κ and A is the set of those aη′ such that
η′ ∈ ξ≤κ and η � α is not an initial segment of η′ , then aη ↓∪β<αaη�β

A . (Exercise,
prove by induction on < .) So if η, η′ ∈ ξκ and η 6= η′ , then t(aη, B) 6= t(aη′ , B) ,
where B = ∪τ∈ξ<κaτ . By the choice of κ , T is not ξ -stable.

9.4 Exercise.

(i) If T is ξ -stable, then cf(ξ) ≥ κ(T ) , especially κ(T ) ≤ cf(λ(T )) .
(ii) If T is ξ -stable, then for all A of power ≤ ξ there is a model B ⊇ A of

power ≤ ξ . (Hint: For all i < ω , choose Ai of power ≤ ξ so that A0 = A , every
p ∈ Ai is realized in Ai+1 and if i < j , then Ai ⊆ Aj . Then ∪i<ωAi is as wanted.)

(iii) Assume p ∈ S(A) and B ⊇ A . Then

|{q ∈ S(B)| p ⊆ q, q does not fork over A}| ≤ λ(T ).

(Hint: By (ii) and Exercise 4.11 (iv), prove the claim first under the additional
assumption |A| ≤ λ(T ) .)

9.5 Theorem. T is ξ -stable iff ξ = λ(T ) + ξ<κ(T ) .

Proof. From left to right this follows from Lemma 9.3 and the definition of
λ(T ) . By Exercises 9.2 (ii), 9.4 (i) and 9.4 (iii), for all A , |S(A)| ≤ λ(T ) × λ(T )×
|A|<κ(T ) , from which the other direction follows.

9.6 Lemma. If T is ξ -stable, then there is a saturated model of power ξ .

Proof. Choose an increasing continuous sequence Ai , i ≤ ξ , of models of power
≤ ξ so that for all i < ξ and a , there is b ∈ Ai+1 such that t(b, Ai) = t(a, Ai) . We
show that A = Aξ is as wanted. For this let B ⊆ A be of power < ξ and b be
arbitrary. We show that t(b, B) is realized in A .

By Exercise 9.4 (i), there is α < ξ such that b ↓Aα
A .

Claim. There is β < ξ such that β ≥ α and B ↓Aβ
Aβ+1 .

Proof. Assume not. Then by the pigeon hole principle, we can find d ∈ B such
that

|{γ < ξ| d 6 ↓Aγ
Aγ+1}| ≥ cf(ξ).
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This is impossible by Exercise 9.4 (i). Claim.
Choose c ∈ Aβ+1 so that t(c, Aβ) = t(b, Aβ) . By Claim, c ↓Aβ

B and so by
stationarity, c realizes t(b, B) .

9.7 Exercise. If B is F s
λ -primary over A , then |B| ≤ λ(T )+ (|A|+λ)<κ(T ) .

10. a-prime models

10.1 Definition.

(i) We define F a
λ to be the set of the pairs (p, A) ∈ Pλ such that for some

a |= p , stp(a, A) ` p .
(ii) We say that f is a strong automorphism over A , f ∈ Saut(A) , if f ∈

Aut(A) and for all a and E ∈ FE(A) , a E f(a) .

10.2 Lemma.

(i) Assume f ∈ Aut(A) and for all c ∈ C and E ∈ FE(A) , c E f(c) , then
there is g ∈ Saut(A) such that f � C ⊆ g .

(ii) Assume (p, A) ∈ Pλ . Then (p, A) ∈ F a
λ iff for all a |= p , stp(a, A) ` p .

(iii) Assume A ⊆ B . If stp(a, A) = stp(b, A) , a ↓A B and b ↓A B , then
stp(a, B) = stp(b, B) .

(iv) If (t(a, B), A) ∈ F a
λ , then stp(a, A) ` stp(a, B) .

Proof. (i): By Exercise 4.11 (vi), choose a model B ⊇ A so that B ↓A C∪f(C) .
Then t(C,B) = t(f(C),B) and so there is g ∈ Aut(B) such that f � C ⊆ g . Clearly
g is as wanted.

