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Chapter 6

Approximations

6.1 The grid method

When one is confronted with a low-dimensional problem with a continuous pa-
rameter, then it is usually easy to approximate the posterior density on a dense
grid of points which covers the relevant part of the parameter space. We discuss
the method for a one-dimensional parameter θ.

We suppose that the posterior is available in the unnormalized form

fΘ|Y (θ | y) =
1

c(y)
q(θ | y),

where we know how to evaluate the unnormalized density q(θ | y), but do not
necessarily know the value of the normalizing constant c(y).

Instead of the original parameter space, we consider a finite interval [a, b],
which should cover most of the mass of the posterior distribution. We divide
[a, b] evenly into N subintervals

Bi = [a+ (i− 1)h, a+ ih], i = 1, . . . , N.

The width h of one subinterval is

h =
b− a
N

.

Let θi be the midpoint of the i’th subinterval,

θi = a+ (i− 1

2
)h, i = 1, . . . , N.

We use the midpoint rule for numerical integration. This means that we ap-
proximate the integral over the i’th subinterval of any function g by the rule∫

Bi

g(θ) dθ ≈ hg(θi). (6.1)

Using the midpoint rule on each of the subintervals, we get the following
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approximation for the normalizing constant

c(y) =

∫
q(θ | y) dθ ≈

∫ b

a

q(θ | y) dθ =

N∑
i=1

∫
Bi

q(θ | y) dθ

≈ h
N∑
i=1

q(θi | y)

(6.2)

Using this approximation, we can approximate the value of the posterior density
at the point θi,

fΘ|Y (θi | y) =
1

c(y)
q(θi | y) ≈ 1

h

q(θi | y)∑N
j=1 q(θj | y)

. (6.3)

We also obtain approximations for the posterior probabilities of the subintervals,

P (Θ ∈ Bi | Y = y) =

∫
Bi

fΘ|Y (θ | y) dθ ≈ hfΘ|Y (θi | y)

≈ q(θi | y)∑N
j=1 q(θj | y)

.
(6.4)

By following the same reasoning which lead to (6.2), we may form the ap-
proximation ∫

k(θ) q(θ | y) dθ ≈ h
∑
i=1

k(θi) q(θi | y)

basically for any function k such that k(θ) q(θ | y) differs appreciably from
zero only on the interval (a, b). This can be used to approximate the posterior
expection of an arbitrary function k(θ) of the parameter, by

E(k(Θ) | Y = y) =

∫
k(θ) fΘ|Y (θ | y) dθ =

∫
k(θ) q(θ | y) dθ∫
q(θ | y) dθ

≈
∑N
i=1 k(θi) q(θi | y)∑N

j=1 q(θj | y)

(6.5)

These approximations can be surprisingly accurate even for moderate values
of N provided we are able to identify an interval [a, b], which covers the essential
part of posterior distribution.

To summarize, the grid method for approximating the posterior density or
for or simulating from it is the following.

• First evaluate the unnormalized posterior density q(θ | y) at a regular
grid of points θ1, . . . , θN with spacing h. The grid should cover the main
support of the posterior density.

• If you want to plot the posterior density, normalize these values by dividing
by their sum and additionally by the bin width h as in eq. (6.3). This gives
an approximation to the posterior ordinates p(θi | y) at the grid points θi.

• If you want a sample from the posterior, sample with replacement from
the grid points θi with probabilities proportional to the numbers q(θi | y),
cf. (6.4).
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• If you want to approximate the posterior expectation E[k(θ) | y], calculate
the weighted average of the values k(θi) using the values q(θi | y) as
weights, cf. eq. (6.5).

The midpoint rule is considered a rather crude method of numerical inte-
gration. In the numerical analysis literature, there are available much more
sophisticated methods of numerical integration (or numerical quadrature) and
they can be used in a similar manner. Besides dimension one, these kinds of
approaches can be used in dimensions two or three. However, as the dimen-
sionality of the parameter space grows, computing at every point in a dense
multidimensional grid becomes more and more expensive.

6.2 Normal approximation to the posterior

We now try to approximate a posterior density by a normal density based on
the behavior of the posterior density at its mode. This approximation can
be quite accurate, when the sample sizes is large, provided the posterior is
unimodal. We will call the resulting approximation a normal approximation to
the posterior, but the result is sometimes also called a Laplace approximation
or a modal approximation. A normal approximation can be used directly as
an approximate description of the posterior. However, such an approximation
can be utilized also indirectly, e.g., to form a good proposal distribution for the
Metropolis–Hastings method.

We first discuss normal approximation in the univariate situation. The sta-
tistical model has a single parameter θ, which has a continuous distribution. We
do know an unnormalized version q(θ | y) of the posterior density, but the nor-
malizing constant is usually unknown. We consider the case, where θ 7→ q(θ | y)
is unimodal: i.e., it has only one local maximum. We suppose that we have
located the mode θ̂ of the unnormalized posterior q(θ | y). Notice that θ̂ is
also the posterior mode, which is also called the MAP (maximum a posteriori)

estimate. Actually, θ̂ depends on the data y, but we suppress this dependence
in our notation. Usually we would have to run some numerical optimization
algorithm in order to find the mode.

The basic idea of the method is to use the second degree Taylor polynomial of
the log-posterior (the logarithm of the posterior density) centered on the mode

θ̂,

log fΘ|Y (θ | y) ≈ log fΘ|Y (θ̂ | y) + b(θ − θ̂)− 1

2
A(θ − θ̂)2, (6.6)

where

b =
∂

∂θ
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

=
∂

∂θ
log q(θ | y)

∣∣∣∣
θ=θ̂

= 0,

and

A = − ∂2

∂θ2
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

= − ∂2

∂θ2
log q(θ | y)

∣∣∣∣
θ=θ̂

.

Notice the following points.

• The first and higher order (partial) derivatives with respect to θ of log q(θ | y)
and log fΘ|Y (θ | y) agree, since these function differ only by an additive
constant (which depends on y but not on θ).
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• The first order term of the Taylor expansion disappears, since θ̂ is also the
mode of the log-posterior log fΘ|Y (θ | y).

• A ≥ 0, since θ̂ is a maximum of q(θ | y). For the following, we need to
assume that A > 0.

Taking the exponential of the second degree Taylor approximation (6.6), we
see that we may approximate the posterior by the function

πapprox(θ) ∝ exp

(
−A

2
(θ − θ̂)2

)
,

at least in the vicinity of the mode θ̂. Luckily, we recognize that πapprox(θ)
is an unnormalized form of the density of the normal distribution with mean
θ̂ and variance 1/A. The end result is that the posterior distribution can be
approximated with the normal distribution

N

(
θ̂,

1

− L′′(θ̂)

)
, (6.7)

where L(θ) is the logarithm of the unnormalized posterior,

L(θ) = log q(θ | y)

and L′′(θ̂) is the second derivative of L(θ) evaluated at the mode θ̂.
The multivariate analog of the result starts with the second degree expansion

of the log-posterior centered on its mode θ̂,

log fΘ|Y (θ | y) ≈ log fΘ|Y (θ̂ | y) + 0− 1

2
(θ − θ̂)TA(θ − θ̂),

where A is the negative Hessian matrix of L(θ) = log q(θ | y) evaluated at the
mode,

Aij = − ∂2

∂θi∂θj
log fΘ|Y (θ | y)

∣∣∣∣
θ=θ̂

= − ∂2

∂θi∂θj
L(θ)

∣∣∣∣
θ=θ̂

= −
[

∂2

∂θ ∂θT
L(θ)

∣∣∣∣
θ=θ̂

]
ij

The first degree term of the expansion vanishes, since θ̂ is the mode of the log-
posterior. Here A is at least positively semidefinite, since θ̂ is a maximum. If A
is positively definite, we can proceed with the normal approximation.

Exponentiating, we find out that approximately (at least near the mode)

fΘ|Y (θ | y) ∝ exp

(
−1

2
(θ − θ̂)TA(θ − θ̂)

)
.

Therefore we can approximate the posterior with the corresponding multivariate
normal distribution with mean θ̂ and covariance matrix given by A−1, i.e., the
approximating normal distribution is

N

(
θ̂,
(
−L′′(θ̂)

)−1
)
, (6.8)

where L′′(θ̂) is the Hessian matrix of the logarithm of the unnormalized poste-

rior, L(θ) = log q(θ | y), evaluated at its mode θ̂. The precision matrix of the
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approximating normal distribution is the negative Hessian of the log-posterior
evaluated at the posterior mode. Another characterization for the precision
matrix is that it is the Hessian of the negative log-posterior evaluated at the
posterior mode. The covariance matrix of the normal approximation is the
inverse of its precision matrix.

Typically the mode of the log-posterior (or the maximum point of the neg-
ative log-posterior) would be calculated using some numerical optimization al-
gorithm. The Hessian would then be calculated using numerical differentiation,
see Sec. B.7 for an example.

Before using the normal approximation, it is often advisable to reparameter-
ize the model so that the transformed parameters are defined on the whole real
line and have roughly symmetric distributions. E.g., one can use logarithms of
positive parameters and apply the logit function to parameters which take val-
ues on the interval (0, 1). The normal approximation is then constructed for the
transformed parameters, and the approximation can then be translated back to
the original parameter space. One must, however, remember to multiply by the
appropriate Jacobians.

Example 6.1. We consider the unnormalized posterior

q(θ | y) = θy4 (1− θ)y2+y3 (2 + θ)y1 , 0 < θ < 1,

where y = (y1, y2, y3, y4) = (13, 1, 2, 3). The mode and the second derivative of
L(θ) = log q(θ | y) evaluated at the mode are given by

θ̂ ≈ 0.677, L′′(θ̂) ≈ −37.113.

(The mode θ̂ can be found by solving a quadratic equation.) The resulting
normal approximation in the original parameter space is N(0.677, 1/37.113).

We next reparametrize by defining φ as the logit of θ,

φ = logit(θ) = ln
θ

1− θ
⇔ θ =

eφ

1 + eφ
.

The given unnormalized posterior for θ transforms to the following unnormalized
posterior for φ,

q̃(φ | y) = q(θ | y)

∣∣∣∣ dθdφ

∣∣∣∣
=

(
eφ

1 + eφ

)y4 (
1

1 + eφ

)y2+y3 (2 + 3eφ

1 + eφ

)y1
eφ

(1 + eφ)2
.

The mode and the second derivative of L̃(φ) = log q̃(φ | y) evaluated at the
mode are given by

φ̂ ≈ 0.582, L̃′′(φ̂) ≈ −2.259.

(Also φ̂ can be found by solving a quadratic.) This results in the normal ap-
proximation N(0.582, 1/2.259) for the logit of θ.

When we translate that approximation back to the original parameter space,
we get the approximation

fΘ|Y (θ | y) ≈ N(φ | 0.582, 1/2.259)

∣∣∣∣dφdθ
∣∣∣∣ ,
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Figure 6.1: The exact posterior density (solid line) together with its normal
approximation (dashed line) and the approximation based on the normal ap-
proximation for the logit of θ. The last approximation is markedly non-normal
on the original scale, and it is able to capture the skewness of the true posterior
density.

i.e.,

fΘ|Y (θ | y) ≈ N(logit(θ) | 0.582, 1/2.259)
1

θ(1− θ)
.

Both of these approximations are plotted in Figure 6.1 together with the
true posterior density (whose normalizing constant can be found exactly). 4

We finish by discussing the relationship of the normal approximation (6.8)
to the frequentist asymptotics of the maximum likelihood estimator. The un-
normalized version of the posterior density is of the form

q(θ | y) = k(y) fY |Θ(y | θ) fΘ(θ) = k(y) p(y | θ) p(θ),

where p(θ) is the prior, p(y | θ) is the likelihood, and k(y) is any convenient con-
stant which may depend on the data but not on the parameter vector. Therefore
the logarithm of the unnormalized posterior is

L(θ) = log q(θ | y) = log k(y) + `(θ) + log p(θ),

where `(θ) = p(y | θ) is the log-likelihood. Therefore the negative Hessian of
L(θ) is

−L′′(θ) = −`′′(θ)− ∂2

∂θ ∂θT
log p(θ)

Here the negative Hessian of the log-likelihood is called the observed (Fisher)
information (matrix), and we denote it by J(θ),

J(θ) = −`′′(θ) = − ∂2

∂θ ∂θT
log p(y | θ). (6.9)
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The negative Hessian of the log-posterior equals the sum of the observed infor-
mation and the negative Hessian of the log-prior.

If the sample size is large, then the likelihood dominates the prior in the
sense that the likelihood is highly peaked while the prior is relatively flat in the
region where the posterior density is appreciable. In large samples the mode of
the log-posterior θ̂ and the mode of the log-likelihood (the maximum likelihood

estimator, MLE) θ̂MLE are approximately equal, and also the Hessian matrix of
the log-posterior is approximately the same as the Hessian of the log-likelihood.
Combining these two approximations, we get

θ̂ ≈ θ̂MLE, −L′′(θ̂) ≈ J(θ̂MLE).

When we plug these approximations in the normal approximation (6.8), we see
that in large samples the posterior is approximately normal with mean equal to
the MLE and covariance matrix given by the inverse of the observed information,

p(θ | y) ≈ N
(
θ | θ̂MLE, [J(θ̂MLE)]−1

)
. (6.10)

This approximation should be compared with the well-known frequentist
asymptotic distribution results for the maximum likelihood estimator. Loosely,
these results can be summarized so that the sampling distribution of the maxi-
mum likelihood estimator is asymptotically normal with mean equal to the MLE
and covariance matrix equal to the inverse of the observed information. In order
to write this approximation as a formula, we need to indicate the dependence
of the maximum likelihood estimator on the data as follows,

θ̂MLE(Y )
d
≈N

(
θ̂MLE(y), [J(θ̂MLE(y))]−1

)
. (6.11)

Here Y is a random vector from the sampling distribution of the data, and so
θ̂MLE(Y ) is the maximum likelihood estimator considered as a random variable

(or random vector). In contrast, θ̂MLE(y) is the maximum likelihood estimate
calculated from the observed data y.

Comparing equations (6.10) and (6.11) we see that for large samples the
posterior distribution can be approximated using the same formulas that (fre-
quentist) statisticians use for the maximum likelihood estimator. In large sam-
ples the influence of the prior vanishes, and then one does need to spend much
energy on formulating the prior distribution so that it would reflect all available
prior information. However, in small samples careful formulation of the prior is
important.

6.3 Posterior expectations using Laplace approx-
imation

Laplace showed in the 1770’s how one can form approximations to integrals of
highly peaked positive functions by integrating analytically a suitable normal
approximation. We will now apply this idea to build approximations to posterior
expectations. We assume that the posterior density is highly peaked while the
function k, whose posterior expectation we seek is relatively flat. The posterior
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density is typically known only in the unnormalized form q(θ | y), and then

E[k(Θ) | Y = y] =

∫
k(θ) q(θ | y) dθ∫
q(θ | y) dθ

. (6.12)

Tierney and Kadane [4] approximated separately the numerator and the denom-
inator of eq. (6.12) using Laplace’s method, and analyzed the resulting error.

To introduce the idea of Laplace’s approximation (or Laplace’s method),
consider a highly peaked function L(θ) of a scalar variable θ such that L(θ) has

a unique mode (i.e., a maximum) at θ̂. Suppose that g(θ) is a function, which
varies slowly. We seek an approximation to the integral

I =

∫
g(θ) eL(θ) dθ. (6.13)

Heuristically, the integrand is negligible when we go far away from θ̂, and so we
should be able to approximate the integral I by a simpler integral, where we
take into account only the local behavior of L(θ) around its mode. To this end,
we first approximate L(θ) by its second degree Taylor polynomial centered at

the mode θ̂,

L(θ) ≈ L(θ̂) + 0 · (θ − θ̂) +
1

2
L′′(θ̂)(θ − θ̂)2.

Since g(θ) is slowly varying, we may approximate the integrand as follows

g(θ) eL(θ) ≈ g(θ̂) exp

(
L(θ̂)− 1

2
Q(θ − θ̂)2)

)
,

where
Q = −L′′(θ̂).

For the following, we must assume that L′′(θ̂) < 0. Integrating the approxima-
tion, we obtain

I ≈
∫
g(θ̂) eL(θ̂) exp(−1

2
Q(θ − θ̂)2) dθ

=

√
2π√
Q
g(θ̂) eL(θ̂)

(6.14)

This is the univariate case of Laplace’s approximation. (Actually, it is just the
leading term in a Laplace expansion, which is an asymptotic expansion for the
integral.)

To handle the multivariate result, we use the normalizing constant of the
Nd(µ,Q

−1) distribution to evaluate the integral∫
exp

(
−1

2
(x− µ)TQ(x− µ)

)
dx =

(2π)d/2√
detQ

. (6.15)

This result is valid for any symmetric and positive definite d × d matrix Q.
Integrating the multivariate second degree approximation of g(θ) exp(L(θ)), we
obtain

I =

∫
g(θ) eL(θ) dθ ≈ (2π)d/2√

det(Q)
g(θ̂) eL(θ̂), (6.16)
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where d is the dimensionality of θ, and Q is the negative Hessian of L evaluated
at the mode,

Q = −L′′(θ̂),

and we must assume that the d× d matrix Q is positively definite.
Using these tools, we can approximate the posterior expectation of k(θ)

(see (6.12)) in several different ways. One idea is to approximate the numerator
by choosing

g(θ) = k(θ), eL(θ) = q(θ | y)

in eq. (6.16), and then to approximate the denominator by choosing

g(θ) ≡ 1, eL(θ) = q(θ | y).

These choices yield the approximation

E[h(Θ) | Y = y] ≈

(2π)d/2√
det(Q)

k(θ̂) eL(θ̂)

(2π)d/2√
det(Q)

eL(θ̂)

= h(θ̂), (6.17)

where
θ̂ = arg maxL(θ), Q = −L′′(θ̂).

Here we need a single maximization, and do not need to evaluate the Hessian
at all.

A less obvious approach is to choose

g(θ) ≡ 1, eL(θ) = k(θ) q(θ | y)

to approximate the numerator, and

g(θ) ≡ 1, eL(θ) = q(θ | y)

to approximate the denominator. Here we need to assume that h is a positive
function, i.e., h > 0. The resulting approximation is

E[h(Θ) | Y = y] ≈
(

det(Q)

det(Q∗)

)1/2
k(θ̂∗) q(θ̂∗ | y)

q(θ̂ | y)
, (6.18)

where
θ̂∗ = arg max[k(θ) q(θ | y)], θ̂ = arg max q(θ | y).

and Q∗ and Q are the negative Hessians

Q∗ = −L∗
′′
(θ̂∗), Q = −L′′(θ̂),

where
L∗(θ) = log(k(θ) q(θ | y)), L(θ) = log q(θ | y).

We need two separate maximizations and need to evaluate two Hessians for this
approximation.

Tierney and Kadane analyzed the errors committed in these approximations
in the situation, where we have n (conditionally) i.i.d. observations, and the
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sample size n grows. The first approximation (6.17) has relative error of or-
der O(n−1), while the second approximation (6.18) has relative error of order
O(n−2). That is,

E[k(Θ) | Y = y] = k(θ̂)
(
1 +O(n−1)

)
and

E[k(Θ) | Y = y] =

(
det(Q)

det(Q∗)

)1/2
k(θ̂∗) q(θ̂∗ | y)

q(θ̂ | y)

(
1 +O(n−2)

)
.

Hence the second approximation is much more accurate (at least asymptoti-
cally).

6.4 Posterior marginals using Laplace approxi-
mation

Tierney and Kadane discuss also an approximation to the marginal posterior,
when the parameter vector θ is composed of two vector components θ = (φ, ψ).
The form of the approximation is easy to derive, and was earlier discussed
by Leonard [1]. However, Tierney and Kadane [4, Sec. 4] were the first to
analyze the error in this Laplace approximation. We first derive the form of the
approximation, and then make some comments on the error terms based on the
discussion of Tierney and Kadane.

Let q(φ, ψ | y) be an unnormalized form of the posterior density, based on
which we try to approximate the normalized marginal posterior p(φ | y). Let
the dimensions of φ and ψ be d1 and d2, respectively. We have

p(φ | y) =

∫
p(φ, ψ | y) dψ =

∫
exp(log p(φ, ψ | y)) dψ,

where p(φ, ψ | y) is the normalized posterior. The main difference with approx-
imating a posterior expectation is the fact, that now we are integrating only
over the component(s) ψ of θ = (φ, ψ).

Fix the value of φ for the moment. Let ψ∗(φ) be the maximizer of the
function

ψ 7→ log p(φ, ψ | y),

and let Q(φ) be the negative Hessian matrix of this function evaluated at
ψ = ψ∗(φ). Notice that we can equally well calculate ψ∗(φ) and Q(φ) as the
maximizer and the negative of the d2×d2 Hessian matrix of ψ 7→ log q(φ, ψ | y),
respectively,

ψ∗(φ) = arg max
ψ

(log q(φ, ψ | y)) = arg max
ψ

q(φ, ψ | y) (6.19)

Q(φ) = −
[

∂2

∂ψ ∂ψT
log q(φ, ψ | y)

]
|ψ=ψ∗(φ)

. (6.20)

For fixed φ, we have the second degree Taylor approximation in ψ,

log p(φ, ψ | y) ≈ log p(φ, ψ∗(φ) | y)− 1

2
(ψ − ψ∗(φ))TQ(φ)(ψ − ψ∗(φ)), (6.21)
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and we assume that matrix Q(φ) is positive definite.
Next we integrate the exponential function of the approximation (6.21) with

respect to ψ, with the result

p(φ | y) ≈ p(φ, ψ∗(φ) | y) (2π)d2/2 (detQ(φ))−1/2.

