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Random variable

What is randomness?

In applied sciences one can consider lack of predictability:

Deterministic result For example, a medical treatment cures all
patients, but without treatment no one gets cured.

Random result For example, when treated, 60 % gets cured but
without treatment 20 % gets cured.
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Random variable

Other examples of randomness

I Coin tossing or dice throwing

I Quantum mechanics

I Weather

I Stock market

http://en.wikipedia.org/wiki/Uncertainty_principle
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Random variable

Some examples on definitions of probability

A unique event cannot be predicted unless it is certain. One can
form subjective probabilities prior to the observation.

If the process, which generates the data, can be repeated, the
frequencies of different events can be calculated ⇒ frequency
probabilities.
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Random variable

Continuous vs. discrete random variables

I A discrete random variable can have a countable number of
values1. A single value can have a positive probability. For
example,

I Dice throwing (6 possible values)
I Number of heads before the first tail in coin tossing (infinite

number of possible values 0, 1, 2, . . . )

I A continuous random variable has a zero probability for any
single value. For example,

I Height of a person.
I Blood pressure.

1The values can be enumerated 1, 2, 3, . . .
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Random variable

Characterization of probabilities

Cumulative distribution function The probability that a random
variable X gets a value less or equal to x : P{X ≤ x}.
For example, the probability that the height of a
randomly chosen subject in the classroom is at most
x = 170 cm.

Density function The point probability that a discrete random
variable X equals some constant value x can be zero
or positive. For example, the probability that a
randomly chosen subject in the classroom is
x = male.
For a continuous random variable, value of a density
function at x multiplied by a small positive constant
a > 0 is approximately the probability that the value
of the r.v. is within [x , x + a].
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Functions for random variables in R

Distributions

I See help page Distributions for complete list.

I Generally four functions available for each distribution starting
with letters

d Density function
p Qumulative distribution function
q Quantile function
r Random number generation

I For example, normal distribution has functions

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)
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Functions for random variables in R

Normal distribution
> pdf("normal_dist.pdf", width=7, height=4)

> x <- seq(-3, 3, .01)

> plot(x, dnorm(x, mean=0, sd=1), type="l", col="red", lwd=2,

+ ylim=c(0, 1), ylab="")

> lines(x, pnorm(x, mean=0, sd=1), type="l", col="blue", lwd=2)

> legend("topleft", lty=c(1,1), lwd=2, col=c("red","blue"), cex=1.25,

+ legend=c("Density function", "Cumulative distribution function"))

> dev.off()
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Central limit theorem

Central limit theorem (CLT)

Consider a sum of independent random variables.
The more terms there are in the sum, the closer the distribution of
the sum resembles normal distribution.
Example: random variables with uniform distribution on [-1, 1].
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Central limit theorem

What does CLT mean in practice?

Many estimators are sums over observed values, which are
independent. E.g. sample mean

x̄ =
1

n

n∑
i=1

xi .

Therefore sampling distributions of estimators are often normal, if
the sample size is large.
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Repeated experiments

An experiment
I A researcher has a hypothesis.
I He/she plans and executes an experiment, and collects data in

order to test the validity of the hypothesis.
I Question: Does the data support the hypothesis?
I For example, coin tossing:

I Hypothesis is “Probability of heads in is 0.5.”
I Experiment is “Toss a coin 10 times.”
I Data are the proportion of heads.

I For example, medical experiment:
I Treatment group and control group.
I Null hypothesis, H0: “No difference between groups” i.e. the

treatment has no effect.
I Alternate hypothesis, H1: “Some differences between

groups.”
I Experiment is “Administer the treatment to the treatment

group and some placebo treatment to the control group.”
I Data are the recovery status of the patients (and the group

indicator).
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Repeated experiments

Experiments should be repeatable

I Other researchers should be able to repeat the experiment in
(identical) conditions.

I In frequentist inference one assumes (infinitely) many
hypothetical experiments, in which the null hypothesis is true.

I The outcome of the observed experiment is then compared
with the distribution of the outcomes of the hypothetical
experiments.

I If the observed outcome seems to be very rare, then the
empirical evidence does not support the null hypothesis.

I Observational vs. experimental studies: observational studies
can be unique ⇒ the idea of repeated experiments (or new
samples of study subjects) in identical conditions unrealistic.

Data analysis with R software

Sampling distribution

Distribution of hypothetical experiments
Return to the experiment with 10 tosses of a coin. 3 heads were
observed.

I H0: Probability of head is 0.5.
I The probability distribution of number of heads in 10 tosses is

Binomial.
> x <- 0:10

> pdf("binom10.pdf", width=7, height=3.8)

> plot(x, dbinom(x, size=10, p=0.5), type="h",

+ xlab="Number of heads", ylab="Point probability")

> points(3, 0, pch=15)

> dev.off()
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Hypothesis testing

One- and two-sided tests

“How often hypothetical experiments would generate data at least
as rare as the observed outcome?”