(ii): Assume not. Then there are a, b |= p and c such that stp(a, A) ` p ,
stp(b,A)=stp(c,A) and c 6|= p . Choose f ∈ Aut(dom(p)) such that f(b) = a . Let
a′ = f(c) . Then stp(a′, A) = stp(a, A) but a′ 6|= p , a contradiction.

(iii) Assume not. Choose a model C ⊇ B such that C ↓B a∪b . Then by Exercise
4.11 (ii), t(a, C) 6= t(b, C) . Since a ↓A C and b ↓A C , we have a contradiction.

(iv) Immediate by (ii), (iii) and Exercise 4.11 (iv).

10.3 Exercise. Show that stp(a ∪ b, A) = stp(a′ ∪ b, A) does NOT imply
stp(a, A ∪ b) = stp(a′, A ∪ b) . (Hint: PM ⊆ M infinite, EM a finite equivalence
relation on PM , RM ⊆ PM × (M − PM) , for all a ∈ PM , |R(a,M)| = 2 and
{R(a,M)| a ∈ PM} is a partition of M− PM .)

10.4 Theorem. F a
λ satisfies Ax I-VIII and if λ ≥ κ(T ) , then it satisfies also

Ax IX.

Proof. We show Ax VII, the rest is left as an exercise. Assume Ax VII does not
hold. By Lemmas 10.2 (i) and (ii), choose a′ and C′ so that there is f ∈ Saut(A)
such that f(a′∪C′) = a∪C but t(a′∪C′, B) 6= t(a∪C,B) . Since (t(C,B), A) ∈ F a

λ ,
B ↓A C and B ↓A C′ . Let B′ = f(B) . By Lemma 10.2 (iii) and (i), there is g ∈
Saut(A∪C) such that g(B′) = B . Let a′′ = g(a) . Then t(a′′, B ∪C) 6= t(a, B ∪C)
but stp(a′′, A ∪ C) = stp(a, A ∪ C) , a contradiction.
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10.5 Lemma.

(i) If A is (F a
λ , κ) -saturated, then it is a model.

(ii) If λ ≥ κ(T ) , then µ(F a
λ ) ≤ λ+ |T |+ .

(iii) If for all B ⊆ A of power < λ and a there is b ∈ A such that stp(b, B) =
stp(a, B) , then A is F a

λ -saturated. And if λ ≥ κ(T ) , then the other direction is
true also.

(iv) If T is λ-stable and A is a λ-saturated model, then A is F a
λ -saturated.

(v) If A is F a
λ -primary over B , then |A| ≤ λ(T ) + (λ+ |B|)<κ(T ) .

Proof. (i): Trivial.
(ii): Let µ = λ + |T |+ and A be (F a

λ , µ)-saturated. Assume B ⊆ A and
(t(a, B), C) ∈ F a

λ . We show that t(a, B) is realized in A . By Ax IX, we may assume
that B = A . Since the number of formulas over C (modulo equivalence) is < µ and
A is a model, we can find D such that C ⊆ D ⊆ A , |D| < µ and t(a,D) ` stp(a, C) .
Since (t(a,D), C) ∈ F a

λ , there is b ∈ A such that t(b,D) = t(a,D) . Clearly b realizes
t(a, B) .

(iii): The first claim is trivial, so we prove the second: Let a be arbitrary and
B ⊆ A be of power < λ . We show that stp(a, B) is realized in A . Since λ ≥ κ(T ) ,
we can choose C and b such that B ⊆ C ⊆ A , |C| < λ , stp(b, B) = stp(a, B) and
stp(b, C) ` t(b, A) . Then t(b, A) is realised in A . Clearly this implies the claim.

(iv): We prove the following claim. It is easy to see (exercise) that this suffices.
Claim. If T is λ-stable, p ∈ S(A) , |A| ≤ λ and (ai)i<α is a sequence of

realizations of p such that for all i < j < α , stp(ai, A) 6= stp(aj , A) , then |α| ≤ λ .
Proof. By Exercises 9.4 (ii) and 4.11 (vi), choose a model B ⊇ A such that

|B| = λ and B ↓A ∪i<αai . By Exercise 4.11 (iii), for all i < j < α , t(ai,B) 6=
t(aj,B) . Since T is λ-stable, |α| ≤ λ . Claim.