To evaluate this approximation, we need the normalizing constant of the unnor-
malized posterior q(φ, ψ | y), which we obtain by another Laplace approxima-
tion, and the end result is

p(φ | y) ≈ (2π)−d1/2 q(φ, ψ∗(φ) | y)

√
detQ

detQ(φ)
, (6.22)

where Q is negative of the (d1 + d2)× (d1 + d2) Hessian of the function

(φ, ψ) 7→ log q(φ, ψ | y)

evaluated at the MAP, the maximum point of the same function. However, it
is often enough to approximate the functional form of the marginal posterior.
When considered as a function of φ, we have, approximately,

p(φ | y) ∝ q(φ, ψ∗(φ) | y) (detQ(φ))−1/2. (6.23)

The unnormalized Laplace approximation (6.23) can be given another inter-
pretation (see, e.g., [2, 3]). By the multiplication rule,

p(φ | y) =
p(φ, ψ | y)

p(ψ | φ, y)
∝ q(φ, ψ | y)

p(ψ | φ, y)
.

This result is valid for any choice of ψ. Let us now form a normal approximation
for the denominator for a fixed value of φ, i.e.,

p(ψ | φ, y) ≈ N(ψ | ψ∗(φ), Q(φ)−1).

However, this approximation is accurate only in the vicinity of the mode ψ∗(φ),
so let us use it only at the mode. The end result is the following approximation,

p(φ | y) ∝
[

q(φ, ψ | y)

N(ψ | ψ∗(φ), Q(φ)−1)

]
|ψ=ψ∗(φ)

= (2π)d2/2 det(Q(φ))−1/2 q(φ, ψ∗(φ) | y)

∝ q(φ, ψ∗(φ) | y) (detQ(φ))−1/2,

which is the same as the unnormalized Laplace approximation (6.23) to the
marginal posterior of φ.

Tierney and Kadane show that the relative error in the approximation (6.22)
is of the order O(n−1), when we have n (conditionally) i.i.d. observations, and
that most of the error comes from approximating the normalizing constant.
They argue that the approximation (6.23) captures the correct functional form
of the marginal posterior with relative error O(n−3/2) and recommend that
one should therefore use the unnormalized approximation (6.23), which can
then be normalized by numerical integration, if need be. For instance, if we
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want to simulate from the approximate marginal posterior, then we can use the
unnormalized approximation (6.23) directly, together with accept–reject, SIR
or the grid-based simulation method of Sec. 6.1. See the articles by H. Rue and
coworkers [2, 3] for imaginative applications of these ideas.

Another possibility for approximating the marginal posterior would be to
build a normal approximation to the joint posterior, and then marginalize.
However, a normal approximation to the marginal posterior would only give the
correct result with absolute error of order O(n−1/2), so the accuracies of both
of the Laplace approximations are much better. Since the Laplace approxima-
tions yield good relative instead of absolute error, the Laplace approximations
maintain good accuracy also in the tails of the densities. In contrast, the normal
approximation is accurate only in the vicinity of the mode.

Example 6.2. Consider normal observations

[Yi | µ, τ ]
i.i.d.∼ N(µ,

1

τ
), i = 1, . . . , n,

together with the non-conjugated prior

p(µ, τ) = p(µ) p(τ) = N(µ | µ0,
1

ψ0
) Gam(τ | a0, b0).

The full conditional of µ is readily available,

p(µ | τ, y) = N(µ | µ1,
1

ψ1
)

where

ψ1 = ψ0 + nτ ψ1 µ1 = ψ0 µ0 + τ

n∑
i=1

yi

The mode of the full conditional p(µ | τ, y) is

µ∗(τ) = µ1 =
ψ0 µ0 + τ

∑n
i=1 yi

ψ0 + nτ
.

We now use this knowledge to build a Laplace approximation to the marginal
posterior of τ .

Since, as a function of µ,

p(µ, τ | y) ∝ p(µ | τ, y),

µ∗(τ) is also the mode of p(µ, τ | y) for any τ . We also need the second derivative

∂2

∂µ2
(log p(µ, τ | y)) =

∂2

∂µ2
(log p(µ | τ, y)) = −ψ1,

for µ = µ∗(τ), but the derivative does not in this case depend on the value of
µ at all. An unnormalized form of the Laplace approximation to the marginal
posterior of τ is therefore

p(τ | y) ∝ q(µ∗(τ), τ | y)√
ψ1

, where q(µ, τ | y) = p(y | µ, τ) p(µ) p(τ).
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In this toy example, the Laplace approximation (6.23) for the functional
form of the marginal posterior p(τ | µ) is exact, since by the multiplication rule,

p(τ | y) =
p(µ, τ | y)

p(µ | τ, y)

for any choice of µ, in particular for µ = µ∗(τ). Here the numerator is known
only in an unnormalized form.

Figure 6.2 (a) illustrates the result using data y = (−1.4,−1.6,−2.4, 0.7, 0.6)
and hyperparameters µ0 = 0, ψ0 = 0.5, a0 = 1, b0 = 0.1. The unnormalized
(approximate) marginal posterior has been drawn using the grid method of
Sec. 6.1. Figure 6.2 (b) shows an i.i.d. sample drawn from the approximate
posterior

p̃(τ | y) p(µ | τ, y),

where p̃(τ | y) is a histogram approximation to the true marginal posterior
p(τ | y), which has been sampled using the grid method.

4
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Figure 6.2: (a) Marginal posterior density of τ and (b) a sample drawn from the
approximate joint posterior together with contours of the true joint posterior
density.
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Chapter 7

MCMC algorithms

7.1 Introduction

In a complicated Bayesian statistical model it may be very difficult to analyze
the mathematical form of the posterior and it may be very difficult to draw
an i.i.d. sample from it. Fortunately, it is often easy to generate a correlated
sample, which approximately comes from the posterior distribution. (In this
context, the word correlated means not independent). However, we would very
much prefer to have an i.i.d. sample from the posterior, instead. After one
has available a sample, one can estimate posterior expectations and posterior
quantiles using the same kind of techniques that are used with i.i.d. samples.
This is the idea behind Markov chain Monte Carlo (MCMC) methods.

In this chapter we will introduce the basic MCMC sampling algorithms that
are used in practical problems. The emphasis is on trying to understand what
one needs to do in order to implement the algorithms. In Chapter 11 we will see
why these algorithms work using certain concepts from the theory of Markov
chains in a general state space.

There are available computer programs that can implement an MCMC sim-
ulation automatically. Perhaps the most famous such program is the BUGS
system (Bayesian inference Using Gibbs Sampling), which has several concrete
implementations, most notably WinBUGS and OpenBUGS. You can analyze
most of the models of interest easily using BUGS. What the user of BUGS
needs to do is to write the description of the model in a format that BUGS
understands, read the data into the program, and then let the program do the
simulation. Once the simulation has finished, one can let the program produce
various summaries of the posterior. Using such a tool, it is simple to experiment
with different priors and different likelihoods for the same data.

However, in this chapter the emphasis is on understanding how you can write
your own MCMC programs. Why would this be of interest?

• If you have not used MCMC before, you get a better understanding of the
methods if you try to implement (some of) them yourself.

• For some models, the automated tools fail. Sometimes you can, however,
rather easily design and implement a MCMC sampler yourself, once you
understand the basic principles. (In some cases, however, designing an
efficient MCMC sampler can be an almost impossibly difficult task.)
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• Sometimes you want to have more control over the sampling algorithm
than is provided by the automated tools. In some cases implementation
details can make a big difference to the efficiency of the method.

The most famous MCMC methods are the Metropolis–Hastings sampler and
the Gibbs sampler. Where do these names come from?

• Nicholas (Nick) Metropolis (1915–1999) was an American mathematician,
physicist and pioneer of computing, who was born in Greece. He published
the Metropolis sampler in 1953 jointly with two husband-and-wife teams,
namely A.W. and M.N. Rosenbluth and A.H. and E. Teller. At that time
the theory of general state space Markov chains was largely unexplored. In
spite of this, the authors managed to give a heuristic proof for the validity
of the method.

• W. Keith Hastings (1930– ) is a Canadian statistician, who published
the Metropolis–Hastings sampler in 1970. It is a generalization of the
Metropolis sampler. Hastings presented his algorithm using a discrete
state space formalism, since the theory of general state space Markov
chains was then known only to some specialists in probability theory.
Hastings’ article did not have a real impact on statisticians until much
later.

• The name Gibbs sampler was introduced by the brothers S. and D. Geman
in an article published in 1984. Related ideas were published also by other
people at roughly the same time. The method is named after the American
mathematician and physicist J. Willard Gibbs (1893–1903), who studied
thermodynamics and statistical physics, but did not have anything to do
with MCMC.

In the late 1980’s and early 1990’s there was an explosion in the number
of studies, where people used MCMC methods in Bayesian inference. Now
there was available enough computing power to apply the methods, and besides,
the theory of general state space Markov chains had matured so that readable
expositions of the theory were available.

Nowadays, many statisticians routinely use the concept of a Markov chain
which evolves in a general state space. Unfortunately, their mathematical theory
is still explained only in a handful of text books.

7.2 Basic ideas of MCMC

MCMC algorithms are based on the idea of a Markov chain which evolves in
discrete time. A Markov chain is a stochastic process

θ(0), θ(1), θ(2), . . .

Here θ(i) (the state of the process at time i) is a RV whose values lie in a state
space, which usually is a subset of some Euclidean space Rd. The state space
is the same for all times i. We write the time index as a superscript so that we
can index the components θ(i) using a subscript.

Markov chains have the following Markov property: the distribution of
the next state θ(i+1) depends on the history θ(0), θ(1), . . . , θ(i) only through the
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present state θ(i). The Markov chains used in MCMC methods are homoge-
neous: the conditional distribution of θ(i+1) given θ(i) does not depend on the
index i.

The following algorithm shows how one can simulate a Markov chain, in
principle. Intuitively, a Markov chain is nothing else but the mathematical
idealization of this simulation algorithm. (There are, howere, important Markov
chains which are easier to simulate using some other structure for the simulation
program.)

Algorithm 14: Computer scientist’s definition of a homogeneous Markov
chain.

Generate θ(0) from a given initial distribution;1

for i = 0, 1, 2, . . . do2

Generate a vector V (i+1) of fresh random numbers from a suitable3

distribution;
θ(i+1) ← h(θ(i), V (i+1)) for a suitable function h(·, ·);4

end5

Some (but not all) Markov chains have an invariant distribution (or a
stationary distribution or equilibrium distribution), which can be defined as
follows. If the initial state of the chain θ(0) follows the invariant distribution,
then also all the subsequent states θ(i) follow it.

If a Markov chain has an invariant distribution, then (under certain regu-
larity conditions) the distribution of the state θ(i) converges to that invariant
distribution (in a certain sense). Under certain regularity conditions, such a
chain is ergodic, which ensures that an arithmetic average (or an ergodic av-
erage) of the form

1

N

N∑
i=1

h(θ(i))

converges, almost surely, to the corresponding expectation calculated under the
invariant distribution as N → ∞. That is, the ergodic theorem for Markov
chains then states that the strong law of large numbers holds, i.e.,

lim
N→∞

1

N

N∑
i=1

h(θ(i))→ Efh(Θ) =

∫
h(θ)f(θ) dθ, (7.1)

where f is the density of the invariant distribution. This will then hold for
all functions h for which the expectation Efh(Θ) exists, so the convergence
is as strong as in the strong law of large numbers for i.i.d. sequences. There
are also more advanced forms of ergodicity (geometric ergodicity and uniform
ergodicity), which a Markov chain may either have or not have.

Under still more conditions, Markov chains also satisfy a central limit theo-
rem, which characterizes the speed of convergence in the ergodic theorem. The
central limit theorem for Markov chains is of the form

√
N

(
1

N

N∑
i=1

h(θ(i))− Efh(Θ)

)
d−→ N(0, σ2

h).

The speed of convergence is of the same order of N as in the central limit
theorem for i.i.d. sequences. However, estimating the variance σ2

h in the central
limit theorem is lot trickier than with i.i.d. sequences.
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After this preparation, it is possible to explain the basic idea of MCMC
methods. The idea is to set up an ergodic Markov chain which has the posterior
distribution as its invariant distribution. Doing this is often surprisingly easy.
Then one simulates values

θ(0), θ(1), θ(2), . . .

of the chain. When t is sufficiently large, then θ(t) and all the subsequent states
θ(t+i), i ≥ 1 follow approximately the posterior distribution. The time required
for the chain to approximately achieve its invariant distribution is called the
burn-in. After the initial burn-in period has been discarded, the subsequent
values

θ(t), θ(t+1), θ(t+2), . . .

can be treated as a dependent sample from the posterior distribution, and we can
calculate posterior expectations, quantiles and other summaries of the posterior
distribution based on this sample.

After the burn-in period we need to store the simulated values of the chain
for later use. So, for a scalar parameter we need a vector to store the results,
for a vector parameter we need a matrix to store the results and so on. To save
space, one often decides to thin the sequences by keeping only every kth value
of each sequence and by discarding the rest.

Setting up some MCMC algorithm for a given posterior is usually easy.
However, the challenge is to find an MCMC algorithm which converges rapidly
and then explores efficiently the whole support of the posterior distribution.
Then one can get a reliable picture of the posterior distribution after stopping
the simulation after a reasonable number of iterations.

In practice one may want to try several approaches for approximate posterior
inference in order to become convinced that the posterior inferences obtained
with MCMC are reliable. One can, e.g., study simplified forms of the statis-
tical model (where analytical developments or maximum likelihood estimation
or other asymptotic approximations to Bayesian estimation may be possible),
simulate several chains which are initialized from different starting points and
are possibly computed with different algorithms, and compute approximations
to the posterior.

7.3 The Metropolis–Hastings algorithm

Now we consider a target distribution with density π(θ), which may be available
only in an unnormalized form π̃(θ). Usually the target density is the posterior
density of a Bayesian statistical model,

π(θ) = p(θ | y).

Actually we only need to know an unnormalized form of the posterior, which is
given, e.g., in the form of prior times likelihood,

π̃(θ) = p(θ) p(y | θ).

The density π(θ) may be a density in the generalized sense, so we may have a
discrete distribution for some components of θ and a continuous distribution for
others.
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For the Metropolis–Hastings algorithm we need a proposal density q(θ′ | θ),
from which we are able to simulate. (Some authors call the proposal density
the jumping density or candidate generating density.) As a function of θ′, the
proposal density q(θ′ | θ) is a density on the parameter space for each value of
θ. When the current state of the chain is θ = θ(i), we propose a value for the
next state from the distribution with density

θ′ 7→ q(θ′ | θ)

The proposed value θ′ is then accepted or rejected in the algorithm. If the
proposal is accepted, then the next state θ(i+1) is taken to be θ′, but otherwise
the chain stays in the same state, i.e., θ(i+1) is assigned the current state θ(i).

The acceptance condition has to be selected carefully so that we get the tar-
get distribution as the invariant distribution of the chain. The usual procedure
works as follows. We calculate the value of the Metropolis–Hastings ratio (M–H
ratio)

r = r(θ′, θ) =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ),

(7.2)

where θ = θ(i) is the current state and θ′ is the proposed state. Then we generate
a value u from the standard uniform Uni(0, 1). If u < r, then we accept the
proposal and otherwise reject it. For the analysis of the algorithm, it is essential
to notice that the probability of accepting the proposed θ′, when the current
state is θ, is given by

Pr(proposed value is accepted | θ(i) = θ, θ′) = min(1, r(θ′, θ)). (7.3)

We need here the minimum of one and the M–H ratio, since the M–H ratio may
very well be greater than one.

Some explanations are in order.

• The denominator of the M–H ratio (7.2) is the joint density of the proposal
θ′ and the current state θ, when the current state already follows the
posterior.

• The numerator is of the same form as the denominator, but θ and θ′ have
exchanged places.

• If π(θ(0)) > 0, then the denominator of the M–H ratio is always strictly
positive during the algorithm. When i = 0 this follows from the obser-
vation that q(θ′ | θ(0)) has to be positive, since θ′ is generated from that
density. Also π(θ(1)) has to be positive, thanks to the form of the accep-
tance test. The rest follows by induction.

• We do not need to know the normalizing constant of the target distribu-
tion, since it cancels in the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

(7.4)

• If the target density is a posterior distribution, then the M–H ratio is given
by

r =
fY |Θ(y | θ′) fΘ(θ′) q(θ | θ′)
fY |Θ(y | θ) fΘ(θ) q(θ′ | θ)

. (7.5)
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• Once you know what the notation is supposed to mean, you can use an
abbreviated notation for the M–H ratio, such as

r =
p(θ′ | y) q(θ | θ′)
p(θ | y) q(θ′ | θ)

.

Here, e.g., p(θ′ | y) is the value of the posterior density evaluated at the
proposal θ′.

An explanation of why the target distribution is the invariant distribution of
the resulting Markov chain will be given in Chapter 11. Then it will become
clear, that other formulas in place of eq. (7.2) would work, too. However, the
formula (7.2) is known to be optimal (in a certain sense), and therefore it is the
one that is used in practice.

In the Metropolis–Hastings algorithm the proposal density can be selected
otherwise quite freely, but we must be sure that we can reach (with positive
probability) any reasonably possible region in the parameter space starting from
any initial state θ(0) with a finite number of steps. This property is called
irreducibility of the Markov chain.

Algorithm 15: The Metropolis–Hastings algorithm.

Input: An initial value θ(0) such that π̃(θ(0)) > 0 and the number of
iterations N .

Result: Values simulated from a Markov chain which has as its invariant
distribution the distribution corresponding to the unnormalized
density π̃(θ).

for i = 0, 1, 2, . . . , N do1

θ ← θ(i);2

Generate θ′ from q(· | θ) and u from Uni(0, 1);3

Calculate the M–H ratio4

r =
π̃(θ′) q(θ | θ′)
π̃(θ) q(θ′ | θ)

Set5

θ(i+1) ←

{
θ′, if u < r

θ, otherwise.

end6

Algorithm 15 sums up the Metropolis–Hastings algorithm. When imple-
menting the algorithm, one easily comes across problems, which arise because
of underflow or overflow in the calculation of the M–H ratio r. Most of such
problems can be cured by calculating with logarithms. E.g., when the target
distribution is a posterior distribution, then one should first calculate s = log r
by

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(θ | θ′))− log(q(θ′ | θ))
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and only then calculate r = exp(s). Additionally, one might want cancel com-
mon factors from r before calculating its logarithm.

Implementing some Metropolis–Hastings algorithm for any given Bayesian
statistical model is usually straightforward. However, finding a proposal distri-
bution which allows the chain to converge quickly to the target distribution and
allows it to explore the parameter space efficiently may be challenging.

7.4 Concrete Metropolis–Hastings algorithms

In the Metropolis–Hastings algorithm, the proposal θ′ is in practice generated
by a piece of code, which can use the current state θ(i), freshly generated random
numbers from any distribution and arbitrary arithmetic operations. We must
be able to calculate the (correctly normalized) density of the proposal θ′, when
the current state is equal to θ. This is then q(θ′ | θ), which we must be able to
evaluate. Or at least we must be able to calculate the value of the ratio

q(θ | θ′)/q(θ′ | θ).

Different choices for the proposal density correspond to different choices for the
needed piece of code. The resulting Metropolis–Hastings algorithms are named
after the properties of the proposal distribution. We next look at some widely-
used examples.

7.4.1 The independent Metropolis–Hastings algorithm

In the independent M–H algorithm (other common names: independence chain
independence sampler), the proposal density is a fixed density, say s(θ′), which
does not depend on the value of the current state. In the corresponding piece
of code, we only need to generate the value θ′ from the proposal distribution.

If the proposal distribution happens to be the target distribution, then every
proposal will be accepted, and as a result we will get an i.i.d. sample from the
target distribution.

In order to to sample the target distribution properly with the independent
M–H algorithm, the proposal density s must be positive everywhere, where the
target density is positive. If there exist a majorizing constant M , such that

π(θ) ≤Ms(θ) ∀θ,

then the resulting chain can be shown to have good ergodic properties, but if this
condition fails, then the convergence properties of the chain can be bad. (In the
independent M–H algorithm one does not need to know the value of M .) This
implies that the proposal density should be such that the accept–reject method
or importance sampling using that proposal distribution would be possible, too.

In particular, the tails of the proposal density s should be at least as heavy
as the tails of the target density. Finding such proposal densities may be diffi-
cult in high-dimensional problems. A natural choice would be a multivariate t
distribution whose shape is chosen to match the shape of the posterior density.
One should choose a low value (e.g. ν = 4) for the degrees of freedom parameter
in order to ensure heavy tails, and then one could choose the center µ of the
multivariate t distribution t(ν, µ,Σ) to be equal to the posterior mode and the
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dispersion parameter Σ to be equal to the covariance matrix of an approximat-
ing normal distribution. Other choices for the center and dispersion matrix are
possible, too. E.g., one could choose µ to be equal to the estimated posterior
mean and Σ equal to the posterior covariance matrix.

7.4.2 Symmetric proposal distribution

If the proposal density is symmetric in that

q(θ′ | θ) = q(θ | θ′), ∀θ, θ′,

then the proposal density cancels from the M–H ratio,

r =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

=
π(θ′)

π(θ)
.

This the sampling method that was originally proposed by Metropolis. Propos-
als leading to a higher value for the target density are automatically accepted,
and other proposals may be accepted or rejected. Later Hastings generalized
the method for non-symmetric proposal densities.

7.4.3 Random walk Metropolis–Hastings

Suppose that g is a density on the parameter space an that we calculate the
proposal as follows,

generate w from density g and set θ′ ← θ + w.

Then the proposal density is

q(θ′ | θ) = g(θ′ − θ).