One-sided test Calculate the probability of sampling distribution at
the observed value and at the more extreme values.

Two-sided test If the sampling distribution is symmetric, calculate
the p-value from both tails of sampling distribution.
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Hypothesis testing

Binary variable

Example: binomial test
The experiment with 10 tosses of a coin. 3 heads were observed.

Note that the expected number of heads is 10× 0.5 = 5 and the
sampling distribution is symmetric.
The p-value of the one-sided test is 0.17 and of the two-sided test
0.34.
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Hypothesis testing

Binary variable

Sample size of the experiment
The researcher considers the coin to be “unfair” if the probability of
head is outside [0.45, 0.55].

I Are 10 tosses enought to detect the bias?
I If not, then how many are needed?

Recall that the standard error (SE) of the estimated proportion is

SE(p̂) =

√
p × (1− p)

n
. (1)

With n = 10 tosses and p = 0.5, SE(p̂) = 0.16.

Approximately 95 % of the sampling distribution lies between
p ± 1.96× SE(p̂). Desired sample size can be solved from (1):
n = (1.962/a2)× p × (1− p), where a = 0.05 is the desired
accuracy.

The researcher decides to toss the coin n = 384 times.
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Hypothesis testing

Continuous variable

Mean of normally distributed r.v.’s
SD is known

Assume that n independent r.v.’s are sampled from N(µ, σ2).
Recall that parameter µ is expectation and σ2 is variance (σ is
standard deviation SD).

The sample mean x̄ is also normally distributed N(µ, σ2/n). The
SE of the sample mean is σ/

√
n.

Large n ⇒ small SE.

Example: n = 16, σ2 = 4 and x̄ = 3. Let the null hypothesis be
H0 : µ = µ0 = 2. Then test statistic is

z =
x̄ − µ0
σ/
√
n

=
3− 2

2/4
= 2.

The tail probability of one-sided test is
1 - pnorm(2, mean=0, sd=1) = 0.023.
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Hypothesis testing

Continuous variable

Student’s t test
SD is unknown

Typically σ is unknown as well as µ. If the sample size n is large
then the sample SD s is close to the true σ.

If n is small, then the uncertainty of s needs to be accounted for
using t distribution with n − 1 degrees of freedom (df) instead of
normal distribution.

Example: n = 16, s2 = 4 and x̄ = 3. Let the null hypothesis be
H0 : µ = µ0 = 2. Then test statistic is

t =
x̄ − µ0
s/
√
n

=
3− 2

2/4
= 2.

The tail probability of one-sided test is
1 - pt(2, df=16-1) = 0.032.
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Hypothesis testing

Continuous variable

The t distribution vs. normal distribution
If n is small, then s is imprecise, thus the sampling distribution
contains more extreme values than normal distribution. The
smaller degrees of freedom (df), the more extreme values. If df
(and n) are large, then t distribution is close to normal distribution
(s is close to σ).
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Hypothesis testing

Independent two-sample tests

Comparing two independent samples: t test
SD unknown, possibly unequal

Test statistic is now

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

.

Notations are analogous to the one sample case. Example:
> with(iris, t.test(Sepal.Length[Species=="versicolor"],

+ Sepal.Length[Species=="virginica"]))

Welch Two Sample t-test

data: Sepal.Length[Species == "versicolor"] and Sepal.Length[Species == "virginica"]

t = -5.6292, df = 94.025, p-value = 1.866e-07

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.8819731 -0.4220269

sample estimates:

mean of x mean of y

5.936 6.588
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Hypothesis testing

Independent two-sample tests

Samples are not normally distributed
Some non-parametric tests

Median test Calculate the median of the joined data sets, create a
binary variable and do the χ2 test for the 2× 2 table.

Mann-Whitney test More efficient than the median test. Does not
assume normality. Based on ranks of observations.
Install package exactRankTests, where the function
wilcox.exact can be found.
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Hypothesis testing

Paired two-sample tests

Two measurements on the same subjects
Any changes between measurements?

For each subject i there are two measurements xi and yi . For
example, a measurement before medical treatment and the other
after the treatment.

I The measurements are often correlated.

I Positive correlation means e.g. that subjects i who had high
level of symptoms at the time of the first measurement xi ,
tend to have high level of symptoms also at the second
measurement yi .

I The correlation must be accounted for in analyses.
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Hypothesis testing

Paired two-sample tests

Paired two-sample tests

The arguments are generally two vectors of the same length.

The t test Use the t.test function and paired=TRUE
argument.

Sign test Calculate the number of pairs i for which xi < yi .
This number should be close to 50 % of the number
of pairs. Compare with Binomial distribution as with
the binomial test above.

Wilcoxon test More efficient than the sign test. Does not assume
normality, but requires a symmetric distribution. (If
distribution is not symmetric, then use the sign test.)
Install package exactRankTests, where the function
wilcox.exact can be found.
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