(v): Immediate by (iv) and Lemma 9.6.

10.6 Exercise. Assume T is λ-stable, A is λ-saturated and A ⊆ A and B

are of power < λ . Then there is f ∈ Saut(A) such that f [B] ⊆ A . (Hint: Use
Lemma 10.5 and the fact that if stp(a, A) = stp(b, A) , then t(a, A∪ b) ` stp(a, A) .)

We write κr(T ) for the least regular cardinal ≥ κ(T ) .

10.7 Lemma. Assume x = a and λ ≥ κr(T ) or x = s and λ > |T | . If A is
F x
λ -saturated, A ⊆ B ∩D , D ↓A B and (B, (ci, Ci)i<α) is an F x

λ -construction over
B , then (B ∪D, (ci, Ci)i<α) is an F x

λ -construction over B ∪D .

Proof. We prove the first case, the other is similar. Assume not. Then we
can find F a

λ -saturated A , B , B′ , D , a and b such that A ⊆ B ∩ D , D ↓A B ,
(t(a, B), B′) ∈ F a

λ , stp(b, B′) = stp(a, B′) and t(b, B ∪ D) 6= t(a, B ∪ D) . Clearly
we may assume that d = D−A is finite, B′ ↓A∩B′ A and t(b, B′∪d) 6= t(a, B′∪d) .
By Lemma 10.5 (iii), choose d′ ∈ A such that stp(d′,A ∩ B′) = stp(d,A ∩ B′) .
By Lemma 10.2 (iii) and (i), there is f ∈ Saut(B′) such that f(d) = d′ . Then
t(f(b), B) 6= t(a, B) or t(f(a), B) 6= t(a, B) . Clearly this contradicts the assumption
that (t(a, B), B′) ∈ F a

λ .
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10.8 Definition. We write A .B C (A dominates C over B ) if for all d ,
d ↓B A implies d ↓B C .

10.9 Exercise.

(i) Assume x = a and λ ≥ κr(T ) or x = s and λ > |T | . If A is F x
λ saturated

and C is F x
λ -constructible over A ∪B , then B .A C . (Hint: Use Lemma 10.7.)

(ii) Assume B ⊆ A and a ∪ b ↓B A . Then a .A b iff a .B b .

11. Structure of a-saturated models

In this chapter we prove a structure theorem for a -saturated models assuming
that T is superstable and does not have dop.

Through out this section we assume that T is superstable (i.e. κ(T ) = ω ). We
write a -primary, a -saturated etc. for F a

κ(T ) -primary, F a
κ(T ) -saturated etc. If (P,<)

is a tree without branches of length > ω and t ∈ P is not the root, then by t− we
mean the unique immediate predecessor of t .

11.1 Definition.

(i) We say that p ∈ S(A) is (almost) orthogonal to B ⊆ A if p is (almost)
orthogonal to every q ∈ S(A) which does not fork over B .

(ii) We say that {ai| i < α} is A -independent if for all i < α ai ↓A ∪{aj| j <
α, j 6= i} .

(iii) We say that (P, f, g) is a decomposition of A if the following holds:

(a) P = (P,<) is a tree without branches of length > ω , f : P − {r} → A ,
where r is the root of P , and g : P → {A| A ⊆ A} ,

(b) g(r) is an a -primary model over ∅ ,

(c) for all t ∈ P , {f(u)| u− = t} is a maximal g(t) independent set of sequences
from A ,

(d) for all t, u ∈ P , if u− = t , then g(u) is a -primary over g(t) ∪ f(u) ,

(e) For all t , u and v from P , if v− = u and u− = t , then t(f(v), g(u)) is
orthogonal to g(t) .

11.2 Exercise.

(i) If A is a -saturated, B ⊆ A and p ∈ S(A) , then p is orthogonal to B iff p

is almost orthogonal to B . (Hint: See the proof of Lemma 10.7.)