This kind of a proposal is called a random walk proposal. If the density g is
symmetric, i.e.,

g(−w) = g(w) ∀w,

then the proposal density q(θ′ | θ) is also symmetric, and thus cancels from the
M–H ratio. In the case of a symmetric random walk proposal, one often speaks
of the random walk Metropolis (RWM) algorithm.

Actually, a random walk is a stochastic process of the form Xt+1 = Xt +wt,
where the random variables wt are i.i.d. Notice that the stochastic process
produced by the random walk M–H algorithm is not a random walk, since the
proposals can either be accepted or rejected.

The symmetric random walk Metropolis (RWM) algorithm is one of the most
commonly used forms of the Metropolis–Hastings method. The most commonly
used forms for g are the multivariate normal or multivariate Student’s t den-
sity centered at the origin. This is, of course, appropriate only for continuous
posterior distributions.

In the preceeding discussion we have implicitely assumed that the parame-
ter space is unconstrained, i.e., that it is equal to Rd for some dimensionality
d. However, the parameter spaces of many important statistical models are
constrained. The most typical constraints are positivity constraints (e.g., for
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a variance parameter) or the constraint that a probability parameter should
lie in the interval (0, 1). The RWM algorithm can be used also in constrained
parameter spaces using one of the following approaches.

The first approach is to reparametrize the constrained parameters so that
they all become unconstrained. For example, one can take the logarithm of
a positive parameter and the logit of a probability parameter as the new pa-
rameters. In this case one should take the Jacobian of the transformation into
account, as is explained in Section 7.4.4. The second approach uses the original
constrained parametrization in the following manner. Whenever the proposed
new parameter vector θ′ lies outside the parameter space, the proposal is imme-
diately rejected, i.e., the chain then stays at its current state and the iteration
counter is increased. The correctness of the second approach can be justified by
embedding the original model in an unconstrained model, which has the same
likelihood and prior as the original model when θ is inside the original parameter
space, but where the prior p(θ) is zero and the sampling density y 7→ p(y | θ) is
defined to be some arbitrary density when θ is outside the original parameter
space. The posterior distribution for the unconstrained model is the same as for
the original model, and the RWM algorithm for the unconstrained model works
as is described above.

In a RWM algorithm one often selects the covariance matrix of the proposal
distribution as

aC,

where C is an approximation to the covariance matrix of the target distribution
(in Bayesian inference C is an approximation to the posterior covariance ma-
trix) and the scalar a is a tuning constant which should be calibrated carefully.
These kind of proposal distributions work well when the posterior distribution
is approximately normal. One sometimes needs to reparametrize the model in
order to make this approach work better.

The optimal value of a and the corresponding optimal acceptance rate has
been derived theoretically, when the target density is a multivariate normal
Nd(µ,C) and the random walk proposal is Nd(0, aC), see [14]. The scaling
constant a should be about (2.38)2/d when d is large. The corresponding ac-
ceptance rate (the number of accepted proposals divided by the total number
of proposals) is from around 0.2 (for high-dimensional problems) to around 0.4
(in dimensions one or two). While these results have been derived using the
very restrictive assumption that the target density is a multivariate normal, the
results anyhow give rough guidelines for calibrating a in a practical problem.

How and why should one try to control the acceptance rate in the random
walk M–H algorithm? If the acceptance rate is too low, then the chain is not
able to move, and the proposed updating steps are likely to be too large. In this
case one could try a smaller value for a. However, a high acceptance rate may
also signal a problem, since then the updating steps may be too small. This
may lead to the situation where the chain explores only a small portion of the
parameter space. In this case one should try a larger value for a. From the
convergence point of view, too high acceptance rate is a bigger problem. A low
acceptance rate is a problem only from the computing time point of view.

In order to calibrate the random walk M–H algorithm, one needs an estimate
of its acceptance rate. A simple-minded approach is just to keep track of the
number of accepted proposals. A better approach is to calculate the average of
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the acceptance probabilities,

1

N

N∑
i=1

min(1, ri),

where ri is the M–H ratio in the ith iteration.
In practice, one can try to tune a iteratively, until the acceptance rate is

acceptable. The tuning iterations are discarded, and the MCMC sample on
which the inference is based is calculated using the fixed proposal distribution,
whose scale a is the selected value. Fixing the proposal distribution is necessary,
since the theory of the Metropolis–Hastings algorithm requires a homogeneous
Markov chain, i.e., a proposal density q(θ′ | θ) which does not depend on the
iteration index.

Recently, several researchers have developed adaptive MCMC algorithms,
where the proposal distribution is allowed to change all the time during the
iterations, see [1, 15] for reviews. Be warned that the design of valid adpative
MCMC algorithms is subtle and that their analysis requires tools which are
more difficult than the general state space Markov chain theory briefly touched
upon in Chapter 11.

Example 7.1. Let us try the random walk chain for the target distribution
N(0, 1) by generating the increment from the normal distribution N(0, σ2) us-
ing the following values for the variance: a) σ2 = 4 b) σ2 = 0.1 c) σ2 = 40.
In situation a) the chain is initialized far away in the tails of the target dis-
tribution, but nevertheless it quickly finds its way to the main portion of the
target distribution and then explores it efficiently. Such a chain is said to mix
well. In situations b) and c) the chains are initialized at the center of the target
distribution, but the chains mix less quickly. In situation b) the step length is
too small, but almost all proposals get accepted. In situation c) the algorithm
proposes too large steps, almost all of which get rejected. Figure 7.1 presents
trace plots (or time series plots) of the chain in the three situations.

4

7.4.4 Reparametrization

Suppose that the posterior distribution of interest is a continuous distribution
and that we have implemented functions for calculating the log-prior and the log-
likelihood in terms of the parameter θ. Now we want to consider a diffeomorphic
reparametrization

φ = g(θ) ⇔ θ = h(φ).

Typical reparametrizations one might consider are taking the logarithm of a
positive parameter or calculating the logit function of a parameter constrained to
the interval (0, 1). What needs to be done in order to implement the Metropolis–
Hastings algorithm for the new parameter vector φ?

First of all, we need a proposal density q(φ′ | φ) and the corresponding code.
We also need to work out how to compute one of the Jacobians

Jh(φ) =
∂θ

∂φ
or Jg(θ) =

∂φ

∂θ
.
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Figure 7.1: Trace plots of the random walk chain using the three different
proposal distributions.
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In φ-space the target density is given by the change of variables formula

fΦ|Y (φ | y) = fΘ|Y (θ | y)

∣∣∣∣ ∂θ∂φ
∣∣∣∣ = fΘ|Y (θ | y) |Jh(φ)| ,

where θ = h(φ).
The M–H ratio, when we propose φ′ and the current value is φ, is given by

r =
fΦ|Y (φ′ | y) q(φ | φ′)
fΦ|Y (φ | y) q(φ′ | φ)

=
fΘ|Y (θ′ | y) |Jh(φ′)| q(φ | φ′)
fΘ|Y (θ | y) |Jh(φ)| q(φ′ | φ)

=
fY |Θ(y | θ′) fΘ(θ′) q(φ | φ′)
fY |Θ(y | θ) fΘ(θ) q(φ′ | φ)

|Jh(φ′)|
|Jh(φ)|

here θ′ = h(φ′) and θ = h(φ). Sometimes it is more convenient to work with
the Jacobian Jg, but this is easy, since

Jg(θ) =
1

Jh(φ)
.

Above we viewed the Jacobians as arising from expressing the target density
using the new φ parametrization instead of the old θ parametrization. An
alternative interpretation is that we should express the proposal density in θ
space instead of φ space and then use the ordinary formula for M–H ratio. Both
viewpoints yield the same formulas.

In order to calculate the logarithm of the M–H ratio, we need to do the
following.

• Calculate the θ and θ′ values corresponding to the current φ and proposed
φ′ values.

• Calculate the log-likelihood and log-prior using the values θ and θ′.

• Calculate the logarithm s of the M–H ratio as

s = log(fY |Θ(y | θ′))− log(fY |Θ(y | θ))
+ log(fΘ(θ′))− log(fΘ(θ)) + log(q(φ | φ′))− log(q(φ′ | φ))

+ log(|Jh(φ′)|)− log(|Jh(φ)|).

Finally, calculate r = exp(s).

• The difference of the logarithms of the absolute Jacobians can be calcu-
lated either on the φ scale or on the θ scale by using the identity

log(|Jh(φ′)|)− log(|Jh(φ)|) = log(|Jg(θ)|)− log(|Jg(θ′)|).

7.4.5 Langevin proposals

Unlike a random walk, the Langevin proposals introduce a drift which moves
the chain towards the modes of the posterior distribution. When the current
state is θ, the proposal θ′ is generated with the rule

θ′ = θ +
σ2

2
∇(log π(θ)) + σ ε, ε ∼ Np(0, I).
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Here σ > 0 is a tuning parameter and

∇(log π(θ)) = ∇(log π̃(θ))

is the gradient of the logarithm of the (unnormalized) posterior density. The
proposal distribution is motivated by a stochastic differential equation, which
has π as its stationary distribution.

This proposal is then accepted or rejected using the ordinary Metropolis–
Hastings rule, where the proposal density is

q(θ′ | θ) = Np(θ
′ | θ +

σ2

2
∇(log π(θ)), σ2I).

7.4.6 State-dependent mixing of proposal distributions

Let θ be the current state of the chain. Suppose that the proposal θ′ is drawn
from a proposal density, which is selected randomly from a list of alternatives

q(θ′ | θ, j), j = 1, . . .K,

What is more, the selection probabilities may depend on the current state. One
valid form for the step of an MCMC algorithm is then the following.

• Draw j from the pmf β(· | θ), j = 1, . . . ,K.

• Draw θ′ from the density q(θ′ | θ, j) which corresponds to the selected j.

• Accept the proposed value θ′ as the new state, if U < r, where U ∼
Uni(0, 1), and

r =
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

. (7.6)

Otherwise the chain stays at θ.

This formula (7.6) for the M–H ratio r is contained in Green’s article [7],
which introduced the reversible jump MCMC method. The algorithm could be
called the Metropolis–Hastings–Green algorithm.

The lecturer does know any trick for deriving formula (7.6) from the M–H
ratio of the ordinary M–H algorithm. The beauty of formula (7.6) lies in the
fact that one only needs to evaluate q(θ′ | θ, j) and q(θ | θ′, j) for the proposal
density which was selected. A straightforward application of the M–H algorithm
would require one to evaluate these densities for all of the K possibilities.

If the selection probabilities β(j | θ) do not actually depend on θ, then they
cancel from the M–H ratio. In this case (7.6) is easily derived from the ordinary
M–H algorithm by augmenting the state of the chain to include the selected
proposal mechanism.

7.5 Gibbs sampler

One of the best known ways of setting up an MCMC algorithm is Gibbs sam-
pling, which is now discussed supposing that the target distribution is a posterior
distribution. However, the method can be applied to any target distribution,
when the full conditional distributions of the target distribution are available.
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Suppose that the parameter vector has been divided into components

θ = (θ1, θ2, . . . , θd),

where θj may but need not be a scalar. Suppose also that the posterior full
conditional distributions of each of the components are available in the sense
that we know how to simulate them. This is the case when the statistical model
exhibits conditional conjugacy with respect to all of the components θj . Then
the basic idea behind Gibbs sampling is that we simulate successively each com-
ponent θj from its (posterior) full conditional distribution. It is convenient to
use the abbreviation θ−j for the vector, which contains all the other components
of θ but θj , i.e.

θ−j = (θ1, . . . , θj−1, θj+1, . . . , θd). (7.7)

Then the posterior full conditional of θj is

p(θj | θ−j , y) = fΘj |Θ−j ,Y (θj | θ−j , y). (7.8)

A convenient shorthand notation for the posterior full conditional is

p(θj | ·),

where the dot denotes all the other random variables except θj .
The most common form of the Gibbs sampler is the systematic scan Gibbs

sampler, where the components are updated in a fixed cyclic order. It is also
possible to select at random which component to update next. In that case one
has the random scan Gibbs sampler.

Algorithm 16 presents the systematic scan Gibbs sampler, when we update
the components using the order 1, 2, . . . , d. In the algorithm i is the time index
of the Markov chain. One needs d updates to get from θ(i) to θ(i+1). To

generate the j’th component, θ
(i+1)
j , one uses the most recent values for the other

components, some of which have already been updated. I.e., when the value for

θ
(i+1)
j is generated, it is generated from the corresponding full conditional using

the following values for the other components,

θcur
−j = (θ

(i+1)
1 , . . . , θ

(i+1)
j−1 , θ

(i)
j+1, . . . , θ

(i)
d ).

Usually the updating steps for the components of θ are so heterogeneous,
that the inner loop is written out in full. E.g., in the case of three components,
θ = (φ, ψ, τ), the actual implementation would probably look like the follow-
ing algorithm 17. This algorithm also demonstrates, how one can write the
algorithm using the abbreviated notation for conditional densities.

Algorithm 18 presents the random scan Gibbs sampler. Now one time step
of the Markov chain requires only one update of a randomly selected component.
In the random scan version, one can have different probabilities for updating the
different components of θ, and this freedom can be useful for some statistical
models.

If the statistical model exhibits conditional conjugacy with respect to all the
components of θ, then the Gibbs sampler is easy to implement and is the method
of choice for many statisticians. One only needs random number generators for
all the posterior full conditionals, and these are easily available for the standard
distributions. An appealing feature of the method is the fact that one does not
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Algorithm 16: Systematic scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0 and the number
of iterations N .

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0)
1

for i = 0, 1, . . . , N do2

for j = 1, . . . , d do3

draw a new value for the jth component θcur
j of θcur from the4

posterior full conditional fΘj |Θ−j ,Y (θj | θcur
−j , y)

end5

θ(i+1) ← θcur
6

end7

Algorithm 17: Systematic scan Gibbs sampler for three components θ =
(φ, ψ, τ) given initial values for all the components except the one that gets
updated the first.

ψcur ← ψ0; τ cur ← τ0;1

for i = 0, 1, . . . , N do2

draw φcur from p(φ | ψ = ψcur, τ = τ cur, y);3

draw ψcur from p(ψ | φ = φcur, τ = τ cur, y);4

draw τ cur from p(τ | φ = φcur, ψ = ψcur, y);5

φi+1 ← φcur; ψi+1 ← ψcur; τi+1 ← τ cur;6

end7

Algorithm 18: Random scan Gibbs sampler.

Input: An initial value θ(0) such that fΘ|Y (θ(0) | y) > 0, the number of
iterations N and a probability vector β1, . . . , βd: each βj > 0 and
β1 + · · ·+ βd = 1.

Result: Values simulated from a Markov chain which has the posterior
distribution as its invariant distribution.

θcur ← θ(0);1

for i = 0, 1, . . . , N do2

select j from {1, . . . , d} with probabilities (β1, . . . , βd);3

draw a new value for the component θcur
j from the posterior full4

conditional fΘj |Θ−j ,Y (θj | θcur
−j , y);

θ(i+1) ← θcur;5

end6
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need to choose the proposal distribution as in the Metropolis–Hastings sampler;
the proposals of the Gibbs sampler are somehow automatically tuned to the
target posterior. However, if some of the components of θ are strongly correlated
in the posterior, then the convergence of the Gibbs sampler suffers. So one
might want to reparametrize the model so that the transformed parameters are
independent in their posterior. Unfortunately, most reparametrizations destroy
the conditional conjugacy properties on which the attractiveness of the Gibbs
sampler depends.

The name Gibbs sampling is actually not quite appropriate. Gibbs studied
distributions arising in statistical physics (often called Gibbs distributions or
Boltzmann distributions), which have densities of the form

f(x1, . . . , xd) ∝ exp

(
− 1

kT
E(x1, . . . , xd)

)
,

where (x1, . . . , xd) is the state of physical system, k is a constant, T is the tem-
perature of the system, and E(x1, . . . , xd) > 0 is the energy of the system. The
Geman brothers used a computational method (simulated annealing), where
a computational parameter corresponding to the the temperature of a Gibbs
distribution was gradually lowered towards zero. At each temperature the dis-
tribution of the system was simulated using the Gibbs sampler. This way they
could obtain the configurations of minimal energy in the limit. The name Gibbs
sampling was selected in order to emphasize the relationship with the Gibbs dis-
tributions. However, when the Gibbs sampler is applied to posterior inference,
the temperature parameter is not needed, and therefore the reason for the name
Gibbs has disappeared. Many authors have pointed this out this deficiency and
proposed alternative names for the sampling method, but none of them have
stuck.

7.6 Componentwise updates in the Metropolis–
Hastings algorithm

Already Metropolis et al. and Hastings pointed out that one can use componen-
twise updates in the Metropolis–Hastings algorithm. This is sometimes called
single-site updating or blockwise updating.

The parameter vector is divided into d components (or blocks)

θ = (θ1, θ2, . . . , θd),

which need not be scalars. In addtion, we need d proposal densities

θ′j 7→ qj(θ
′
j | θcur), j = 1, . . . , d,

which may all be different.
When it is time to update the jth component, we do a single Metropolis–

Hastings step. When the current value of the parameter vector is θcur, we
propose the vector θ′, where the jth component is drawn from the proposal
density qj(θj | θcur), and the rest of the components of θ′ are equal to those of
the current value θcur. Then the proposal is accepted or rejected using the M–H
ratio

r =
p(θ′ | y) qj(θ

cur
j | θ′)

p(θcur | y) qj(θ′j | θcur)
(7.9)

106



March 5, 2012

The vectors θ′ and θcur differ only in the jth place, and therefore one can write
the M–H ratio (for updating the jth component) also in the form

r =
p(θ′j | θcur

−j , y) qj(θ
cur
j | θ′)

p(θcur
j | θcur

−j , y) qj(θ′j | θcur)
, (7.10)

where we used the multiplication rule to express the joint posterior as

p(θ | y) = p(θ−j | y) p(θj | θ−j , y)

both in the numerator and in the denominator, and then cancelled the common
factor p(θcur

−j | y). Although eqs. (7.9) and (7.10) are equivalent, notice that
in eq. (7.9) we have the M–H ratio when we regard the joint posterior as the
target distribution, but in eq. (7.10) we have ostensibly the M–H ratio, when
the target is the posterior full conditional of component j. If one then selects
as qj the posterior full conditional of the component θj for each j, then each
proposal is accepted and the Gibbs sampler ensues.

One can use this procedure either a systematic or a random scan sampler, as
is the case with the Gibbs sampler. The resulting algorithm is often called the
Metropolis–within–Gibbs sampler. (The name is illogical: the Gibbs sampler is a
special case of the Metropolis–Hastings algorithm with componentwise updates.)
This is also a very popular MCMC algorithm, since then one does not have to
design a single complicated multivariate proposal density but p simpler proposal
densities, many of which may be full conditional densities of the posterior.

Small modifications in the implementation can sometimes make a big differ-
ence to the efficiency of the sampler. One important decision is how to divide
the parameter vector into components. This is called blocking or grouping.
As a general rule, the less dependent the different components are in the pos-
terior, the better the sampler. Therefore it may be a good idea to combine
highly correlated components into a single block, with is then updated as a
single entity.

It is sometimes useful to update the whole vector jointly using a single
Metropolis–Hastings acceptance test, even if the proposed value is build up
component by component taking advantage of conditional conjugacy proper-
ties. These and other ways of improving the performance of MCMC algorithms
in the context of specific statistical models are topics of current research.

7.7 Analyzing MCMC output

After the MCMC algorithm has been programmed and tested, the user should
investigate the properties of the algorithm for the particular problem he or she
is trying to solve. There are available several tools, e.g., for

• diagnosing convergence

• estimating Monte Carlo standard errors.

We discuss some of the simpler tools.
A trace plot of a parameter φ is a plot of the iterates φ(t) against the it-

eration number t. These are often examined for each of the components of the
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parameter vector, and sometimes also for selected scalar functions of the param-
eter vector. A trace plot is also called a sample path, a history plot or a time
series plot. If the chain mixes well, then the trace plots move quickly away from
their starting values and they wiggle vigorously in the region supported by the
posterior. In that case one may select the length of the burn-in by examining
trace plots. (This is not foolproof, since the chain may only have converged
momentarily to some neighborhood of a local maximum of the posterior.) If
the chain mixes poorly, then the traces will remain nearly constant for many
iterations and the state may seem to wander systematically towards some di-
rection. Then one may need a huge number of iterations before the traces show
convergence.

An autocorrelation plot is a plot of the autocorrelation of the sequence
φ(t) at different iteration lags, where φ may denote any of the components of
the parameter vector, or any interesting function of the parameter vector. The
autocorrelation function (acf) of a stationary sequence of RVs (Xi) at lag k is
defined by

R(k) =
E[(Xi − µ)(Xi+k − µ)]

σ2
, k = 0, 1, 2, . . . ,

where µ = EXi, σ
2 = varXi, and the assumption of stationarity entails that µ,

σ2 and R(k) do not depend on index i. For an i.i.d. sequence the autocorrela-
tion function is one at lag zero and zero otherwise. When dealing with MCMC
output, one needs to estimate the autocorrelation function, and then to plot the
estimate. These autocorrelation plots can be produced for all the interesting
components of θ, but one should reject the burn-in before estimating the auto-
correlation so that one analyzes only that part of the history where the chain is
approximately stationary. A chain that mixes slowly exhibits slow decay of the
autocorrelation as the lag increases. When there are more than one parameter,
one may also examine cross-correlations between the parameters.