(ii) Show that {ai| i < α} is A -independent iff for all i < α ai ↓A ∪{aj | j < i} .

(iii) Show that for all a -saturated A , there exists a decomposition of A .

(iv) Assume (P, f, g) is a decomposition of A . If t ∈ P is not the root, then
g(t) ↓g(t−) ∪{u ∈ P | t 6≤ u} . (Hint: Clearly it is enough to show that for all finite
downwards closed P ′ ⊆ P , the claim holds for (P ′, f � P ′, g � P ′) . Prove this by
induction on |P ′| .)
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11.3 Definition.

(i) Assume A is a -saturated. We say that a non-algebraic type t(a,A) is a
c-type (c for compulsion) if the following holds: If B ⊆ A is a -saturated and t(a,A)
is not orthogonal to B , then there is b 6∈ A such that b ↓B A and a .A b .

(ii) We say that p ∈ S(A) is regular if the following holds: if q ∈ S(B) is
a non-forking extension of p and r ∈ S(B) is a forking extension of p , then q is
orthogonal to r .

Given A ⊆ A and p ∈ S(A) , it would be nice if we could define a dimension
of p(A) by using forking as a dependence relation. However, this is not possible,
since not all the axioms of the general dependence relation are satisfied, transitivity
is lacking. Regularity is a property designed to give the transitivity.

We want to mention also, that if in the definition of c-type we replace domina-
tion by compulsion (whatever it is) we can give a marginally simpler proof for the
structure theorem. We do not do this because domination is a widely used concept
and compulsion is not. The notion of c-type is used only by the author.

11.4 Lemma. If A ⊆ B are a -saturated, A 6= B , then there is a ∈ B such
that t(a,A) is a c-type.

Proof. Since T is superstable, we can find finite A ⊆ A and a ∈ B such that
a 6∈ A and for all A′ ⊆ A and a′ ∈ B , if t(a′ ∪A′, ∅) = t(a∪A, ∅) and a′ 6∈ A , then
a′ ↓A′ A . We show that t(a,A) is a c-type. For this let C ⊆ A be a -saturated and
assume that t(a,A) is not orthogonal to C . By Exercise 11.2 (i), choose c so that
c ↓C A and c 6 ↓A a . Without loss of generality we may assume that A ↓A∩C C ∪ c
and c 6 ↓A a . Notice that then A ∪ a ↓A∩C C .

By Exercise 11.2 (ii), choose (A ∩ C) ∪ c -independent set I = {ai ∪ Ai| i < ω}
of realizations of t(a ∪ A, (A ∩ C) ∪ c) such that a0 = a and A0 = A . Then I is
not A ∩ C -independent, since otherwise for all i < ω , c 6 ↓∪j<iaj∪Aj

ai ∪ Ai . Let
n < ω be the least number such that every J ⊆ I of power n is A∩C -independent.
Without loss of generality we may assume that a0∪A0 6 ↓∪0<i<nai∪Ai

an∪An . Then

(∗) a0 6 ↓A0
∪0<i≤nai ∪ Ai.

By the choice of n , a0 ∪A0 ↓A∩C An ∪
⋃

0<i<n ai ∪Ai .
For all 0 < i < n , choose bi ∈ C and Bi ⊆ C and Bn ⊆ C such that

stp(Bn ∪
⋃

0<i<n

bi ∪Bi, A ∩ C) = stp(An ∪
⋃

0<i<n

ai ∪Ai, A ∩ C).

Then
t(Bn ∪

⋃

0<i<n

bi ∪Bi, A ∪ a) = t(An ∪
⋃

0<i<n

ai ∪ Ai, A ∪ a).

Let D ⊆ B be a -primary over A ∪ a . Then we can find b ∈ D such that

t(b ∪Bn ∪
⋃

0<i<n

bi ∪Bi, A ∪ a) = t(an ∪ An ∪
⋃

0<i<n

ai ∪Ai, A ∪ a).