There exist tools for convergence diagnostics, which try to help in decid-
ing whether the chain has already approximately reached its stationary distri-
bution and in selecting the length of the burn-in period. E.g., in the approach of
Gelman and Rubin, the chain is run many times starting from separate starting
values dispersed over the support of the posterior. After the burn-in has been
discarded, one calculates statistics which try to check whether all the chains
have converged to the same distribution. In some other approches one needs
to simulate only a single chain and one compares the behaviour of the chain in
the beginning and in the end of the simulation run. Such convergence diagnos-
tic are available in the coda R package and in the boa R package. However,
convergence diagnostic tools can not prove that the chain has converged. They
only help you to detect obvious cases of non-convergence.

If the chain seems to have converged, then it is of interest to estimate stan-
dard errors for the scalar parameters. The naive estimate (which is correct for
i.i.d. sampling) would be to calculate the sample standard deviation of the last
L iterations divided by

√
L (after the burn-in has been discarded). However,

MCMC iterates are typically positively correlated, and therefore this would un-
derestimate the standard error severely.

A simple method for estimating the standard errors for posterior expecta-
tions

E[h(Θ) | Y = y]
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is the method of batch means [9], where the L last iterates are divided into
a non-overlapping batches of length b. Then one computes the mean h̄j of the
values h(θ(t)) inside each of the batches j = 1, . . . , a and estimates the standard
error of the grand mean h̄ as the square roof of

1

a

1

a− 1

a∑
j=1

(h̄j − h̄)2,

where h̄ is the grand mean calculated from all the the L last iterates h(θ(t)). The
idea here is to treat the batch means as i.i.d. random variables whose expected
value is the posterior expectation. One should perhaps select the batch length
as a function of the simulation length, e.g., with the rule b = b

√
Lc.

There are, however, more sophisticated methods available for estimating the
standard errors in MCMC. Some of these are available in the boa and coda R
packages.

7.8 Example

Consider the two dimensional normal distribution N(0,Σ) as the target distri-
bution, where

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, −1 < ρ < 1, σ1, σ2 > 0,

and ρ is nearly one. Of course, it is possible to sample this two-variate normal
distribution directly. However, we next apply MCMC algorithms to this highly
correlated toy problem in order to demonstrate properties of the Gibbs sampler
and a certain Metropolis–Hastings sampler.

The full conditionals of the target distribution are given by

[Θ1 | Θ2 = θ2] ∼ N
(
ρσ1

σ2
θ2, (1− ρ2)σ2

1

)
[Θ2 | Θ1 = θ1] ∼ N

(
ρσ2

σ1
θ1, (1− ρ2)σ2

2

)
,

and these are easy to simulate. We now suppose that

ρ = 0.99, σ1 = σ2 = 1.

Figure 7.2 shows the ten first steps of the Gibbs sampler, when all the component
updates (“half-steps”of the sampler) are shown. Since ρ is almost one, the Gibbs
sampler is forced to take small steps, and it takes a long time for it to explore
the main support of the target distribution.

Another strategy would be to generate the proposal in two stages as follows.
We first draw θ′1 from some convenient proposal distribution, e.g., by the random
walk proposal

θ′1 = θcur
1 + w,

where w is generated from (say) N(0, 4). Then we draw θ′2 from the full condi-
tional distribution of θ2 conditioning on the proposed value θ′1. Then the overall
proposal density is given by

q((θ′1, θ
′
2) | (θcur

1 , θcur
2 )) = N(θ′1 − θcur

1 | 0, 4)N(θ′2 |
ρσ2

σ1
θ′1, (1− ρ2)σ2

2)
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Figure 7.2: The first ten iterations of the Gibbs sampler. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.
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Figure 7.3: The first ten iterations of the Metropolis–Hastings sampler. Notice
the sampler produced less than ten distinct θ values. The three contour lines
enclose 50 %, 90 % and 99 % of the probability mass of the target distribution.
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Figure 7.4: Sampler traces for the two components θ1 and θ2 using the Gibbs
sampler and the Metropolis–Hastings sampler.
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We then either accept or reject the transition from θcur to θ′ using the ordinary
acceptance rule of the Metropolis–Hastings sampler. This algorithm explores
the target distribution much more efficiently, as can be guessed from Figure 7.3,
which shows the first ten iterations of the sampler. The random walk proposal
gives the component θ1 freedom to explore the parameter space, and then the
proposal from the full conditional for θ2 draws the proposed pair into the main
support of the target density.

Figure 7.4 shows the traces of the components using the two algorithms.
The Metropolis–Hastings sampler seems to mix better than the Gibbs sam-
pler, since there seems to be less dependence between the consecutive simu-
lated values. Figure 7.5 shows the autocorrelation plots for the two components
using the two different samplers. The autocorrelation functions produced by
the Gibbs sampler decay more slowly than those produced by the Metropolis–
Hastings sampler, and this demonstrates that we obtain better mixing with the
Metropolis–Hastings sampler.

7.9 Literature

The original references on the Metropolis sampler, the Metropolis–Hastings sam-
pler and the Gibbs sampler are [10, 8, 5]. The article by Gelfand and Smith [4]
finally convinced the statistical community about the usefulness of these meth-
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Figure 7.5: Sampler autocorrelation functions for the two components θ1 and
θ2 using the Gibbs sampler and the Metropolis–Hastings sampler.
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ods in Bayesian inference. The books [6, 3] contain lots of information on MCMC
methods and their applications.

The books by Nummelin [12] or Meyn and Tweedie [11] can be consulted for
the theory of Markov chains in a general state space. The main features of the
general state space theory are explained in several sources, including [2, Ch. 14]
or [13, Ch. 6].
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Chapter 8

Auxiliary Variable Models

8.1 Introduction

We are interested in an actual statistical model, with joint distribution

pact(y, θ) = pact(y | θ) pact(θ),

but where the posterior pact(θ | y) is awkward to sample from. Suppose we are
able to reformulate the original model by introducing a new random variable Z
such that the marginal distribution of (y, θ) in the new model is the same as the
joint distribution of (y, θ) in the original model, i.e., we assume that∫

paug(y, θ, z) dz = pact(y, θ). (8.1)

When this is the case, we can forget the distinction between the actual model
pact(·) and the augmented model paug(·) and use the generic symbol p(·) to de-
note the densities calculated under either of the models. Here the augmentation
parameter, the auxiliary variable, the latent variable or the latent data Z can
be anything. However, it requires ingenuity and insight to come up with useful
auxiliary variables.

Sometimes it is possible to sample much more efficiently from p(θ, z | y) than
from p(θ | y). In such a case we can sample from the posterior p(θ, z | y), and
we get a sample from the marginal posterior of θ by ignoring the z components
of the (θ, z) sample. If both the full conditionals p(θ | z, y) and p(z | θ, y) are
available in the sense that we know how to sample from these distribution, then
implementing the Gibbs sampler is straightforward.

8.2 Slice sampler

Suppose we want to simulate from a distribution having the unnormalized den-
sity q(θ). By the fundamental theorem of simulation, this is equivalent to sim-
ulating (θ, z) from the uniform distribution under the graph of q, i.e., from
Uni(A), the uniform distribution on the set

A = {(θ, z) : 0 < z < q(θ)}.
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This distribution has the unnormalized density

p(θ, z) ∝ 1A(θ, z) = 1(0,q(θ))(z) = 1(0 < z < q(θ))

The full conditional of Z is proportional to the joint density, considered as
a function of z, i.e.,

p(z | θ) ∝ p(θ, z) ∝ 1(0 < z < q(θ)),

and this an unnormalized density of the uniform distribution on the interval
(0, q(θ)).

Similarly, the full conditional of θ is the uniform distribution on the set
(depending on z), where

1(0 < z < q(θ)) = 1,

since the joint density is constant on this set. That is, the full conditional of θ
is the uniform distribution on the set

B(z) = {θ : q(θ) > z}.

The resulting Gibbs sampler is called the slice sampler (for the distribution
determined by q). The slice sampler is attractive, if the uniform distribution on
the set B(z) is easy to simulate.

Example 8.1. Let us consider the truncated standard normal distribution
corresponding to the unnormalized density

q(θ) = exp

(
−1

2
θ2

)
1(α,∞)(θ),

where the truncation point α > 0.
We can get a correlated sample θ1, θ2, . . . from this distribution as follows.

1. Pick an initial value θ0 > α.

2. For i = 1, 2 . . .

• Draw zi from Uni(0, q(θi−1)).

• Draw θi from Uni(α,
√
−2 ln zi).

4

Simulating the uniform in the set B(z) may turn out to be unwieldy. Usually,
the target density can be decomposed into a product of functions,

p(θ | y) ∝
n∏
i=1

qi(θ).

Then one may try the associated augmentation, where one introduces n auxiliary
variables Zi such that, conditionally on θ, the Zi have independently the uniform
distribution on (0, qi(θ)). In the augmented model, the full conditional of θ is
the uniform distribution on the set

C(z) = ∩ni=1{θ : qi(θ) > zi},

and this may be easier to simulate. Typically, the more auxiliary variables one
introduces, the slower is the mixing of the resulting chain.
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8.3 Missing data problems

In many experiments the posterior distribution is easy to summarize if all the
planned data are available. However, if some of the observations are missing,
then the posterior is more complex. Let Z be the missing data and let y be the
observed data. The full conditional

p(θ | z, y)

is the posterior from the complete data, and it is of a simple form (by assump-
tion). Often also the full conditional of the missing data

p(z | θ, y)

is easy to sample from. Then it is straightforward to use the Gibbs sampler.
Here the joint distribution in the reformulated model is

paug(y, θ, z) = pact(θ) paug(y, z | θ).

In order to check the equivalence of the original and of the reformulated model,
see (8.1), it is sufficient to check that∫

paug(y, z | θ) dz = pact(y | θ).

This is trivial, if the complete data likelihood is specified in the form

paug(y, z | θ) = pact(y | θ) paug(z | y, θ).

However, often the complete data likelihood is specified in some other way, and
then checking the equivalence to the original model requires more thought.

Example 8.2. Let us consider the famous genetic linkage example, where we
have the multinomial likelihood

p(y | θ) = Mult

(
(y1, y2, y3, y4) | n,

(
1

2
+
θ

4
,

1

4
(1− θ), 1

4
(1− θ), θ

4

))
.

Here 0 < θ < 1, and y = (y1, y2, y3, y4), where the yj :s are the observed fre-
quencies of the four categories. We take the uniform prior Uni(0, 1) for θ. The
posterior is proportional to

q(θ) = θy4 (1− θ)y2+y3 (2 + θ)y1 , 0 < θ < 1

but thanks to the last factor, this is not of a standard form.
However, suppose that the first category with frequency y1 is an amalga-

mation of two subclasses with probabilities θ/4 and 1/2, but the distinction
between the subclasses has not been observed. Let Z be the frequency of the
first subclass (with class probability θ/4). Then the frequency of the second
subclass (with class probability 1/2) is y1 − Z. Our reformulated model states
that

p(z, y | θ) = p(z, y1, y2, y3, y4 | θ) =

Mult

(
(z, y1 − z, y2, y3, y4) | n,

(
1

4
θ,

1

2
,

1

4
(1− θ), 1

4
(1− θ), 1

4
θ

))
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Let us check that the reformulated model and the original model are equiv-
alent. If we combine the frequencies X11 and X12 in the the multinomial distri-
bution

(X11, X12, X2, X3, X4) ∼ Mult(n, (p11, p12, p2, p3, p4)),

then we obtain the multinomial distribution

(X11 +X12, X2, X3, X4) ∼ Mult(n, (p11 + p12, p2, p3, p4)),

and this is obvious when one thinks of the repeated sampling definition of the
multinomial distribution. This shows that our original model and the reformu-
lated model are equivalent.

The posterior of θ given the complete data consisting of y and z is given by

p(θ | y, z) ∝ p(y, z | θ) p(θ)

∝
(

1

4
θ

)z (
1

2

)y1−z (1

4
(1− θ)

)y2 (1

4
(1− θ)

)y3 (1

4
θ

)y4
∝ θz+y4 (1− θ)y2+y3 .

This is an unnormalized density of the beta distribution Be(z+y4+1, y2+y3+1),
which can be sampled directly.

The full conditional of Z is trickier to recognize. Notice that Z is an integer
such that 0 ≤ Z ≤ y1. It is critical to notice that the normalizing constant of
the multinomial pmf p(z, y | θ) depends on z. While you can omit from the
likelihood any terms which depend only on the observed data, you must keep
those terms which depend on the unknowns: parameters or missing data.

As a function of z,

p(z | θ, y) ∝ p(z, y | θ) p(θ) = p(z, y | θ)

=
n!

z! (y1 − z)! y2! y3! y4!

(
1

4
θ

)z (
1

2

)y1−z (1

4
(1− θ)

)y2 (1

4
(1− θ)

)y3 (1

4
θ

)y4
∝ y1!

z! (y1 − z)!

(
θ

4

)z (
1

2

)y1−z
=

(
y1

z

)( θ
4

θ
4 + 1

2

)z (
1
2

θ
4 + 1

2

)y1−z (
θ

4
+

1

2

)z+y1−z
∝
(
y1

z

)(
θ

2 + θ

)z (
1− θ

2 + θ

)y1−z
, z = 0, 1, . . . , y1.

From this we see that the full conditional of Z is the binomial Bin(y1, θ/(2+θ)),
which we also are able to simulate directly. Gibbs sampling in the reformulated
model is straightforward. 4

8.4 Probit regression

We now consider a regression model, where each of the responses is binary: zero
of one. In other words, each of the responses has the Bernoulli distribution (the
binomial distribution with sample size one). Conditionally on the parameter

119



March 5, 2012

vector θ, the responses Yi are assumed to be independent, and Yi is assumed to
have success probability

qi(θ) = P (Yi = 1 | θ),

which is a function of the parameter vector θ. That is, the model assumes that

[Yi | θ]
ind∼ B(qi(θ)), i = 1, . . . , n,

where B(p) is the Bernoulli distribution with success probability 0 ≤ p ≤ 1.
We assume that the success probability of the i’th response depends on θ

and on the value of the covariate vector xi for the i’th case. The covariate
vector consists of observed characteristics which might influence the probability
of success. We would like to model the success probability in terms of a linear
predictor, which is the inner product xTi θ of the covariate vector and the pa-
rameter vector. For instance, if we have observed a single explanatory scalar
variable ti connected with the response yi, then the linear predictor could be

xTi θ = α+ β ti, xi = (1, ti), θ = (α, β).

Notice that we typically include the constant ”1” in the covariate vector.
The linear predictor is not constrained to the range [0, 1] of the probability

parameter, and therefore we need to map the values of the linear predictor into
that range. The standard solution is to posit that

qi(θ) = F (xTi θ), i = 1, . . . , n.

where F is the cumulative distribution function of some continuous distribution
supported on the whole real line. Since 0 ≤ F ≤ 1, here qi(θ) is a valid proba-
bility parameter for the Bernoulli distribution for any value of θ. Such a binary
regression model belongs to the class of generalized linear models (GLMs). In
this context, the inverse function of the cdf F is called the link function; the
model is linear on the scale of the link function,

F−1(qi(θ)) = xTi θ, i = 1, . . . , n.

The most popular popular choice for the link function in binary regression
is the logit link ln(q/(1− q)), which corresponds to choosing F to be the cdf of
the logistic distribution,

F (u) =
eu

1 + eu
= logit−1(u).

The logit link has a special status in binary regression, since the logit link
happens to be what is known as the canonical link function in the theory of
generalized linear models. In probit regression we take F = Φ, where Φ is the
cdf of the standard normal N(0, 1), i.e., we assume that

qi(θ) = P (Yi = 1 | θ) = Φ(xTi θ), i = 1, . . . , n.

The third commonly used link function is the complementary log-log link

F−1(q) = ln(− ln(1− q)), 0 < q < 1,
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which corresponds to the cdf F (u) = 1 − exp(− exp(u)). The maximum likeli-
hood estimate (MLE) for binary regression using either logit, probit or comple-
mentary log-log link can be calculated with standard software, e.g., using the
function glm of R.

We can write the likelihood in binary regression immediately, i.e.,

p(y | θ) =

n∏
i=1

p(yi | θ) =

n∏
i=1

F (xTi θ)
yi
(
1− F (xTi θ)

)1−yi
. (8.2)

Posterior inference can be based directly on this expression. Gibbs sampling
seems impossible, but a suitable MCMC algorithm could be, e.g., the indepen-
dence sampler with a multivariate Student’s t distribution, whose center and
covariance matrix are selected based on the MLE and its approximate covari-
ance matrix, which can be calculated with standard software.

From now on, we will discuss the probit regression model, and its well-known
auxiliary variable reformulation, due to Albert and Chib [1]. The likelihood is
given in equation (8.2) with F equal to Φ, and our prior is the normal distribu-
tion with mean µ0 and precision matrix Q0,

p(θ) = N(θ | µ0, Q
−1
o ).

Let us introduce n latent variables (i.e., unobserved random variables)

[Zi | θ]
ind∼ N(xTi θ, 1), i = 1, . . . , n.

This notation signifies that the Zi’s are independent, conditionally on θ. We
may represent the latent variables Zi using n i.i.d. random variables εi ∼ N(0, 1)
(which are independent of everything else),

Zi = xTi θ + εi, i = 1, . . . , n.

Consider n RVs Yi which are defined by

Yi = 1(Zi > 0) =

{
1, when Zi > 0,

0, otherwise.

Conditionally on θ, the random variables Yi are independent, Yi takes on the
value zero or one, and

P (Yi = 1 | θ) = P (Zi > 0 | θ) = P (xTi θ + εi > 0) = P (−εi < xTi θ) = Φ(xTi θ).

Here we used the fact that −εi ∼ N(0, 1) which follows from the symmetry of
the standard normal. Therefore the marginal distribution of Y = (Y1, . . . , Yn)
given θ is the same as in the original probit regression model. Our reformulated
model has the structure

paug(y, θ, z) = pact(θ) paug(y, z | θ),

and we have just argued that∫
paug(y, z | θ) dz = pact(y | θ).
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This shows that our reformulated model is equivalent with the original probit
regression model.

The reformulated probit regression model has the following hierarchical struc-
ture,

Θ ∼ N(µ0, Q
−1
0 ) (8.3)

[Z | Θ = θ] ∼ N(Xθ, I) (8.4)

Y = 1+(Z), (8.5)

where X is the known design matrix with ith row equal to xTi , Z is the column
vector of latent variables, and 1+(Z) means the vector

1+(Z) =

1(Z1 > 0)
...

1(Zn > 0)

 ,
where we write 1(Zi > 0) for the indicator 1(0,∞)(Zi). Therefore we can regard
the original probit regression model as a missing data problem where we have a
normal regression model on the latent data Z = (Z1, . . . , Zn) and the observed
responses Yi are incomplete in that we only observe whether Zi > 0 or Zi ≤ 0.

The joint distribution of the reformulated model can be expressed as

p(θ, y, z) = p(θ) p(z | θ) p(y | z),

where

p(y | z) =

n∏
i=1

p(yi | zi),

and further

p(yi | zi) = 1(zi > 0) 1(yi = 1) + 1(zi ≤ 0) 1(yi = 0).

(Yi is a deterministic function of Zi. The preceding representation is possible,
since Yi has a discrete distribution.)

The full conditional of θ is easy to calculate, since

p(θ | z, y) ∝ p(θ, y, z) ∝ p(θ) p(z | θ),

but this is the same as the posterior in a certain linear regression model, namely
the multivariate normal N(θ | µ1, Q

−1
1 ), whose parameters µ1 and Q1 can be

solved from
Q1 = Q0 +XTX, Q1 µ1 = Q0 µ0 +XT z.

The other full conditional distribution is also easy to derive. As a function
of z, we have

p(z | θ, y) ∝ p(z | θ) p(y | z) =

n∏
i=1

N(zi | xTi θ, 1) p(yi | zi)

This is a distribution, where the components Zi are independent, and follow
truncated normal distributions, i.e.,

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi > 0), if yi = 1,

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi ≤ 0), if yi = 0.
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Notice that the side of the truncation for Zi depends on the value of the bi-
nary response yi. Simulating the full conditional distribution p(z | θ, y) is
also straightforward, since we only have to draw independently n values from
truncated normal distributions with known parameters and known semi-infinite
truncation intervals. Since all the needed full conditional distributions are eas-
ily simulated, implementing the Gibbs sampler is straightforward in the latent
variable reformulation.

What is the practical benefit of the latent variable reformulation of the pro-
bit regression model? In the original formulation of the probit regression model,
the components of θ are dependent in their posterior. MCMC sampling will be
inefficient unless we manage to find a proposal distribution which is adapted
to the form of the posterior distribution. After the reformulation, Gibbs sam-
pling becomes straightforward. In the latent variable reformulation, most of the
dependencies in the posterior are transferred to the multivariate normal distri-
bution p(θ | z, y), where they are easy to handle. The components of Z are
independent in the other needed full conditional distribution p(z | θ, y).

8.5 Scale mixtures of normals

Student’s t distribution with ν > 0 degrees of freedom can be expressed as a
scale mixture of normal distributions. Namely, if

Λ ∼ Gam(ν/2, ν/2), and [W | Λ = λ] ∼ N(0,
1

λ
),

then the marginal distribution of W is tν . We can use this property to eliminate
Student’s t distribution (and the Cauchy distribution which is equal to t1) from
any statistical model.

Albert and Chib considered approximating the logit link with the tν link in
binary regression. The logit link is already well approximated by the probit link
in the sense that

logit−1(u) ≈ Φ

(√
π

8
u

)
,

when u is near zero. Here the scaling factor
√
π/8 has been selected so that

the derivatives of the two curves are equal for u = 0. The approximation is not
perfect away from zero. However, if one uses the distribution function Fν of the
tν distribution (e.g., with ν = 8 degrees of freedom), then one can choose the
value of the scaling factor s so that we have a much better approximation

logit−1(u) ≈ Fν(su)

for all real u. Making use of the scaling factor s, we can switch between a logit
regression model and its tν regression approximation.