By (*), b 6∈ A . By the choice of A and a , b ↓Bn
A , especially b ↓C A . Since

b ∈ D , by Exercise 10.8 (i) a .A b .
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11.5 Exercise∗ . Let a and A be as in the proof of Lemma 11.4. Show that
t(a,A) is regular. (Hint: Show first that t(a, A) is regular.)

11.6 Fact. ([Sh]) Regular types over a -saturated models are c-types.

11.7 Definition. We say that T has dop (dimensional order property) if
there are a -saturated Ai , i < 4 , and p ∈ S(A3) such that

(i) A0 ⊆ A1 ∩ A2 and A1 ↓A0
A2 ,

(ii) A3 is a -primary over A1 ∪ A2 ,
(iii) p is orthogonal to A1 and to A2 .

We say that T has ndop if it does not have dop.

11.8 Fact. ([Sh]) Assume T is λ-stable, has dop and λ > µ ≥ κr(T ) . Then
T has 2λ non-isomorphic F a

µ -saturated models of cardinality λ .

11.9 Theorem. Assume T is superstable with ndop, A is a -saturated and
(P, f, g) is a decomposition of A . If B ⊆ A is a -primary over ∪t∈P g(t) , then
B = A .

Proof. Assume not. Choose a ∈ A such that a 6∈ B . By Theorem 7.6, we can
find finite downwards closed P ∗ ⊆ P and C ⊆ B such that C is a -primary over
∪t∈P ∗g(t) and a ↓C B . So choose a so that in addition |P ∗| is minimal. Let D ⊆ A
be a -primary over C ∪ a . By Lemma 11.4, pick b ∈ D such that t(b, C) is a c-type.
Then b ↓C B and b 6∈ B . There are three cases:

1. There is no t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} . Let t be a leaf of P ∗

and P ′ = P ∗ − {t} . By Theorem 7.11 and Lemma 10.7, we can find C′ ⊆ C such
that it is a -primary over ∪u∈P ′g(u) and C is a -primary over g(t) ∪ C′ . By ndop,
t(b, C) is not orthogonal to C′ or to g(t) . We assume that t(b, C) is not orthogonal
to C′ , the other case is similar. Since t(b, C) is a c-type, we can find c′ 6∈ C such
that c′ ↓C′ C and b .C c

′ . By Exercise 10.9 (ii), we can find c from A so that c ↓C′ B
and c 6∈ B . This contradicts the choice of a and P ∗ .

2. There is t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} , t is not the root of P and
t(b, C) is not orthogonal to g(t−) . As in case 1 above, we get a contradiction with
the choice of a and P ∗ .

3. There is t ∈ P ∗ such that P ∗ = {u ∈ P ∗| u ≤ t} and t is the root of P
or t(b, C) is orthogonal to g(t−) . Clearly this contradicts (c) in the definition of
decomposition.

11.10 Exercise∗ .

(i) Show, without using Theorem 7.11, that if Theorem 11.9 holds, A and B
are a -saturated and (P, f, g) is a decomposion of both A and B , then A ∼= B .

(ii) Assume (P, f, g) is a decomposition of A , (P ′, f ′, g′) is a decomposition of
A′ , h : (P,<) → (P ′, <′) is an isomorphism and H : ∪t∈P g(t) → ∪t∈P ′g(t) is such
that for all t ∈ P , H � g(t) is an isomorphism onto g(h(t)) . Then H is elementary.

(iii) Show that we can add (f) below to the definition of decomposition and still
prove Theorem 11.9:

(f) if t ∈ P is not the root, then t(f(t), g(t−)) is regular.
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12. A non-structure theorem for strictly stable theories

In this chapter we prove the following theorem:

12.1 Theorem. Assume T is a stable unsuperstable theory and κ = cf(κ) >
(2|T |)+ . Then there are models Ai , i < 2κ , such that for all i < 2κ , |Ai| = κ and
for all i < j < 2κ , Ai 6∼= Aj .