We now consider, how we can reformulate the binary regression model which
has the tν link, i.e.,

[Yi | θ]
ind∼ B(Fν(xTi θ)), i = 1, . . . , n. (8.6)

Here the degrees of freedom parameter ν is fixed. Also this reformulation is due
to Albert and Chib [1].
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The first step is to notice that we can represent the responses as

Yi = 1(Zi > 0), where Zi = xTi θ +Wi, i = 1, . . . , n,

where Wi ∼ tν are i.i.d. and independent of everything else. This holds since

P (Zi > 0 | θ) = P (xTi θ +Wi > 0) = P (−Wi < xTi θ) = Fν(xTi θ).

Here we used the fact that −Wi ∼ tν which follows from symmetry of the t
distribution. Besides, the Zi’s are independent, conditionally on θ. Next we
eliminate the tν distribution by introducing n i.i.d. latent variables Λi, each
having the Gam(ν/2, ν/2) distribution. If we choose N(µ0, Q

−1
0 ) as the prior

for Θ, then we end up with the following hierarchical model

Θ ∼ N(µ0, Q
−1
0 ), (8.7)

Λi
i.i.d.∼ Gam(ν/2, ν/2), i = 1, . . . , n (8.8)

[Z | Θ = θ,Λ = λ] ∼ N
(
Xθ, [diag(λ1, . . . , λn)]

−1
)
, (8.9)

Y = 1+(Z). (8.10)

This reformulation is equivalent with the original model (8.6).
The full conditionals in the reformulated model are easy to derive. The

full conditional of θ is a multivariate normal. The full conditional of Λ =
(Λ1, . . . ,Λn) is the distribution of n independent gamma distributed variables
with certain parameters. The full conditional of Z is, once again, a distribution,
where the components are independent and have truncated normal distributions.

Another well-known distribution, which can be expressed as a scale mix-
ture of normal distributions is the Laplace distribution (the double exponential
distribution), which has the density

1

2
e−|y|, y ∈ R .

If Y has the Laplace distribution, then it can be expressed as follows

V ∼ Exp(1/2) and [Y | V = v] ∼ N(0, v).

This relationship can be used to eliminate the Laplace distribution from any
statistical model.

Even the logistic distribution with distribution function logit−1(z) can be
expressed as a scale mixture of normals, but then one needs the Kolmogorov-
Smirnov distribution, whose density and distribution function are, however,
available only as series expansions. Using this device, one can reformulate the
logistic regression model exactly using the Kolmogorov-Smirnov distribution,
multivariate normal distribution and truncation, see Holmes and Held [3] for an
implementation of the idea.

8.6 Literature

The slice sampler was proposed by Neal [4]. The data augmentation in the
genetic linkage example is from the article by Tanner and Wong [6], who bor-
rowed ideas from earlier work on the EM algorithm. The auxiliary variable
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formulation of probit regression was proposed by Albert and Chib [1]. Also the
reformulation of the t link is from this article. Scale mixtures of normals were
characterized by Andrews and Mallows [2]. Tan, Tian and Ng [5] present many
interesting computational approaches for Bayesian missing data problems.
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Chapter 9

The EM Algorithm

The EM (Expectation–Maximization) algorithm is an iterative method for find-
ing the mode of a marginal posterior density. It can also be used for finding
the mode of a (marginalized) likelihood function. The idea is to replace the
original maximization problem by a sequence of simpler optimization problems.
In many examples the maximizers of the simple problems can be obtained in
closed form.

Typically the EM algorithm is applied in an auxiliary variable (latent vari-
able) formulation p(y, θ, z) of the original model p(y, θ), where θ is the parameter
of interest, and Z is the auxiliary variable (or latent variable or missing data).

In the Bayesian framework, θ and z are unknown and y is observed, and the
marginal posterior of θ in the joint posterior p(θ, z | y) is the posterior p(θ | y)
of the original model, namely

p(θ | y) =

∫
p(θ, z | y) dz.

In the frequentist framework, we consider z to be missing data and call
p(y, z | θ) the complete-data likelihood. The observed-data likelihood p(y | θ) is
found by marginalizing the complete-data likelihood

p(y | θ) =

∫
p(y, z | θ) dz.

In an auxiliary variable formulation, the EM algorithm can be used to find
either the posterior mode or the MLE (maximum likelihood estimate) of the
original model.

9.1 Formulation of the EM algorithm

Let Z be the auxiliary variable and θ the parameter of interest. The EM algo-
rithm can be formulated either for the mode of the marginal posterior of θ or
for the mode of the observed-data likelihood of θ. In both cases one defines a
function, usually called Q, which depends on two variables, θ and θ0, where θ0

stands for the current guess of the parameter vector θ0. The function Q(θ | θ0)
is defined as a certain expected value.
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The EM algorithm alternates between two steps: first one calculates the Q
function given the current guess θ0 for the parameter vector (E-step), and then
one maximizes Q(θ | θ0) with respect to θ in order to define the new guess for
θ (M-step). This procedure is repeated until a fixed point of Q is obtained (or
some other termination criterion is satisfied). This idea is formalized in algo-
rithm 19. There arg max denotes the maximizing argument (maximum point)
of the function it operates on. If the maximizer is not unique, we may select
any global maximizer.

Algorithm 19: The EM algorithm.

Input: An initial value θ(0).
k ← 0;1

repeat2

(E-step) Calculate the function Q(θ | θ(k));3

(M-step) Maximize Q(θ | θ(k)) with respect to θ:4

θ(k+1) ← arg max
θ

Q(θ | θ(k))

Set k ← k + 15

until the termination criterion is satisfied ;6

Return the last calculated value θ(k);7

Next we define the function Q for the two different objectives. When we
want to calculate the mode of the (marginal) posterior density in a Bayesian
model, we define Q(θ | θ0) as the expected value of the logarithm of the joint
posterior density, conditioned on the data and on the current guess θ0,

Q(θ | θ0) = E [log p(θ, Z | y) | θ0, y]

= E
[
log fΘ,Z|Y (θ, Z | y) | Θ = θ0, Y = y

]
=

∫
log fΘ,Z|Y (θ, z | y) fZ|Θ,Y (z | θ0, y) dz.

(9.1)

The only random object in the above expected value is Z, and we use its distri-
bution conditioned on the current value θ0 and the data y.

When we want to calculate the mode of the observed-data likelihood in
a frequentist model, we define Q(θ | θ0) as the expected complete-data log-
likelihood, conditioning on the data and on the current value θ0,

Q(θ | θ0) = E [log p(y, Z | θ) | θ0, y]

= E
[
log fY,Z|Θ(y, Z | θ) | Θ = θ0, Y = y

]
=

∫
log fY,Z|Θ(y, z | θ) fZ|Θ,Y (z | θ0, y) dz.

(9.2)

The Q function is defined as an expectation of a sum of a number terms.
Luckily, we can treat all of the terms which do not depend on θ as constants.
Namely, in the M-step we select a maximum point of the function θ 7→ Q(θ | θ0),
and the ignored constants only shift the object function but do not change the
location of the maximum point. That is, the functions

Q(θ | θ0) and Q(θ | θ0) + c(θ0, y)
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achieve their maxima at the same points, when the “constant” c(θ0, y) does not
depend on the variable θ. In particular, we can ignore any factors which depend
solely on the observed data y.

The maximization problem (M-step) can be solved in closed form in many
cases where the joint posterior (or complete-data likelihood, respectively) be-
longs to the exponential family. Then the E- and M-steps boil down to the
following steps: finding the expectations (given the current θ0) of the sufficient
statistics (which now depend on the missing data Z), and maximizing the re-
sulting function with respect to the parameters θ.

If the maximizer cannot be solved analytically, then instead of the maximum
point one can (in the M-step) select any value θ(k+1) such that

Q(θ(k+1) | θ(k)) > Q(θ(k) | θ(k)).

The resulting algorithm is then called the generalized EM algorithm (GEM).
We will show later that the logarithm of the marginal posterior

log fΘ|Y (θ(k) | y)

increases monotonically during the iterations of the EM or the GEM algorithms,
if one defines Q by (9.1). On the other hand, if one defines Q by (9.2), then the
observed-data log-likelihood

log fY |Θ(y | θ(k))

increases monotonically during the iterations. If these functions can be calcu-
lated easily, then a good check of the correctness of the implementation is to
check that they indeed increase at each iteration.

Because of this monotonicity property, the EM algorithm converges to some
local mode of the object function (except in some artificially constructed cases).
If the object function has multiple modes, then one can try to find all of them by
starting the EM iterations at many points scattered throughout the parameter
space.

9.2 EM algorithm for probit regression

We return to the latent variable reformulation of the probit regression problem,
i.e.,

Θ ∼ N(µ0, R
−1
0 )

[Z | Θ = θ] ∼ N(Xθ, I)

Y = 1+(Z),

where X is the known design matrix, Z is the column vector of latent variables,
and 1+(Z) is the vector of indicators 1(Yi > 0). We use the symbols φ and Φ
for the density and df of the standard normal N(0, 1), and use R0 to denote the
precision matrix of the prior.

We have already obtained the distribution of the latent variables given θ and
the data, p(z | θ, y). In it, the latent variables Zi are independent and have the
following truncated normal distributions

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi > 0), if yi = 1,

[Zi | θ, y] ∼ N(xTi θ, 1) 1(Zi ≤ 0), if yi = 0.
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Now the joint posterior is

p(θ, z | y) ∝ p(y, θ, z) = p(y | z) p(z | θ) p(θ).

Here p(y | z) is simply the indicator of the constraints y = 1+(z). For any y
and z values which satisfy the constraints y = 1+(z), the log joint posterior is
given by

log p(θ, z | y) = log p(z | θ) + log p(θ) + c1

= −1

2
(θ − µ0)TR0(θ − µ0)− 1

2
(z −Xθ)T (z −Xθ) + c2

= −1

2
(θ − µ0)TR0(θ − µ0)− 1

2
zT z + θTXT z − 1

2
θTXTXθ + c2

where the constants ci depends on the data y and the known hyperparameters,
but not on z, θ or θ0.

Since now

Q(θ | θ0) = E[log p(θ, Z | y) | Θ = θ0, Y = y],

at first sight it may appear that we need to calculate both the expectations

v(θ0) = E[ZTZ | Θ = θ0, Y = y], and m(θ0) = E[Z | Θ = θ0, Y = y],

but on further thought we notice that we actually need only the expectation
m(θ0). This is so, since the term containing zT z in log p(θ, z | y) does not
depend on θ. In the maximization of Q(θ | θ0) its expectation therefore only
shifts the object function but does not affect the location of the maximizer.

Let us next solve the maximizer of θ 7→ Q(θ | θ0) and then check which
quantities need to be calculated. In the following, ci is any quantity, which
does not depend on the variable θ (but may depend on y, θ0 or the known
hyperparameters).

Q(θ | θ0) = E[log p(θ, Z | y) | Θ = θ0, Y = y]

= −1

2
(θ − µ0)TR0(θ − µ0)− 1

2
θTXTXθ + θTXTm(θ0) + c3

= −1

2
θT (R0 +XTX)θ + θT

[
R0µ0 +XTm(θ0)

]
+ c4

(9.3)

We now make the following observations.

1. The matrix R0 + XTX is symmetric and positive definite. Symmetry is
obvious, and for any v 6= 0,

vT (R0 +XTX)v = vTR0v + vTXTXv > 0,

since vTR0v > 0 and vTXTXv = (Xv)T (Xv) ≥ 0.

2. If the matrix K is symmetric and positive definite, then the maximizer of
the quadratic form

−1

2
(θ − a)TK(θ − a)

is a, since the quadratic form vanishes if and only if θ = a.
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3. The preceding quadratic form can developed as

−1

2
(θ − a)TK(θ − a) = −1

2
θTKθ + θTKa+ constant.

Therefore, the maximum point of

−1

2
θTKθ + θT b+ c,

where K is assumed to be symmetric and positive definite, is

θ = K−1b.

(An alternative way to derive the formula for the maximum point is to
equate the gradient −Kθ+ b of the quadratic function to the zero vector,
and to observe that the Hessian −K is negative definite.)

Based on the preceding observations, the maximizer of θ 7→ Q(θ | θ0) given
in eq. (9.3) is given by

θ1 = (R0 +XTX)−1(R0µ0 +XTm(θ0)). (9.4)

However, we still need to calculate a concrete formula for the vector

m(θ0) = E[Z | Θ = θ0, Y = y].

We need a formula for the expected value of the truncated normal distribu-
tion N(µ, σ2)1(α,β) corresponding to the unnormalized density

f(v) ∝ N(v | µ, σ2)1(α,β)(v) (9.5)

where we can have α = −∞ or β =∞. The moment generating function of this
distribution is easy to calculate. Then we obtain its expected value (and higher
moments, if need be) by differentiating the result.

Let Φ be the distribution function and φ the density function of the standard
normal N(0, 1). If V has the truncated normal distribution (9.5), then a simple
calculation shows that

M(t) = E(exp(tV ))

= exp(µt+
1

2
σ2t2)

Φ

(
β − µ
σ
− σt

)
− Φ

(
α− µ
σ
− σt

)
Φ

(
β − µ
σ

)
− Φ

(
α− µ
σ

) (9.6)

The expected value of a distribution equals the first derivative of its moment
generating function at t = 0, and hence

E[V ] = M ′(0) = µ− σ
φ

(
β − µ
σ

)
− φ

(
α− µ
σ

)
Φ

(
β − µ
σ

)
− Φ

(
α− µ
σ

) (9.7)
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Using the preceding results, we see that the components m(θ0)i of the vector
m(θ0) are given by

m(θ0)i =


xTi θ0 +

φ(−xTi θ0)

1− Φ(−xTi θ0)
, if yi = 1

xTi θ0 −
φ(−xTi θ0)

Φ(−xTi θ0)
, if yi = 0.

(9.8)

Formulas (9.4) and (9.8) define one step of the EM algorithm for calculating
the posterior mode in probit regression. The EM algorithm for the MLE of
probit regression is obtained from formulas (9.4) and (9.8) by setting R0 as the
zero matrix. (Then we need to assume that XTX is positive definite.)

The truncated normal distribution features in many other statistical models
besides the latent variable formulation of probit regression. One famous example
is the tobit regression model. This is a linear regression model, where the
observations are censored. Since the truncated normal distribution pops up in
many different contexts, it is useful to know that there is a simple formula (9.6)
for its moment generating function.

9.3 Why the EM algorithm works

The proof of the monotonicity of the EM and GEM algorithms is based on the
non-negativity of the Kullback-Leibler divergence. If f and g are two densities,
then the K-L divergence (or relative entropy) of g from f is defined by

D(f ‖ g) =

∫
f ln

f

g
, (9.9)

where the integral is calculated over the whole space. If the supports of f and
g are not the whole space, then we use the conventions

f(x) ln
f(x)

g(x)
=

{
0, if f(x) = 0,

∞, if f(x) > 0 and g(x) = 0.

We will show that the K-L divergence is always non-negative. Therefore we
can use it to measure the distance of g from f . However, the K-L divergence is
not a metric (on the space of densities), since it is even not symmetric.

The proof of the non-negativity can be based on the elementary inequality

lnx ≤ x− 1 ∀x > 0, (9.10)

where equality holds if and only if x = 1. This inequality follows from the
concavity of the logarithm function. The graph of a concave function lies below
each of its tangents, and right hand side of (9.10) is the tangent at x0 = 1.

Theorem 4. Let f and g be densities defined on the same space. Then

D(f ‖ g) ≥ 0,

and equality holds if and only if f = g (almost everywhere).
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Proof. We give the proof only in the case, when f and g have the same support,
i.e., when the sets {x : f(x) > 0} and {x : g(x) > 0} are the same (except
perhaps modulo a set of measure zero). Extending the proof to handle the
general case is straightforward. In the following calculation, the integral extends
only over the common support of f and g.

(−1)D(f ‖ g) =

∫
−f ln

f

g
=

∫
f ln

g

f

≤
∫
f(
g

f
− 1) by (9.10)

=

∫
(g − f) = 1− 1 = 0.

We have equality if and only if

ln
g

f
=
g

f
− 1,

almost everywhere, and this happens if and only if f = g almost everywhere.

The following theorem establishes the monotonicity of EM or GEM itera-
tions.

Theorem 5. Define the function Q by either the equation (9.1) or by (9.2).
Let θ0 and θ1 be any values such that

Q(θ1 | θ0) ≥ Q(θ0 | θ0). (9.11)

Then, with the definition (9.1) we have

fΘ|Y (θ1 | y) ≥ fΘ|Y (θ0 | y),

and with the definition (9.2) we have

fY |Θ(y | θ1) ≥ fY |Θ(y | θ0).

In either case, if we have strict inequality in the assumption (9.11), then we
have strict inequality also in the conclusion.

Proof. We consider first the proof for the definition (9.1). We will use the
abbreviated notations, and make use of the identity

p(θ | y) =
p(θ, z | y)

p(z | θ, y)
.

For any θ, we have

ln p(θ | y) =

∫
p(z | θ0, y) ln p(θ | y) dz

=

∫
p(z | θ0, y) ln

p(θ, z | y)

p(z | θ, y)
dz

= Q(θ | θ0)−
∫
p(z | θ0, y) ln p(z | θ, y) dz
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Using this identity at the points θ1 and θ0, we obtain

ln p(θ1 | y)− ln p(θ0 | y)

= Q(θ1 | θ0)−Q(θ0 | θ0) +

∫
p(z | θ0, y) ln

p(z | θ0, y)

p(z | θ1, y)
dz

≥ Q(θ1 | θ0)−Q(θ0 | θ0),

since the K-L divergence is non-negative. This proves the claim for (9.1).
The proof for the definition (9.2) starts from the identity

ln p(y | θ) =

∫
p(z | θ0, y) ln p(y | θ) dz

=

∫
p(z | θ0, y) ln

p(y, z | θ)
p(z | θ, y)

dz

= Q(θ | θ0)−
∫
p(z | θ0, y) ln p(z | θ, y) dz.

Rest of the proof is the same as before.

9.4 Literature

The name EM algorithm was introduced by Dempster, Laird and Rubin in [1].
Many special cases of the method had appeared in the literature already in the
1950’s, but this article gave a unified structure to the previous methods. The
book [3] is dedicated to the EM algorithm and its variations. Many authors have
extended the EM algorithm so that one obtains also the approximate covariance
matrix of the posterior, or the approximate covariance matrix of the MLE, see,
e.g., [3] or [2].

Bibliography

[1] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society (Series B), 45:1–38, 1977.

[2] Geof H. Givens and Jennifer A. Hoeting. Computational Statistics. Wiley-
Interscience, 2005.

[3] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions.
Wiley series in probability and statistics. John Wiley & Sons, Inc., 1997.

133



Chapter 10

Multi-model inference

10.1 Introduction

If we consider several competing statistical models, any of which could serve
as an explanation for our data, and would like to select the best of them, then
we face a model selection (or a model choice, or a model comparison) problem.
Instead of choosing a single best model, it might be more meaningful to combine
somehow inferences obtained from all of the models, and then we may speak of
model averaging. Such activities may also be called multi-model inference.

For example, in the binary regression setting with the explanatory variable
x we might posit the model

[Yi | θ]
ind∼ B(F (α+ βxi)), i = 1, . . . , n,

where B(p) is the Bernoulli distribution with success probability p, but we might
want to consider several different link functions F−1 such as the logit, the probit
and the complementary log-log transformation.

In a continuous regression problem with explanatory variable x, we might
want to consider polynomials of degrees zero, one and two as the mean response,

model 0: [Yi | α, σ2]
ind∼ N(α, σ2), i = 1, . . . , n

model 1: [Yi | α, β1, σ
2]

ind∼ N(α+ β1xi, σ
2), i = 1, . . . , n

model 2: [Yi | α, β1, β2, σ
2]

ind∼ N(α+ β1xi + β2x
2
i , σ

2), i = 1, . . . , n.

One commonly occurring situation is the variable selection problem. For
instance, we might want to select which of the candidate variables to use as
explanatory variables in a multiple regression problem.

The usual frequentist solution to model selection in the case of nested models
is to perform a series of hypothesis tests. One statistical model is said to be
nested within another model, if it is a special case of the other model. In the
polynomial regression example, model 0 is a special case of model 1, and model
1 is a special case of model 2. In this example a frequentist statistician would
probably select among these models by using F -tests. However, one may be
bothered by the fact that we actually need to make multiple tests. How should
we take this into account when selecting the size of the test?
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Outside the linear model framework, a frequentist statistician would compare
nested models by using the asymptotic χ2 distribution of the likelihood ratio
test (LRT) statistic, but the asymptotics is valid only when the simpler model
does not correspond to a parameter value at the boundary of the parameter
space of the more complex model. There are important statistical models (such
as the linear mixed effects model) where a natural null hypothesis corresponds
to a point at the boundary of the parameter space, and then the usual χ2

asymptotics do not apply.
In contrast to the polynomial regression example, in the binary regression

example there is no natural way to nest the models, and comparing the models
by hypothesis tests would be problematic.

Besides hypothesis testing, a frequentist statistician might compare models
using some information criterion, such as the Akaike information criterion, AIC.
This approach does not suffer from the problems we identified in the hypothesis
testing approach.

In the rest of this chapter we will discuss Bayesian techniques for model
selection, or more generally, to multi-model inference. The basic idea is to
introduce a single encompassing model which is a union of all the alternative
models. Then we use Bayes rule to derive the posterior distribution. This
requires that we have successfully specified the entire collection of candidate
models we want to consider. This theM-closed case instead of the more general
M-open case, where the ultimate model collection is not known ahead of time,
see [1, Ch. 6] for a deep discussion on this and other assumptions and approaches
a Bayesian statistician can use in multi-model inference.

The concepts we need are borrowed from the Bayesian approach to hypoth-
esis testing. There is no requirement that the models should be nested with
respect to one another, and no problem arises if one model corresponds to a
parameter value at the boundary of the parameter space of another model.

To unify the discussion we make the following conventions. The alternative
models are numbered 1, . . . ,K. The parameter vector θm of model m belongs
to the parameter space Sm ⊂ Rdm . The parameter vectors θm,m = 1, . . . ,K of
the models are considered separate: no two models share any parameters.

For example, in the binary regression example the α and β parameters for
the logit link and for the probit link and for the complementary log-log link are
considered separate, and we could label them, e.g., as

θ1 = (α1, β1), θ2 = (α2, β2), θ3 = (α3, β3).

Here S1 = S2 = S3 = R2, and d1 = d2 = d3 = 2.
In the polynomial regression example the error variance parameters are con-

sidered separate parameters in all of the three models, the intercepts and slopes
are considered separate parameters, and so on. We could label them, e.g., as

θ1 = (α0, σ
2
0), θ2 = (α1, β1, σ

2
1), θ3 = (α2, β21, β22, σ

2
2).

Here d1 = 2, d2 = 3, d3 = 4, and

S1 = R×R+, S2 = R2×R+, S3 = R3×R+,

At first sight it may seem unnatural to separate the parameters which usually
are denoted by the same symbol, such as α and σ2 in the zeroth and the first
degree polynomial regression models. To make it more acceptable, think of them
in the following way.
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• In the zeroth degree model α0 is the ”grand mean” and σ2
0 is the error

variance when there no explanatory variable is present in the model.

• In the first degree regression model α1 is the intercept and σ2
1 is the error

variance when there is intercept and slope present in the model, and so
on.

10.2 Marginal likelihood and Bayes factor

Handling multi-model inference in the Bayesian framework is easy, at least in
principle. In the single encompassing model one needs, in addition to the pa-
rameter vectors of the different models θ1, θ2, . . . , θK , also a random variable M
to indicate the model index. Then

P (M = m) ≡ p(m), m = 1, . . . ,K

are the prior model probabilities, which have to sum to one. Typically the prior
model probabilities are chosen to be uniform. Further,

p(θm |M = m) ≡ p(θm | m),

is the prior on θm in model m,

p(y | θm,M = m) ≡ p(y | θm,m),

is the likelihood within model m, and

p(θm | y,M = m) ≡ p(θm | y,m)

is the posterior for θm within model m.
For model selection, the most interesting quantities are the posterior model

probabilities,

P (M = m | y) ≡ p(m | y), m = 1, . . . ,K.

By Bayes rule,

p(m | y) =
p(y | m) p(m)

p(y)
, where p(y) =

K∑
m=1

p(y | m) p(m) (10.1)

Here p(y | m) is usually called the marginal likelihood of the data within
model m, or simply the marginal likelihood of model m. Other terms like
marginal density of the data, integrated likelihood, prior predictive (density),
predictive likelihood or evidence are also all used in the literature. The marginal
likelihood of model m is obtained by averaging the likelihood using the prior as
the weight, both within model m, i.e.,

p(y | m) =

∫
p(y, θm | m) dθm =

∫
p(θm | m) p(y | θm,m) dθm. (10.2)

In other words, the marginal likelihood is the normalizing constant needed in
order to make prior times likelihood within model m to integrate to one,

p(θm | y,m) =
p(θm | m) p(y | θm,m)

p(y | m)
.
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The Bayes factor BFkl for comparing model k against model l is defined to
be the ratio of posterior to prior odds, or in more detail, the posterior odds in
favor of model k against model l divided by the corresponding prior odds, i.e.,

BFkl =
P (M = k | y)

P (M = l | y)

/
P (M = k)

P (M = l)
(10.3)

By Bayes rule (10.1), the Bayes factor equals the ratio of the two marginal
likelihoods,

BFkl =
p(y |M = k)

p(y |M = l)
(10.4)

From this we see immediately that BFlk = 1/BFkl. There are tables available
(due to Jeffreys and other people) for interpreting the value of the Bayes factor.

One can compute the posterior model probabilities p(m | y), if one knows
the prior model probabilities and either the marginal likelihoods for all the
models, or the Bayes factors for all pairs of models. Having done this, we
may restrict our attention to the best model which has the largest posterior
probability. Alternatively we might want to consider all those models whose
posterior probabilities are nearly equal to that of the best model.

If one needs to form predictions for future observations Y ∗ which are condi-
tionally independent of the observations, then one might form the predictions
by model averaging, i.e., by using the predictive distribution

p(y∗ | y) =

K∑
m=1

∫
p(y∗,m, θm | y) dθm

=

K∑
m=1

∫
p(y∗ | m, θm, y) p(m | y) p(θm | m, y) dθm

=

K∑
m=1

p(m | y)

∫
p(y∗ | m, θm) p(θm | m, y) dθm,

where on the last line we used the assumption that the data Y and the future
observation Y ∗ are conditionally independent within each of the models m,
conditionally on the parameter vector θm. The predictive distribution for future
data is obtained by averaging the within-model predictive distributions using
posterior model probabilities as weights.

Similarly, we could consider the posterior distribution of a function of the
parameter vector, which is meaningful in all of the candidate models. In the
binary regression example, such a parameter could be LD50 (lethal dose 50 %)
which is defined as the value of the covariate x which gives success probability
50 %. Such a parameter could be estimated with model averaging.

In multi-model inference one should pay close attention to the formulation
of the within-model prior distributions. While the within-model posterior dis-
tributions are usually robust against the specification of the within-model prior,
the same is not true for the marginal likelihood. In particular, in a multi-model
situation one cannot use improper priors for the following reason. If the prior
for model m is improper, i.e.,

p(θm | m) ∝ hm(θm)
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where the integral of hm is infinite, then

c hm(θm), with c > 0 arbitrary,

is an equally valid expression for the within-model prior. Taking hm(θm) as the
prior within model m in eq. (10.2) leads to the result

p1(y | m) =

∫
hm(θm) p(y | θm,m) dθm

whereas the choice c hm(θm) leads to the result

pc(y | m) = c p1(y | m).

Therefore, if the prior for model m is improper, then we cannot assign any
meaning to the marginal likelihood for model m, and the same difficulty applies
to the Bayes factor, as well.

Many researchers regard the sensitivity of the marginal likelihood to the
within model prior specifications a very serious drawback. This difficulty has
led to many proposals for model comparison which do not depend on marginal
likelihoods and Bayes factors. However, we will continue to use them for the
rest of this chapter. Therefore we suppose that

• we have specified the entire collection of candidate models (this the M-
closed assumption);

• we have successfully formulated proper and informative priors for each of
the candidate models.

10.3 Approximating marginal likelihoods

If we use a conjugate prior in model m, then we can calculate its marginal
likelihood analytically, e.g., by using Bayes rule in the form

p(y | m) =
p(θm | m) p(y | θm,m)

p(θm | y,m)
, (10.5)

where θm is any point in the parameter space of model m, and all the terms
on the right-hand side (prior density, likelihood, and posterior density, each of
them within model m, respectively) are available in a conjugate situation. This
form of the Bayes rule is also known by the name candidate’s formula. In order
to simplify the notation, we will drop the conditioning on the model m from
the notation for the rest of this section, since we will discuss estimating the
marginal likelihood for a single model at a time. For example, in the rest of this
section we will write candidate’s formula (10.5) in the form

p(y) =
p(θ) p(y | θ)
p(θ | y)

. (10.6)

Hopefully, leaving the model under discussion implicit in the notation does not
cause too much confusion to the reader. If it does, add conditioning on m to
each of the subsequent formulas and add the subscript m to each occurrence of
θ and modify the text accordingly.
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When the marginal likelihood is not available analytically, we may try to
estimate it. One idea is based on estimating the posterior ordinate p(θ | y)
in candidate’s formula (10.6) at some point θh having high posterior density
(such as the posterior mean estimated by MCMC). The result can be called the
candidate’s estimator for the marginal likelihood. Suppose that the parameter
can be divided into two blocks θ = (θ1, θ2) such that the full conditional dis-
tributions p(θ1 | θ2, y) and p(θ2 | θ1, y) are both available analytically. By the
multiplication rule

p(θ1, θ2 | y) = p(θ1 | y) p(θ2 | θ1, y).

We might estimate the marginal posterior ordinate of θ1 at θh,1 by the Rao-
Blackwellized estimate

p̂(θh,1 | y) =
1

N

N∑
i=1

p(θh,1 | θ(i)
2 , y),

where (θ
(i)
1 , θ

(i)
2 ), i = 1, . . . , N is a sample from the posterior, e.g., produced by

MCMC. Then the joint posterior at θh = (θh,1, θh,2) can be estimated by

p̂(θh,1, θh,2 | y) = p̂(θh,1 | y) p(θh,2 | θh,1, y).

This approach was proposed in Chib [5] where one can also find extensions to
more than two blocks.

Approximating the marginal likelihood is an ideal application for Laplace’s
method. Recall that the basic idea of Laplace’s method is to approximate a
d-dimensional integral of the form

I =

∫
g(θ) exp(L(θ)) dθ

by replacing L(θ) by its quadratic approximation centered on the mode θ̃ of
L(θ) and by replacing g(θ) with g(θ̃). The result was

I ≈ (2π)d/2√
det(Q)

g(θ̃) eL(θ̃),

where Q is the negative Hessian of L(θ) evaluated at the mode θ̃.
If we start from the representation

p(y) =

∫
p(θ) p(y | θ) dθ =

∫
exp [log (p(θ) p(y | θ))] dθ,

and then apply Laplace’s method, we get the approximation

p̂Lap(y) = p(θ̃) p(y | θ̃) (2π)d/2√
det(Q)

, (10.7)

where θ̃ is the posterior mode (i.e. the maximum a posterior estimate, MAP es-
timate), and and Q is the negative Hessian of the logarithm of the unnormalized
posterior density

θ 7→ log (p(θ) p(y | θ))
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evaluated at the mode θ̃.
Another possibility is to start from the representation

p(y) =

∫
p(θ) exp [log p(y | θ)] dθ

and then integrate the quadratic approximation for the log-likelihood centered
at its mode, the maximum likelihood estimate (MLE) θ̂MLE. This gives the
result

p̂Lap(y) = p(θ̂MLE) p(y | θ̂MLE)
(2π)d/2√

det(Q)
, (10.8)

whereQ = J(θ̂MLE) is now the observed information matrix (see (6.9)) evaluated
at the MLE.

One can also use various Monte Carlo approaches to approximate the marginal
likelihood. Since

p(y) =

∫
p(y | θ) p(θ) dθ,

naive Monte Carlo integration gives the estimate

p̂(y) =
1

N

N∑
i=1

p(y | θ(i)), (10.9)

where we average the likelihood values using a sample θ(i), i = 1, . . . , N from
the prior p(θ). If the posterior corresponds to a large data set y1, . . . , yn, then
typically the model m likelihood is very peaked compared to the prior. In this
situation the estimate (10.9) has typically huge variance, since very few of the
sample points hit the region with high likelihood values, and these few values
dominate the sum.

A better approach would be to write the marginal likelihood as

p(y) =

∫
p(y | θ) p(θ)

g(θ)
g(θ) dθ,

where g(θ) is an importance sampling density for the model under consideration.
This yields the importance sampling estimate

p̂(y) =
1

N

N∑
i=1

p(y | θ(i)) p(θ(i))

g(θ(i))
, (10.10)

where θ(i), i = 1, . . . , N is a sample drawn from the importance sampling density
g. In order to obtain low variance, g should be an approximation to the posterior
density, and g should have heavier tails than the true posterior. For example, g
could be a multivariate t distribution centered on the posterior mode, the shape
of which is chosen using an estimate of the posterior covariance matrix.

The marginal likelihood can also be estimated using an MCMC sample drawn
from the posterior distribution p(θ | y). Let g be a probability density defined
on the parameter space. Integrating the identity

g(θ) = g(θ)
p(y) p(θ | y)

p(y | θ) p(θ)
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over the parameter space gives

1

p(y)
=

∫
g(θ)

p(y | θ) p(θ)
p(θ | y) dθ

If θ(i), i = 1, . . . , N is a MCMC sample from the posterior, then we can estimate
the marginal likelihood as follows,

p̂(y) =

[
1

N

N∑
i=1

g(θ(i))

p(y | θ(i)) p(θ(i))

]−1

. (10.11)

Here we calculate the harmonic mean of prior times likelihood divided by the
density g ordinates evaluated at the sample points, p(y | θ(i)) p(θ(i))/g(θ(i)).
This is the generalized harmonic mean estimator suggested by Gelfand and
Dey [9]. The function g should be chosen so that it has approximately the same
shape as the posterior density p(θ | y) but in this case the tails of g should be
thin compared to the tails of the posterior.

If one selects g to be the prior p(θ) then formula (10.11) suggests that one
could estimate the marginal likelihood by calculating the harmonic mean of the
likelihood values p(y | θ(i)). This is the (in)famous harmonic mean estimator
first discussed by Newton and Raferty [13]. The harmonic mean estimator has
typically infinite variance and is numerically unstable, and therefore should not
be used at all.

Besides these, many other sampling-based approaches have been proposed
in the literature (e.g., bridge sampling).

After all the marginal likelihoods p(y |M = j) have been estimated one way
or another, then one can estimate the posterior model probabilities based on
eq. (10.1), i.e., by using

p̂(m | y) =
p(m) p̂(y | m)∑K

j=1 p(M = j) p̂(y |M = j)
, m = 1, . . . ,K.

The denominator is just the sum of the numerators when m takes the values
from 1 to K.

An obvious way to estimate the Bayes factor BFkl is to calculate the ratio
of two marginal likelihood estimators,

B̂Fkl =
p̂(y |M = k)

p̂(y |M = l)
.

However, there are also more direct ways of estimating the Bayes factor, such
as path sampling.

10.4 BIC and other information criteria

Information criteria consist of two parts: a measure of fit of the model to the
data, and a penalty for the complexity of the model. The two most famous such
criteria are AIC and BIC.

Our starting point for Schwarz’s Bayes(ian) Information Criterion, BIC (other
acronyms: SBIC, SBC, SIC), is the Laplace approximation to the marginal pos-
terior based on the MLE (10.8). Taking logarithms and multiplying by minus
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two gives

−2 log p(y) ≈ −2 log p(θ̂)− 2 log p(y | θ̂)− d log(2π) + log det(Q).

where θ̂ is the MLE and Q is the observed information matrix (at the MLE). We
concentrate on the case where we have n observations yi which are conditionally
independent, i.e.,

p(y | θ) =

n∏
i=1

p(yi | θ),

from which

log p(y | θ) =

n∑
i=1

log p(yi | θ)

Q = n

[
1

n

n∑
i=1

(−1)
∂2

∂θ ∂θT
log p(yi | θ)

]
|θ=θ̂

It is possible to show (under general conditions) that θ̂ converges almost surely
to some point θ0, which delivers the best approximation to the sampling density
of the data inside the parameter space of the model under consideration. Next
one can argue (based on a multivariate version of the SLLN) that the average
inside the square brackets above is approximately equal to the corresponding
expected value I1(θ0), the expected (Fisher) information matrix due to a single
observation, evaluated at θ0, where

I1(θ) = −
∫
p(y | θ) ∂2

∂θ ∂θT
log p(y | θ) dθ.

Hence we approximate

Q ≈ nI1(θ0) ⇒ det(Q) ≈ nd det(I1(θ0))

This gives

−2 log p(y) ≈ −2 log p(y | θ̂) + d log n− 2 log p(θ̂)− d log(2π) + log det(I1(θ0)).

The final step is to drop all the terms which remain constant as the sample size
n increases, and this gives the approximation

−2 log p(y) ≈ −2 log p(y | θ̂) + d log n.

We have now derived the Bayesian information criterion for model m, namely

BICm = −2Lm + dm log n. (10.12)

Here
Lm = log p(y | θ̂m,m)

is the maximized log-likelihood for model m, dm is the dimensionality of the
model m parameter space, and n is the sample size. (Warning: in the literature
you can find several mutually incompatible definitions for BIC.) This criterion
can be used for rough comparison of competing models: smaller values of BIC
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correspond to better models. Most of the time, more complex models lead au-
tomatically to higher values of the maximized likelihood, but the term dm log n
penalizes for increased model complexity.

The approximations involved in the derivation of BIC are rather crude,
and therefore exp(− 1

2 BICm) is usually a rather poor approximation to the
marginal likelihood of model m. Nevertheless, if we approximate p(y | m) by
exp(− 1

2 BICm), and assume that the prior model probabilities are equal, then
we may estimate the posterior model probabilities by

p̂(m | y) =
exp(− 1

2 BICm)∑K
k=1 exp(− 1

2 BICk)
. (10.13)

BIC resembles the equally famous Akaike information criterion, AIC,

AICm = −2Lm + 2dm.

As for BIC, also for AIC smaller is better. In addition, the alphabet soup
of information criteria includes such acronyms as AICc (corrected AIC), cAIC
(conditional AIC), mAIC; AFIC; BFIC; DIC; FIC; HQ; NIC; QAIC and QAICc;
RIC; TIC; WIC. Furthermore, there are several other famous model selection
criteria available, such as Mallows’ Cp (for regression problems with normal er-
rors), or Akaike’s FPE (final prediction error). Also Rissanen’s MDL (minimum
description length) principle can be used. See, e.g., Burnham and Anderson [2]
and Claeskens and Hjort [6].

In some statistical models it is not always clear what one should use as the
sample size n in these information criteria. What is more, in complex models
the number of parameters is not necessarily clearly defined. Spiegelhalter et al.
[15] suggest that in such a situation one may use their deviance information
criterion, DIC, defined by

DICm = 2D(θm,m)−D(θ̄m,m), (10.14)

where D(θm,m) is the deviance, or minus twice the log-likelihood of model m,

D(θm,m) = −2 log p(y | θm,m),

θ̄m is the posterior mean of θm, and D(θm,m) is the posterior mean of D(θm,m)
within model m. These quantities are estimated using separate MCMC runs
for each of the models. WinBUGS and OpenBUGS have automatic facilities
for calculating DIC, and therefore it has become widely used among Bayesian
statisticians. As with AIC and BIC, smaller DIC indicates a better model.

The authors interpret

deff
m = D(θm,m)−D(θ̄m,m)

as the number of effective parameters for model m, and therefore DICm can
written in the form

DICm = D(θ̄m,m) + 2deff
m ,

which shows its connection to AIC. The authors show that deff
m gives a reasonable

definition for the effective number of parameters in many cases. If there is strong
conflict between the prior and the data, then the effective number of parameters
may turn out have a negative value, which does not make sense.
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In order to use DIC, one must decide which expression to use as the likeli-
hood. In complex statistical models, e.g., hierarchical models or random effects
models, even this choice is not clear cut. Consider the hierarchical model, which
has a prior on the hyperparameters ψ and which factorizes as follows

p(y, θ, ψ) = p(y | θ) p(θ | ψ) p(ψ).

If one focuses the attention to the parameter vector θ, then the likelihood ex-
pression is p(y | θ). However, it would be equally valid to consider the vector ψ
to be the true parameter vector. If one focuses on ψ, then one should select

p(y | ψ) =

∫
p(y, θ | ψ) dψ =

∫
p(y | θ) p(θ | ψ) dψ

as the likelihood. In some models p(y | ψ) is available in closed form. Other-
wise, evaluating this likelihood may be problematic. Generally, the DIC values
for p(y | θ) and p(y | ψ) are different. Spiegelhalter et al. suggest that one
should formulate clearly the focus of the analysis, and calculate DIC using the
corresponding likelihood expression. They also point out that DICm changes, if
one reparametrizes model m.

10.5 Sum space versus product space

In this section we discuss an embedding of the multi-model inference problem in
the product-space formulation of the problem. We revert to the explicit notation
of Section 10.2. Let

Sm ⊂ Rdm , m = 1, . . . ,K

be the parameter space of model m. We call the set

Ssum = ∪Km=1{m} × Sm (10.15)

the sum of the parameter spaces. (In topology, this would be called the topolog-
ical sum, direct sum, disjoint union or coproduct of the spaces Sm.) Any point
x ∈ Ssum is of the form

x = (m, θm), where m ∈ {1, . . . ,K} and θm ∈ Sm.

The quantities of inferential interest discussed in Section 10.2 can be defined
based on the joint posterior

p(m, θm | y), m ∈ {1, . . . ,K}, θm ∈ Sm,

which itself is defined on the sum space through the joint distribution specifica-
tion

p(m, θm, y) = p(m) p(θm | m) p(y | θm,m), m ∈ {1, . . . ,K}, θm ∈ Sm.

Designing a MCMC algorithm which uses the sum space as its state space
is challenging. For instance, the dimensionality of the parameter vector may
change each time the model indicator changes. Specifying the sum-space for-
mulation directly in BUGS seems to be impossible, since in the sum-space for-
mulation parameter θm exits only when the model indicator has the value m.
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Green [11] was first to propose a trans-dimensional MCMC algorithm which
works directly in the sum space, and called it the reversible jump MCMC
(RJMCMC) algorithm.

Most of the other multi-model MCMC algorithms are conceptually based on
the product-space formulation, where the state space is the Cartesian product of
the model space {1, . . . ,K} and the Cartesian product of the parameter spaces
of the models,

Sprod = S1 × S2 × · · · × SK . (10.16)

For the rest of the section, θ without a subscript will denote a point point
θ ∈ Sprod. It is of the form

θ = (θ1, θ2, . . . , θK), (10.17)

where each of the θm ∈ Sm. The product space is larger than the sum space,
and the product-space formulation requires that we set up the joint distribution

p(m, θ, y), m ∈ {1, . . . ,K}, θ ∈ Sprod.