Theorem 12.1 holds for all unsuperstable theories (even κ = cf(κ) > (2|T |)+

replaced by κ > |T |). We assume stability since this makes it possible for us to
prove the theorem by using forking and primary models which are the topic of this
paper. The proof is from [HS1]. Notice that below we construct the models Ai so
that they are F a

ω -saturated (and more).
Through out this section, we assume that T is a stable unsuperstable theory.

Let λ = (2|T |)+ We write s -primary, s -saturated etc. for F s
λ -primary, F s

λ -saturated
etc. We say that t(a, A) s -isolates t(a, B) if (t(a, B), A) ∈ F s

λ .

Let J ⊆ κ≤ω be such that it is closed under initial segments. If η, ξ ∈ J then
by r′(η, ξ) we mean the longest element of J which is an initial segment of both η

and ξ . If u, v ∈ I = Pω(J) (=the set of all finite subsets of J ) then by r(u, v) we
mean the largest set R which satisfies

(i) R ⊆ {r′(η, ξ)| η ∈ u, ξ ∈ v}
(ii) if η ∈ R , ξ ∈ u , τ ∈ v and η is an initial segment of r′(ξ, τ) , then

η = r′(ξ, τ) .
We order I by u ≤ v if for every η ∈ u there is ξ ∈ v such that η is an initial segment
of ξ i.e. r(u, v) = r(u, u) (= {η ∈ u| ¬∃ξ ∈ u(η is a proper initial segment of ξ)}).

12.2 Definition. Assume J ⊆ κ≤ω is closed under initial segments and
I = Pω(J) . Let Σ = {Au| u ∈ I} be an indexed family of sets. We say that Σ is
strongly independent if

(i) for all u, v ∈ I , u ≤ v implies Au ⊆ Av ,
(ii) if u, ui ∈ I , i < n , and B ⊆ ∪i<nAui

has power < λ , then there is an

automorphism f = f
Σ,B

(u,u0,...,un−1)
(of M) such that f � (B ∩ Au) = idB∩Au

and

f(B ∩ ui) ⊆ Ar(u,ui) .

The model construction in Lemma 12.3 below is a generalized version of the
construction used in [Sh1] XII.4.

12.3 Lemma. Assume that Σ = {Au| u ∈ I} , I = Pω(J) , is strongly
independent. Then there are sets Au , u ∈ I , such that

(i) for all u, v ∈ I , u ≤ v implies Au ⊆ Av ,
(ii) for all u ∈ I , Au is s -primary over Au , (and so by (i), ∪u∈IAu is a model),

(iii) if v ≤ u , then Au is s -atomic over ∪u∈IAu and s -primary over Av ∪Au ,
(iv) if J ′ ⊆ J is closed under initial segments and u ∈ Pω(J

′) , then ∪v∈Pω(J ′)Av

is s -constructible over Au ∪
⋃

v∈Pω(J ′)Av .
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Proof. Let {ui| i < α∗} be an enumeration of I such that u ≤ v and v 6≤ u

implies i < j . It is easy to see that we can choose α , γi < α for i < α∗ , aγ and
Bγ for γ < α , and s : α→ I so that

(a) γ0 = 0 and (γi)i<α∗ is increasing and continuous,

(b) if γi ≤ γ < γi+1 , then s(γ) = ui ,

(c) for all γ < α , |Bγ| < λ and if we write for γ ≤ α , Aγ
u = Au ∪ {aδ| δ <

γ, s(δ) ≤ u} , then Bγ ⊆ A
γ

s(γ) ,

(d) for all γ < α , if we write Aγ = ∪u∈IA
γ
u , then t(aγ, Bγ) s -isolates t(aγ, A

γ) ,

(e) for all i < α∗ , there are no a and B ⊆ A
γi+1

ui of power < λ such that t(a, B)
s -isolates t(a, Aγi+1) ,

(f) if aδ ∈ Bγ , then Bδ ⊆ Bγ .

For all u ∈ I , we define Au = Aα
u . We show that these are as wanted.

(i) follows immediately from the definitions and for (ii) it is enough to prove the
following claim (Claim (III) implies (ii) easily).