In contrast, in the sum-space formulation the parameters {θk, k 6= m} do not
exist on the event M = m, and so we cannot speak of

p(m, θ, y) = p(m, θ1, . . . , θK , y)

within the sum-space formulation. We are obliged to set up the product-space
formulation in such a way that the marginals

p(m, θm, y), m ∈ {1, . . . ,K}

remain the same as in the original sum-space formulation. For this reason we will
not make a notational difference between the sum-space and the product-space
formulation of the multi-model inference problem.

The preceding means that we embed the multi-model inference problem in
the product-space formulation. While specifying the sum-space model is not
possible in WinBUGS/OpenBUGS, it is straightforward to specify the product-
space version of the same problem.

When we do posterior inference in the product-space formulation, only the
marginals

p(m, θm | y), m ∈ {1, . . . ,K}

of the joint posterior

p(m, θ | y) = p(m, θ1, . . . , θK | y)

are of inferential relevance. The other aspects of the joint distribution are only
devices, which allow us to work with the easiear product-space formulation.

If (m(i), θ(i)), i = 1, . . . , N is a sample from the posterior p(m, θ | y), then for

inference we use only the component θ
(i)

m(i) of θ(i), which is the parameter vector

of that model m(i) which was visited during the i’th iteration. In particular,
the posterior model probabilities p(M = j | y) can be estimated by tabulating
the relative frequencies of each of the possibilities m(i) = j.
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10.6 Method of Carlin and Chib

Carlin and Chib [3] use the product-space formulation, where

p(m, θ, y) = p(m) p(θ, y | m), (10.18)

and p(m) is the familiar model m prior probability. The conditional density
p(θ, y | m) is selected to be

p(θ, y | m) = p(θm | m) p(y | θm,m)
∏
k 6=m

gk(θk | y) (10.19)

Here p(θm | m) and p(y | θm,m) are the prior and the likelihood within model
m, respectively. In addition, we need K densities gk(θk | y), k = 1, . . . ,K which
can be called pseudo priors or linking densities. The linking density gk(θk | y)
is an arbitrary density on the parameter space of model k. It can be shown that
this is a valid formulation of the product-space joint density. No circularity
results from allowing the linking densities to depend on the data. Further, this
specification leads to the marginals p(m, θm, y) of the sum-space formulation
irrespective of how one specifies the linking densities.

Let us consider the case of two models (K = 2) in more detail. According
to (10.18) and (10.19), the joint density p(m, θ, y) is{

p(M = 1) p(θ1 |M = 1) p(y | θ1,M = 1) g2(θ2 | y) when m = 1

p(M = 2) p(θ2 |M = 2) p(y | θ2,M = 2) g1(θ1 | y) when m = 2.

We see easily that the marginal densities p(m, θm, y),m = 1, 2 are the same as
in the sum-space formulation: just integrate out

θ2 from p(m = 1, θ1, θ2, y)

θ1 from p(m = 2, θ1, θ2, y).

Hence we have checked the validity of the specification.
While the specification of the linking densities gk(θk | y) does not influence

the validity of the product-space formulation, this matter does have a critical
influence on the efficiency of the ensuing MCMC algorithm. A recommended
choice is to select gk(θk | y) to be a tractable approximation to the posterior
distribution within model k, such as a multivariate normal approximation or
a multivariate t approximation. Building such approximations usually requires
pilot MCMC runs of all the models under consideration.

Carlin and Chib use the Gibbs sampler. For this we need the full condition-
als. First,

p(m | θ, y) ∝ p(m, θ, y), m = 1, . . . ,K.

which is easy to simulate since it is a discrete distribution. Next,

p(θm |M = m, θ−m, y) ∝ p(θm |M = m) p(y | θm,M = m).

Hence this full conditional is the within model m posterior distribution. Finally,
for k 6= m

p(θk |M = m, θ−k, y) = gk(θk | y)

is the linking density for θk.
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These full conditionals lead to a Gibbs sampler (or a Metropolis-within-
Gibbs sampler), where one first selects a new value mcur for the model indicator,
drawing the new value from the full conditional p(m | θ, y). After this, one
updates the parameter vectors of all the models. For m equal to mcur (for the
currently visited model), the new value for θm is drawn from the posterior of
model m (and if this is not feasible, one may execute a M–H step for the same
target p(θm | y,m), instead). For all other values of k, the new value of θk is
drawn from the linking density gk(θk | y).

Many other product-space algorithms have been developed as well, see [10]
for a review.

10.7 Reversible jump MCMC

Green’s reversible jump MCMC algorithm (RJMCMC) [11] uses a Markov chain
whose state space is the sum space. We discuss a simplified version of RJMCMC,
where there is only one type of move available for moving from model m to model
k. We also assume that the distributions of the parameter vectors θm in all of
the models are continuous.

The RJMCMC works like the Metropolis–Hastings algorithm. One first
proposes a new state, and then accepts the proposed state as the new state of
the Markov chain, if v < r, where r is the test ratio and v is a fresh uniform
Uni(0, 1) random variate. The difference lies in the details: how the proposed
state is generated, and how the test ratio is calculated. The state space of
the Markov chain is the sum space Ssum, and the target distribution π is the
posterior distribution

π(m, θm) = p(m, θm | y), m ∈ {1, . . . ,K}, θm ∈ Sm.

When the current state of the chain is (m, θm), then the proposal (k, θk) and
the test ratio r are calculated as described in algorithm 20. The proposed model
k is drawn from the pmf β(· | m). If k = m, then one executes an ordinary M–H
step within model m. If k 6= m, then one proposes a new parameter vector θk
in model k as follows. First one generates a noise vector um associated with
θm from noise density g(· | θm,m → k) specific for the move m → k. Then
one calculates θk and uk by applying the so called dimension-matching function
Tm→k. The dimension-matching functions are defined for all moves m 6= k, and
they have to satisfy the following compatibility conditions, which are also called
dimension-matching conditions.

We assume that for each move m → k where m 6= k there exists a diffeo-
morphic correspondence

(θk, uk) = Tm→k(θm, um)

with inverse Tk→m, i.e.,

(θk, uk) = Tm→k(θm, um) ⇔ (θm, um) = Tk→m(θk, uk). (10.20)

Here um is the noise variable associated with θm and uk is the noise variable
associated with θk (for the move m→ k). Here the dimensions have to match,

dim(θm) + dim(um) = dim(θk) + dim(uk),
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Algorithm 20: One step of the RJMCMC algorithm.

Input: The current state of the chain is (m, θm).
Assumption: The correspondences (10.20) are diffeomorphic.
Result: Proposed next value (k, θk) as well as the test ratio r.
Draw k from the pmf β(k | m).1

if k = m then2

generate the proposal θk with some M–H proposal mechanism within3

model m, and calculate r with the ordinary formula for the M–H ratio.
else4

Draw the noise variable um from density g(um | θm,m→ k). (This5

step is omitted, if the move m→ k is deterministic.)
Calculate θk and uk by the diffeomorphic correspondence specific for6

the move m→ k,
(θk, uk)← Tm→k(θm, um).

Calculate r by7

r ← π(k, θk)

π(m, θm)

β(m | k)

β(k | m)

g(uk | θk, k → m)

g(um | θm,m→ k)

∣∣∣∣ ∂(θk, uk)

∂(θm, um)

∣∣∣∣
end8

since otherwise such a diffeomorphism cannot exist.
Notice the following points concerning this method.

• When we calculate the test ratio r for the move m → k, we have to use
the quantities β(m | k) and g(uk | θk, k → m) which correspond to the
distributions from which we simulate, when the current state is (k, θk) and
the move is selected to be k → m.

• The Jacobian is the Jacobian of the transformation which maps (θm, um)
to (θk, uk), when the move is m→ k, i.e.,

∂(θk, uk)

∂(θm, um)
=
∂Tm→k(θm, um)

∂(θm, um)
.

We will see in Sec. 11.8 that the Jacobian term arises from the change-of-
variables formula for integrals, the reason being the fact that the proposal
θk is calculated in an indirect way, by applying the deterministic function
Tm→k to the pair (θm, um).

• One of the moves m→ k or k → m can deterministic. If the move m→ k
is deterministic, then the associated noise variable, um is not defined nor
simulated, the dimension-matching function is (θk, uk) = Tm→k(θm), and
the noise density value, g(um | θm,m → k) gets replaced by the constant
one. The same rules apply, when the move k → m is deterministic.

• The target density ratio is calculated by

π(k, θk)

π(m, θm)
=

P (M = k)

P (M = m)

p(θk |M = k)

p(θm |M = m)

p(y |M = k, θk)

p(y |M = m, θm)
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• The test ratio r can be described verbally as

r = (prior ratio)× (likelihood ratio)× (proposal ratio)× (Jacobian)

It is possible to extend the method to the situation where we have discrete
components in the state vectors θm of some of the models m. It is also pos-
sible to have more than one type of move between any given models. See the
original paper by Green [11] for more details. The choice of the dimension-
matching functions is critical to ensure good mixing of the Markov chain. In
this respect, Green’s automatic generic trans-dimensional sampler [12] seems to
be very promising.

10.8 Discussion

In this chapter we have seen many different approaches for estimating the pos-
terior model probabilities, which are central quantities both for model selection
and model averaging. One approach is to estimate the marginal likelihoods for
all of the models, and a distinct approach is to set up an MCMC algorithm
which works over the model space and the parameter spaces of each of the mod-
els. Many variations are possible within each of the two approaches. What are
the pros and cons of these approaches?

If the list of candidate models is short, then it is usually easy to estimate
the marginal likelihoods for each of the models separately. However, if the list
of candidate models is large and if it is suspected that only few of the models
are supported by the data, then the best option might be to implement a multi-
model MCMC sampler. However, getting the multi-model sampler to mix across
the different models can be a challenging exercise and might require investigating
pilot runs within each of the candidate models. Mixing within the parameter
space of a single model is usually very much easier to achieve.

10.9 Literature

In addition to the original articles, see the books [4, 14, 7, 8],which also address
model checking (model assessment, model criticism) which we have neglected in
this chapter.
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Chapter 11

MCMC theory

In this chapter we will finally justify the usual MCMC algorithms theoretically
using the machinery of general state space Markov chains. We will prove that
the Markov chains corresponding to our MCMC algorithms have the correct
invariant distributions, using the concept of reversibility of a Markov chain.
Additionally, we will try to understand, what the concept of irreducibility of a
Markov chain means and also touch on the topic of Markov chain central limit
theorems.

11.1 Transition kernel

Let S be the state space of a homogeneous Markov chain

Θ(0),Θ(1),Θ(2), . . .

This means that each of the RVs Θ(i) takes values in the space S. S is usually
some subset of the Euclidean space. When the chain corresponds to a MCMC
algorithm, where the support of the target distribution is not the whole space
under consideration, then we usually choose S equal to the support of the target
distribution.

LetK(θ,A) be the transition (probability) kernel of the homogeneous Markov
chain, i.e., we suppose that for all A ⊂ S we have

K(θ,A) = P (Θ(t+1) ∈ A | Θ(t) = θ). (11.1)

As a function of A ⊂ S, the transition kernel K(θ,A) is the conditional distri-
bution of Θ(t+1) given that Θ(t) = θ. Of course,

K(θ, S) = 1 ∀θ.

If µ is the initial distribution of the chain, i.e.,

µ(A) = P (Θ(0) ∈ A), A ⊂ S,

then the joint distribution of Θ(0) and Θ(1) is

Pµ(Θ(0) ∈ A,Θ(1) ∈ B) =

∫
A

µ(dθ0)K(θ0, B).
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Hence the distribution of the next state is

Pµ(Θ(1) ∈ B) =

∫
µ(dθ)K(θ,B), B ⊂ S. (11.2)

When the domain of integration is not indicated, as here, the integral is taken
over the whole space S. Here the integral is the Lebesgue integral of the function
θ 7→ K(θ,B) with respect to the measure µ. We write the initial distribution
itself, or its density, as a subscript to the P -symbol, if need be.

Recall that we call π(θ) a density even if it represents a discrete distribution
with respect to some components of θ and a continuous distribution for others.
Then integrals involving the density π(θ) can actually be sums with respect to
some components of θ and integrals with respect to the others. If the initial
distribution has a density π(θ), then the initial distribution itself is given by

µ(A) =

∫
A

π(θ) dθ.

In that case, the distribution of the next state given in (11.2) can be written as

Pµ(Θ(1) ∈ B) =

∫
π(θ)K(θ,B) dθ B ⊂ S. (11.3)

However, this distribution may or may not admit a density; which case obtains
depends on the nature of the transition kernel.

In some cases (but not always) the transition kernel can be obtained from a
transition density k(θ1 | θ0) by integration,

K(θ0, B) =

∫
B

k(θ1 | θ0) dθ1.

In such a case k(θ1 | θ0) is the conditional density of Θ(1) conditionally on
Θ(0) = θ0. If the initial distribution has the density π, then (11.3) can be
written as

Pπ(Θ(1) ∈ B) =

∫
θ1∈B

∫
π(θ0) k(θ1 | θ0) dθ1 dθ0.

That is, the density of Θ(1) can be obtained from the joint density π(θ0) k(θ1 | θ0)
by marginalization.

The joint distribution of the states Θ(0),Θ(1) and Θ(2) is determined by

Pµ(Θ(0) ∈ A0,Θ
(1) ∈ A1,Θ

(2) ∈ A2)

=

∫
θ0∈A0

∫
θ1∈A1

µ(dθ0)K(θ0,dθ1)K(θ1, A2)

where µ is the initial distribution. If the initial distribution has density π, and
the transition kernel can be obtained from transition density k(θ1 | θ0), then
the previous formula just states that the joint density of Θ(0), Θ(1) and Θ(2) is

π(θ0) k(θ1 | θ0) k(θ2 | θ1).

Iterating, we see that the initial distribution µ and the transition kernel K
together determine the distribution of the homogeneous Markov chain.
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11.2 Invariant distribution and reversibility

The density π(θ) is an invariant density (or stationary density or equilibrium
density) of the chain (or of its transition kernel), if the Markov chain preserves
it in the following sense. When the initial state has the invariant distribution
corresponding to the invariant density, then all the consecutive states have to
have the same invariant distribution. In particular, when the initial distribution
has the invariant density π, then the the distribution of Θ(1) also has to have
the density π. That is,

Pπ(Θ(0) ∈ B) = Pπ(Θ(1) ∈ B), ∀B ⊂ S. (11.4)

If this holds, then by induction also all the consecutive states have the same
invariant distribution, so this requirement is equivalent with the requirement
that π is the invariant density of the Markov chain.

By (11.3), the requirement (11.4) can also be written in terms of the transi-
tion kernel, ∫

B

π(θ) dθ =

∫
π(θ)K(θ,B) dθ, ∀B ⊂ S. (11.5)

A given transition kernel may have more than one invariant densities. E.g.,
the kernel

K(θ,A) = 1A(θ), A ⊂ S

corresponds to the Markov chain which stays for ever at the same state where
it starts. Obviously, any probability distribution is an invariant distribution
for this trivial chain. Staying put obviously preserves any target distribution,
but at the same time, this is obviously useless for the purpose of exploring the
target. Useful Markov chains are ergodic, and then the invariant density can be
shown to be unique.

One simple way to ensuring that a Markov chain has a specified invariant
density π is to construct the transition kernel K so that it is reversible with
respect to π. This means that the condition

Pπ(Θ(0) ∈ A,Θ(1) ∈ B) = Pπ(Θ(0) ∈ B,Θ(1) ∈ A) (11.6)

holds for every A,B ⊂ S. This means that

(Θ(0),Θ(1))
d
=(Θ(1),Θ(0)), when Θ(0) ∼ π,

that is, the joint distribution of the pair (Θ(0),Θ(1)) is the same as the joint
distribution of the pair (Θ(1),Θ(0)), when the chain is started from the invariant
distribution. Of course, the same result then extends to all pairs (Θ(i),Θ(i+1)),
where i ≥ 0.

Expressed in terms of the transition kernel, the condition (11.6) for reversibil-
ity becomes∫

A

π(θ)K(θ,B) dθ =

∫
B

π(φ)K(φ,A) dφ, ∀A,B ⊂ S. (11.7)

These equations are also called the detailed balance equations.

Theorem 6. If the transition kernel K is reversible for π, then π is an invariant
density for the chain.
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Proof. For any A ⊂ S

Pπ(Θ(0) ∈ A) = Pπ(Θ(0) ∈ A,Θ(1) ∈ S) = Pπ(Θ(0) ∈ S,Θ(1) ∈ A)

= Pπ(Θ(1) ∈ A).

11.3 Finite state space

It is instructive to specialize the preceding concepts for the case of a finite state
space, which may be more familiar to the reader. Consider a Markov chain on
the finite state space

S = {1, . . . , k}.

Now we can identify the transition kernel with the transition matrix P = (pij)
with entries

pij = P (Θ(t+1) = j | Θ(t) = i), i = 1, . . . , k, j = 1, . . . , k.

It is customary to let the first index denote the present state, and the second
index the possible values of the next state.

The entries of the transition matrix have obviously the following properties,

pij ≥ 0 ∀i, j;
k∑
j=1

pij = 1, ∀i.

All the elements are non-negative and all the rows sum to one. Such a matrix is
called a stochastic matrix. The transition kernel corresponding to the transition
matrix is

K(i, A) =
∑

j∈{1,...,k}∩A

pij .

If the pmf of the initial distribution is expressed as the row vector πT =
[π1, . . . , πk], then the pmf at time one is∑

i

πipij = [πTP ]j ,

i.e., it is the j’th entry of the row vector πTP .
The probability row vector πT = [π1, . . . , πk] is stationary if and only if

πT = πTP,

which means that πT has to be a left eigenvector of P corresponding to eigen-
value one, and π has to be a probability vector: its entries must be non-negative
and sum to one. (A left eigenvector of P is simply the transpose of an ordinary
eigenvector [or right eigenvector] of PT ).

In a finite state space the transition matrix P is reversible with respect to
π, if

πi pij = πj pji, ∀i, j.

Then π is an invariant pmf, since for any j∑
i

πi pij =
∑
i

πj pji = πj
∑
i

pji = πj .
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11.4 Combining kernels

A simulation algorithm, where one calculates the new state θ′ based on the old
state θ and some freshly generated random numbers corresponds to the kernel
K(θ,A), where

K(θ,A) = P (Θ′ ∈ A | θ).
Now suppose that we have two simulation codes, which correspond to two

different kernels K1(θ,A) and K2(θ,A). What is the transition kernel from θ
to θ′′, if we first calculate θ′ by the code corresponding to K1(θ, ·), and then
calculate θ′′ using the code corresponding to K2(θ′, ·)? Notice that in the second
step the initial value is the state where we ended up after the first step. The
new piece of code corresponds to a transition kernel which we will denote by

K1K2.

This is can be called the cycle of K1 and K2. In a finite state space K1K2 corre-
sponds to multiplying the transition matrices P1 and P2 to form the transition
matrix P1P2.

If we have d kernels K1, . . . ,Kd, then we can define the cycle of the kernels
K1, . . . ,Kd by

K1K2 · · ·Kd,

which corresponds to executing the simulations corresponding to the kernels
sequentially, always starting from the state where the previous step took us. If
Kj is the transition kernel of the jth component Gibbs updating step, then the
combined kernel K1 · · ·Kd is the kernel the deterministic scan Gibbs sampler,
where the updates are carried out in the order 1, 2, . . . , d.

Now suppose that π is an invariant density for all kernels Kj . If the initial
state Θ has the density π, then after drawing Θ′ from the kernel K1(θ, ·), the
density of Θ′ is π. When we then simulate Θ′′ from the kernel K2(θ′, ·), its
density is again π, and so on. Therefore the cycle kernel

K1K2 · · ·Kd

also has π as its invariant density.
Now suppose that we have d transition kernels Kj . Suppose also that

β1, . . . , βd is a probability vector. Then the kernel

K(θ,A) =

d∑
j=1

βjKj(θ,A)

is called a mixture of the kernels K1, . . . ,Kd. It corresponds to the following
simulation procedure. We draw j from the pmf β1, . . . , βd and then draw the
new value θ′ using the kernel Kj(θ, ·). If Kj is the jth updating step of a Gibbs
sampler, then K is the transition kernel of the random scan Gibbs sampler
corresponding to selecting the component to be updated using the probabilities
β1, . . . , βd.

Suppose that all the kernels Kj have π as an invariant density. Then also
the mixture K =

∑
βjKj has the same invariant density, since∫

A

π(θ) dθ =

∫
π(θ)Kj(θ,A) dθ, ∀j ∀A ⊂ S,

155



March 5, 2012

and hence∫
A

π(θ) dθ =

d∑
j=1

βj

∫
A

π(θ) dθ =

d∑
j=1

βj

∫
π(θ)Kj(θ,A) dθ =

∫
π(θ)K(θ,A) dθ.

For this argument to work, it is critical that the mixing vector β1, . . . , βd does
not depend on the present state θ.

We have proved the following theorem.

Theorem 7. If π is an invariant density for each of the kernels K1, . . . ,Kd,
then it is also an invariant density for the cycle kernel K1 · · ·Kd.

If π is an invariant density for each of the kernels K1, . . . ,Kd and β1, . . . , βd
is a probability vector, i.e., each βi ≥ 0 and β1 + · · ·+ βd = 1, then π is also an
invariant density for the mixture kernel

∑d
j=1 βjKj.