Claim. For all i < α∗ ,

(I) Σi = {Aγi
u | u ∈ I} is strongly independent, we write f i,B

(u,u0,...,un−1)
instead

of fΣi,B

(u,u0,...,un−1)
,

(II) the functions f i,B

(u,u0,...,un−1)
can be chosen so that if j < i , u, uk ∈ I , k < n ,

B ⊆ ∪i<nA
γi
uk

has power < λ and aγ ∈ B implies Bγ ⊆ B and B′ = B ∩Aγj , then

f
i,B

(u,u0,...,un−1)
� B′ = f

j,B′

(u,u0,...,un−1)
� B′ ,

(III) if j < i , then A
γj+1

uj is s -saturated,

Proof. Notice that if aγ ∈ Aδ
u ∩ Aδ

v , then aγ ∈ Aδ
r(u,v) . Similarly we see that

the first half of (I) in the claim is always true (i.e. if u ≤ v then for all δ < α ,
Aδ

u ⊆ Aδ
v .) We prove the rest by induction on i < α∗ . We notice first that it is

enough to prove the existence of f i,B

(u,u0,...,un−1)
only in the case when B satisfies

(*) if aγ ∈ B , then Bγ ⊆ B .

For i = 0, there is nothing to prove. If i is limit, then the claim follows easily
from the induction assumption (use (II) in the claim). So we assume that the claim
holds for i and prove it for i+ 1. We prove first (I) and (II). For this let u, uk ∈ I ,
k < n , and B ⊆ ∪k<nA

γi+1

uk be of power < λ such that (*) above is satisfied. If for
all k < n , s(γi) 6≤ uk , then (I) and (II) in the claim follow immediately from the
induction assumption. So we may assume that s(γi) ≤ u0 . Let B

′ = B∩(∪k<nA
γi
uk
) .

By the induction assumption there is an automorphism f = f
i,B′

(u,u0,...,un−1)
such that

f � (B′ ∩ Aγi
u ) = idB′∩A

γi
u

and f(B′ ∩ Aγi
uk
) ⊆ A

γi

r(u,uk)
. If s(γi) ≤ u , then, by (*)

and (d) in the construction, we can find an automorphism g = f
i+1,B
(u,u0,...,un−1)

such

that g � B′ = f � B′ and g � (B −B′) = idB−B′ . Clearly this is as wanted.

So we may assume that s(γi) 6≤ u . Since s(γi) ≤ u0 , u0 6≤ r(u, u0) . By the
choice of the enumeration of I there is j < i such that uj = r(u, u0) . Then by the
induction assumption (part (III)), A

γi+1

uj = Aγi
uj

= A
γj+1

uj is s -saturated and by the
choice of f , f(B′ ∩Aγi

u0
) ⊆ Aγi

uj
. So by (d) in the construction and (*) above, there
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are no difficulties in finding the required automorphism f
i+1,B
(u,u0,...,un−1)

.

So we need to prove (III): For this it is enough to show that A
γi+1

ui is s -saturated.
Assume not. Then there are a and B such that B ⊆ A

γi+1

ui , |B| < λ and t(a, B) is
not realized in A

γi+1

ui . Since λ ≥ λ(T ) , there are b and C such that B ⊆ C ⊆ A
γi+1

ui ,
|C| < λ , t(b, B) = t(a, B) and t(b, C) s -isolates t(b, A

γi+1

ui ) . But since (I) in the
claim holds for i + 1, t(b, C) s -isolates t(b, Aγi+1) . This contradicts (e) in the
construction. Claim

(iii) and (iv) follow immediately from the construction, Claim (III) and Lemma
7.9.

Since T is unsuperstable, there are a and sets Ai , i < ω , such that
(i) if j < i < ω , then Aj ⊆ Ai ,
(ii) for all i < ω , a 6 ↓Ai

Ai+1 .
It is easy to see that we may choose the sets Ai so that they are s -saturated models
and of power λ . Let Aω be s -primary over a∪

⋃
i<ω Ai . As in the proof of Lemma

9.3, for all η ∈ κ≤ω , we can find Aη such that
(a) for all η ∈ κ≤ω , there is an automorphism fη such that fη(Alength(η))

= Aη ,
(b) if η is an initial segment of ξ , then fξ � Alength(η) = fη � Alength(η) ,
(c) if η ∈ κ<ω , α ∈ κ and X is the set of those ξ ∈ κ≤ω such that η _ (α) is

an initial segment of ξ , then

∪ξ∈XAξ ↓Aη
∪ξ∈(κ≤ω−X)Aξ.

For all η ∈ κω , we let aη = fη(a) .

12.4 Exercise. Assume η ∈ κ<ω , α ∈ κ and X is the set of those ξ ∈ κ<ω

such that η _ (α) is an initial segment of ξ . Let B ⊆ ∪ξ∈(κ≤ω−X)Aξ and C ⊆
∪ξ∈XAξ be of power < λ . Then there is C′ ⊆ Aη such that t(C′, B) = t(C,B) .
(Hint: Use Exercise 10.6.)

12.5 Lemma. Assume J ⊆ κ≤ω and I = Pω(J) . For all u ∈ I , define
Au = ∪η∈uAη . Then {Au| u ∈ I} is strongly independent.

Proof. Follows immediately from Exercise 12.4.
For each α < κ of cofinality ω , let ηα ∈ κω be a strictly increasing sequence

such that ∪i<ωηα(i) = α . Let S ⊆ {α < κ| cf(α) = ω} . By JS we mean the set

κ<ω ∪ {ηα| α ∈ S}.

Let IS = Pω(JS) and AS be the model given by Lemmas 12.3 and 12.5 for {Au| u ∈
IS} .

12.6 Exercise.

(i) Assume η ∈ κ<ω , u ∈ IS , α < κ , {η} ≤ u and {η _ (α)} 6≤ u . Let X be
the set of those ξ ∈ JS such that η _ (α) is an initial segment of ξ . Then

∪ξ∈XAξ ↓Au
∪ξ∈JS−XAξ.
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(ii) Assume α ∈ κ , u ∈ IS and v ∈ Pω(JS ∩ α≤ω) is maximal such that v ≤ u .
Then

Au ↓Av
∪w∈Pω(JS∩α≤ω)Aw.

(Hint: Use Lemma 12.3 and Exercise 10.8.)

12.7 Lemma. Assume S,R ⊆ {α < κ| cf(α) = ω} are such that (S − R) ∪
(R− S) is stationary. Then AS is not isomorphic to AR .

Proof. Assume not. Let f : AS → AR be an isomorphism. We write IαS for
the set of those u ∈ IS , which satisfy that for all ξ ∈ u , ∪i<length(ξ)ξ(i) < α .
IαR is defined similarly. Then we can find α and αi , i < ω , such that (αi)i<ω is
strictly increasing, for all i < ω , f(∪u∈I

αi
S
Au) = ∪u∈I

αi
R
Au and α = ∪i<ωαi ∈

(S −R) ∪ (R− S) . Without loss of generality we may assume that α ∈ S −R , and
so ηα ∈ JS . Let Aαi

S = ∪u∈I
αi
S
Au and Aαi

R = ∪u∈I
αi
R
Au . Then it easy to see that

for all i < ω there is j < ω such that aηα
6 ↓Aαi

S
A

αj

S . So there is u ∈ IR such that

for all i < ω there is j < ω such that Au 6 ↓Aαi
R

A
αj

R . Since α 6∈ R , this contradicts

Exercise 12.6 (ii).
We can now prove Theorem 12.1: By [Sh1] Appendix 1 Theorem 1.3 (2) and (3),

there are stationary Si ⊆ {α < κ| cf(α) = ω} , i < κ , such that for all i < j < κ ,
Si ∩ Sj = ∅ . For all X ⊆ κ , let AX = A∪i∈XSi

. Then by Lemma 12.7, if X 6= X ′ ,
then AX is not isomorphic to AX′ . Since clearly |J∪i∈XSi

| = κ , |AX | = κ .
Theorem 12.1.
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