11.5 Invariance of the Gibbs sampler

Suppose that the target density is π(θ), where θ is divided into components

θ = (θ1, θ2, . . . , θd).

Now consider the transition kernel Kj corresponding to the jth component
Gibbs sampler. This sampler updates the jth component θj of θ only and
keeps all the other components θ−j at their original values. The sampler draws
a new value θ′j for θj from the corresponding full conditional density, which we
denote by

πj(θj | θ−j).

A key observation is the identity

π(θ) = πj(θj | θ−j)π(θ−j),

where π(θ−j) is the marginal density of all the other components except θj .

Theorem 8. The transition kernel corresponding to the jth component Gibbs
sampler has π as its invariant density.

Proof. Let the initial state Θ have density π, and let Θ′j be drawn from the jth
full conditional density. Then the joint distribution of Θ and Θ′j has the density

π(θ)πj(θ
′
j | θ−j) = πj(θj | θ−j)π(θ−j)πj(θ

′
j | θ−j).

After the update, the state is (Θ′j ,Θ−j). We obtain its density by integrating
out the variable θj from the joint density of Θ and Θ′j , but

∫
πj(θj | θ−j)π(θ−j)πj(θ

′
j | θ−j) dθj = πj(θ

′
j | θ−j)π(θ−j)

∫
π(θj | θ−j) dθj

= πj(θ
′
j | θ−j)π(θ−j) = π(θ′).

Therefore the updated state has the density π.
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It now follows from theorem 7 that the systematic scan and the random scan
Gibbs samplers have π as their invariant distribution.

It can also be shown that the transition kernel Kj of the jth Gibbs update
is reversible with respect to π. From this it follows that the transition kernel∑
j βjKj of the random scan Gibbs sampler is also reversible with respect to

π. However, the transition kernel of the systematic scan Gibbs sampler is not
usually reversible. (The distinction between reversible and non-reversible kernels
makes a difference when one discusses the regularity conditions needed for the
Markov chain central limit theorems.)

11.6 Reversibility of the M–H algorithm

Proving that the Metropolis–Hastings update leaves the target density invariant
requires more effort than proving the same property for the Gibbs sampler.

Let the initial state Θ be θ and let the next state be denoted by Φ. Recall
that Φ is obtained from θ by the following steps.

• We generate the proposal Θ′ from the proposal density q(θ′ | θ), and
independently U ∼ Uni(0, 1).

• We set

Φ =

{
Θ′, if U < r(θ,Θ′) (accept)

θ, otherwise (reject),

where the M–H ratio r(θ, θ′) is defined by

r(θ, θ′) =
π(θ′) q(θ | θ′)
π(θ) q(θ′ | θ)

(11.8)

Notice that r(θ, θ′) can be greater than one, and hence the probability of accep-
tance, conditionally on Θ = θ and Θ′ = θ′ is given by

α(θ, θ′) = P (accept | Θ = θ,Θ′ = θ′) = min(1, r(θ, θ′)).

Theorem 9. The Metropolis–Hastings sampler is reversible with respect to π,
and hence has π as its invariant density.

Proof. To prove reversibility, we must prove that

Pπ(Θ ∈ A,Φ ∈ B) = Pπ(Θ ∈ B,Φ ∈ A) (11.9)

for all sets A and B in the state space. Here the subscript π means that the
current state Θ is distributed according to the density π.

Now the left-hand side (LHS) of the claim (11.9) is

Pπ(Θ ∈ A,Φ ∈ B) = Pπ(Θ ∈ A,Φ ∈ B, accept) + Pπ(Θ ∈ A,Φ ∈ B, reject)

= Pπ(Θ ∈ A,Θ′ ∈ B, accept) + Pπ(Θ ∈ A ∩B, reject)

Similarly, the right-hand side (RHS) of the claim (11.9) is

Pπ(Θ ∈ B,Φ ∈ A) = Pπ(Θ ∈ B,Θ′ ∈ A, accept) + Pπ(Θ ∈ B ∩A, reject)
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The contributions from rejection are equal on the LHS and on the RHS, and we
need only show that the contributions from acceptance are also equal.

On the LHS, the contribution from acceptance is

Pπ(Θ ∈ A,Θ′ ∈ B, accept) =

∫
dθ 1A(θ)π(θ)

∫
dθ′ 1B(θ′) q(θ′ | θ)α(θ, θ′)

=

∫∫
(θ,θ′)∈A×B

π(θ) q(θ′ | θ)α(θ, θ′) dθ dθ′.

Similarly, on the RHS, the contribution from acceptance is

Pπ(Θ ∈ B,Θ′ ∈ A, accept) =

∫∫
(θ,θ′)∈B×A

π(θ) q(θ′ | θ)α(θ, θ′)dθ dθ′

=

∫∫
(θ,θ′)∈A×B

π(θ′) q(θ | θ′)α(θ′, θ) dθ dθ′,

where in the last formula we just interchanged the names of the integration
variables. Since the two integration sets are the same, and the equality has to
hold for every integration set A × B, the integrands must be proved to be the
same, i.e., the claim (11.9) is true if and only if

π(θ) q(θ′ | θ)α(θ, θ′) = π(θ′) q(θ | θ′)α(θ′, θ) ∀θ, θ′, (11.10)

(almost everywhere). However, our choice (11.8) for r(θ′, θ) implies (11.10),
since its LHS is

π(θ) q(θ′ | θ)α(θ, θ′) = π(θ) q(θ′ | θ) min(1, r(θ, θ′))

= min

(
π(θ) q(θ′ | θ), π(θ) q(θ′ | θ) π(θ′) q(θ | θ′)

π(θ) q(θ′ | θ)

)
= min(π(θ) q(θ′ | θ), π(θ′) q(θ | θ′)),

and its RHS is

π(θ′) q(θ | θ′)α(θ′, θ) = π(θ′) q(θ | θ′) min(1, r(θ′, θ))

= min

(
π(θ′) q(θ | θ′), π(θ′) q(θ | θ′) π(θ) q(θ′ | θ)

π(θ′) q(θ | θ′)

)
.

and therefore the two integrands are the same.

Recall from the proof, that it is sufficient to show the reversibility of the
acceptance part of the transition kernel by establishing (11.10), where α(θ, θ′) =
min(1, r(θ, θ′)). The formula (11.8) is not the only choice for r which works.
E.g., Barker’s formula

r(θ, θ′) =
π(θ′)q(θ | θ′)

π(θ′)q(θ | θ′) + π(θ)q(θ′ | θ)

(which was proposed by Barker in 1965) would also imply eq. (11.10). In-
deed, Hastings considered Barker’s formula and many other related formulas for
α(θ, θ′), which all guarantee (11.10). Later, Hasting’s student Peskun showed
that the acceptance probability α(θ, θ′) implied by (11.8) is, in a certain sense,
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the best possible [9]. Later, Tierney [13] extended Peskun’s optimality argument
from the discrete state space to the general state space.

If we use a Metropolis–Hastings update to update the jth component of θ
only, then the corresponding kernel is reversible with respect to π and hence
has π as its invariant density. This follows from our proof, when we treat the
other components θ−j as constants. We can then combine the jth component
Metropolis–Hastings updates using a systematic scan or a random-scan strategy,
and the resulting algorithm still has π as its invariant density. The random scan
algorithm is still reversible with respect to π, but the systematic scan algorithm
is usually not reversible.

11.7 State-dependent mixing of proposal distri-
butions

As in Sec. 7.4.6 we calculate the proposal θ′ as follows, when the current state
is θ. We draw the proposal from a proposal density, which is selected randomly
from a list of alternatives, and the selection probabilities are allowed depend on
the current state.

• Draw j from the pmf β(· | θ), j = 1, . . . ,K.

• Draw θ′ from the density q(θ′ | θ, j) which corresponds to the selected j.

• Accept the proposed value as the new state, if U < r, where U ∼ Uni(0, 1),
and

r =
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

. (11.11)

Otherwise the chain stays at θ.

We now outline the proof why this yields a Markov chain which is reversible
with respect to the target density π(θ).

As in ordinary Metropolis–Hastings, we only need to show reversibility when
that the proposed value is accepted. That is, we need to show that

Pπ(Θ ∈ A,Θ′ ∈ B, accept) = Pπ(Θ ∈ B,Θ′ ∈ A, accept), (11.12)

where the subscript indicates that the density of the current state Θ is assumed
to be π.

Let

αj(θ, θ
′) = P (accept | Θ = θ,Θ′ = θ′, component j was selected)

= min

(
1,
π(θ′)β(j | θ′) q(θ | θ′, j)
π(θ)β(j | θ) q(θ′ | θ, j)

)
.

The LHS of the condition (11.12) is

∫
dθ 1A(θ)π(θ)

K∑
j=1

β(j | θ)
∫

dθ′ q(θ′ | θ, j)αj(θ, θ′) 1B(θ′)

=
∑
j

∫∫
1A(θ) 1B(θ′)π(θ)β(j | θ) q(θ′ | θ, j)αj(θ, θ′) dθ dθ′
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Similarly, the RHS of the condition (11.12) is

∑
j

∫∫
1B(θ) 1A(θ′)π(θ)β(j | θ) q(θ′ | θ, j)αj(θ, θ′) dθ dθ′

=
∑
j

∫∫
1A(θ) 1B(θ′)π(θ′)β(j | θ′) q(θ | θ′, j)αj(θ′, θ) dθ dθ′

The equality of LHS and RHS follows from the fact that the integration sets
and the integrands are the same for each j, thanks to the formula (11.11) for
the test ratio r.

11.8 Reversibility of RJMCMC

Recall that the reversible jump MCMC method (RJMCMC) allows transitions
between parameter spaces of different dimensions. Green derived the RJMCMC
algorithm starting from the requirement that the Markov chain should be re-
versible [4].

We consider reversibility proof for a simple case of the RJMCMC algorithm,
where we have two alternative Bayesian models for the same data y. The setting
is the same as in Sec. 10.7. The first model is indicated by M = 1 and the second
model by M = 2. The two models have separate parameter vectors θ1 and θ2

which we assume to have different dimensionalities d1 and d2. Their values are
in respective parameter spaces S1 and S2. The prior distributions within the
two models are

p(θ1 |M = 1), p(θ2 |M = 2),

and the likelihoods are

p(y |M = 1, θ1), p(y |M = 2, θ2).

The RJMCMC algorithm constructs a Markov chain, whose state space is
the sum space

S = ({1} × S1) ∪ ({2} × S2).

Any point in S is of the form (m, θm), where m is either 1 or 2, and θm ∈ Sm.
The target distribution π(m, θm) of the chain is the posterior distribution

π(m, θm) = p(M = m, θm | y), m = 1, 2, θm ∈ Sm. (11.13)

We suppose that the parameters θ1 and θ2 both have continuous distributions
and that d1 < d2.

When the current state of the chain is (m, θm), then the algorithm chooses
with probability β(m | m) to attempt to move within the model m or with
complementary probability β(k | m) to attempt to move from the current model
m to the other model k 6= m.

Recall that in RJMCMC, the moves 1 → 2 and 2 → 1 must be related in
a certain way. Suppose that the move 1 → 2 is effected by the following steps,
when the current state is (1, θ1).

• Draw u1 from density g(· | θ1).
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• Calculate θ2 = T1→2(θ1, u1).

We suppose that the function T1→2 defines a diffeomorphic correspondence be-
tween θ2 and (θ1, u1). The density of the noise g(u1 | θ1) is a density on the
space of dimension d2 − d1. The test ratio is calculated as

r =
π(2, θ2)

π(1, θ1)

β(1 | 2)

β(2 | 1)

1

g(u1 | θ1)

∣∣∣∣ ∂θ2

∂(θ1, u1)

∣∣∣∣ , (move 1→ 2). (11.14)

Our choice for the move 1 → 2 implies that the move 2 → 1 has to de-
terministic and has to be calculated by applying the inverse transformation
T−1

1→2 = T2→1 to θ2, when the current state is (2, θ2), i.e.,

(θ1, u1) = T2→1(θ2).

The value u1 is also calculated from this requirement, and it is used when we
evaluate the test ratio, which is given by

r =
π(1, θ1)

π(2, θ2)

β(2 | 1)

β(1 | 2)

g(u1 | θ1)

1

∣∣∣∣∂(θ1, u1)

∂θ2

∣∣∣∣ , (move 2→ 1). (11.15)

The moves within the models are ordinary Metropolis–Hastings moves from
some suitable proposal distributions and for them the test ratio is the ordinary
M–H ratio.

To show that RJMCMC is reversible with respect to the target distribution,
we should prove that

Pπ(M (0) = m,Θ(0) ∈ A,M (1) = k,Θ(1) ∈ B)

= Pπ(M (0) = k,Θ(0) ∈ B,M (1) = m,Θ(2) ∈ A)
(11.16)

for all m, k ∈ {1, 2} and all sets A ∈ Cm and B ∈ Ck. Here (M (i),Θ(i)) is
the state of the chain at iteration i, and the initial distribution is the target
distribution π.

We consider the case m = 1 and k = 2, and leave the other cases for the
reader to check. Let A ∈ C1 and B ∈ C2 be arbitrary sets. If the event on the
LHS of (11.16) has taken place, then the move 1→ 2 has been selected and θ2

has been proposed and accepted. Therefore the LHS is∫
dθ1 1A(θ1)π(1, θ1)β(2 | 1)

∫
du1 g(u1 | θ1) min(1, r1→2(θ1, u1, θ2)) 1B(θ2),

where r1→2(θ1, u1, θ2) is the expression (11.14), and θ2 is short for T (θ1, u1).
On the other hand, the RHS is given by∫

dθ2 1B(θ2)π(2, θ2)β(1 | 2) min(1, r2→1(θ2, θ1, u1)) 1A(θ1)

where r2→1(θ2, θ1, u1) is the expression (11.15), and the pair (θ1, u1) is short
for T2→1(θ2) = T−1

1→2(θ2). Make the change of variables from θ2 to (θ1, u1) =
T−1

1→2(θ2). This changes the RHS to∫
dθ1

∫
du1 1A(θ1) 1B(θ2)π(2, θ2)β(1 | 2) min(1, r2→1(θ2, θ1, u1))

∣∣∣∣ ∂θ2

∂(θ1, u1)

∣∣∣∣
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where now θ2 is short for T (θ1, u1). Taking into account the formulas for the
test ratios and remembering that

∂(θ1, u1)

∂θ2

∂θ2

∂(θ1, u1)
= 1

(since the mappings are inverses of one another) it is routine matter to check
that the integrands are the same, and therefore reversibility has been checked
for the case (m, k) = (1, 2).

11.9 Irreducibility

A Markov chain which has the target distribution as its invariant distribution
may still be useless. For example, consider the trivial Markov chain which
stays for ever at the same state where it starts. For this chain, any probability
distribution on the state space is an invariant distribution. At the same time,
this kernel is clearly useless for the purpose of generating samples from the
target distribution. In order to be useful, a Markov chain should visit all parts
of the state space. Irreducible chains have that desirable property. A Markov
chain which is not irreducible is called reducible.

If the Markov chain has π as it invariant density, then it is called irre-
ducible, if for any θ(0) ∈ S and for any A such that

∫
A
π(θ) dθ > 0 there exists

an integer m such that

P (Θ(m) ∈ A | Θ(0) = θ(0)) > 0.

In other words, starting from any initial value, an irreducible chain can eventu-
ally reach any subset of the state space (which is relevant for π) with positive
probability.

The Metropolis–Hastings sampler (which treats θ as a single block) is irre-
ducible, e.g., if the proposal density is everywhere positive, i.e., if

q(θ′ | θ) > 0 ∀θ, θ′ ∈ S.

Then every set A which has positive probability under π can be reached with
positive probability in one step starting from any θ. However, the positivity of
the proposal density is not necessary for the irreducibility of the Metropolis–
Hastings chain. It is sufficient that the proposal density allows the chain to visit
any region of the space after a finite number of steps.

The jth component Gibbs sampler is, of course, reducible, since it can not
change any other components than θj . By combining the component updates
with a systematic or a random scan strategy, one usually obtains an irreducible
chain. The same considerations apply to the Metropolis–Hastings sampler which
uses componentwise transitions. However, irreducibility of the Gibbs sampler is
not automatic, as the following example shows.

Example 11.1. Let 0 < p < 1 and consider the density

π(θ1, θ2) = p 1[0,1]×[0,1](θ1, θ2) + (1− p) 1[2,3]×[2,3](θ1, θ2).

The full conditional of θ1 is the uniform distribution on [0, 1], if 0 < θ2 < 1
and the uniform distribution on [2, 3], if 2 < θ2 < 3. The full conditional of
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θ2 is similar. If we start the simulation using an initial value inside the square
[0, 1]× [0, 1], then all the subsequent values of the Gibbs sampler will be inside
the same square, and the square [2, 3]× [2, 3] will never be visited. On the other
hand, if we start the simulation using an initial value inside the other square
[2, 3]× [2, 3], then all the subsequent values of the Gibbs sampler will be inside
the same square, and the square [0, 1]× [0, 1] will never be visited.

For this target distribution the Gibbs sample is reducible. This example has
also the interesting feature that the two full conditional distributions do not
determine the joint distribution, since all the joint distributions corresponding
to the different 0 < p < 1 have the same full conditional distributions. 4

The behavior of the previous example is be ruled out, if the target distribu-
tion satisfies what is known as the positivity condition. It requires that π(θ)
is strictly positive for every θ for which each of the marginal densities of the
target distribution π(θj) is positive. Thus the support of π has to be the Carte-
sian product of the supports of the marginal densities. The previous example
clearly does not satisfy the positivity condition, since the Cartesian product of
the supports of the marginal densities is

([0, 1] ∪ [2, 3])× ([0, 1] ∪ [2, 3]),

but π(θ) = 0 for any θ ∈ [0, 1]× [2, 3] or any θ ∈ [2, 3]× [0, 1].
The positivity condition ensures irreducibility of the Gibbs sampler, since

it allows transitions between any two values in a single cycle. The famous
Hammersley–Clifford theorem shows that if the positivity condition is satisfied,
then the full conditional distributions determine the joint distribution uniquely.

11.10 Ergodicity

A Markov chain which has an invariant density π is ergodic, if it is irreducible,
aperiodic and Harris recurrent. Then the invariant density is unique. Of these
conditions, irreducibility has already been discussed.

A Markov chain with a stationary density π is periodic if there exist d ≥ 2
disjoint subsets A1, . . . , Ad ⊂ S such that∫

A1

π(θ) dθ > 0,

and starting from A1 the chain always cycles through the sets A1, A2, . . . Ad.
I.e., the chain with transition kernel K is periodic with period d, if for the sets
Ai

K(θ,Ai+1) = 1, ∀θ ∈ Ai, i = 1, . . . , d− 1

and

K(θ,A1) = 1, ∀θ ∈ Ad.

If the chain is not periodic then it is aperiodic. Aperiodicity holds virtually
for any Metropolis–Hastings sampler or Gibbs sampler.

The chain is Harris recurrent, if for all A with
∫
A
π(θ) dθ > 0, the chain

will visit A infinitely often with probability one, when the chain starts from any
initial state θ ∈ S. For MCMC algorithms, irreducibility usually implies Harris
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recurrence, so this property is usually satisfied, although generally irreducibility
is a much weaker condition than Harris recurrence.

If the chain is ergodic in the above sense, then starting from any initial
value Θ(0) = θ, the distribution of Θ(n) converges (in the sense of total variation
distance) to the (unique) invariant distribution as n grows without limit.

Under ergodicity, the strong law of large numbers holds. Namely, for
any real-valued function h, which is absolutely integrable in the sense that∫

|h(θ)|π(θ) dθ <∞,

the empirical means of the RVs h(Θ(t)),

π̂n(h) =
1

n

n∑
t=1

h(Θ(t)), (11.17)

converge to the corresponding expectation

π(h) =

∫
h(θ)π(θ) dθ (11.18)

with probability one, i.e.,
lim
n→∞

π̂n(h) = π(h), (11.19)

and this holds for any initial distribution for Θ(0).

11.11 Central limit theorem for Markov chains

We continue to use the notation (11.17) and (11.18). While the central limit
theorem (CLT) does not hold for all Markov chains, it does hold for many chains
generated by MCMC algorithms. Under regularity conditions on the Markov
chain Θ(i) and integrability conditions for the function h, the CLT then holds
for the RVs h(Θ(i)) in the form

√
n(π̂n(h)− π(h))

d−→ N(0, σ2
h), as n→∞. (11.20)

As a function of the sample size n, the rate of convergence in the Markov chain
CLT is the same as in the CLT for i.i.d. random variables. The required condi-
tions on the Markov chain are easiest to state when the chain is reversible with
respect to π, and this is why theoreticians recommend that one should favor re-
versible MCMC algorithms over non-reversible ones. However, these conditions
require more advanced notions of ergodicity such as geometric ergodicity, which
we bypass. See, e.g., Robert and Casella [10] or Roberts [11] for discussions of
the regularity conditions for the CLT.

However, the variance σ2
h of the limit distribution is more difficult to estimate

than in the i.i.d. setting, since in the Markov chain CLT it is given by the infinite
sum

σ2
h = varπ h(Θ(0)) + 2

∞∑
t=1

covπ(h(Θ(0)), h(Θ(t))). (11.21)

Here the subscript π means that the covariances are calculated assuming that
Θ(0) ∼ π. Contrast this with the case of i.i.d. sampling from π, where the
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variance of the limit distribution would be varπ h(Θ(0)). If the chain is extended
also for negative times, then this sum can be presented in the doubly-infinite
form

σ2
h =

∞∑
t=−∞

covπ(h(Θ(0)), h(Θ(t))),

since the autocovariances at lags −t and t are then equal.
One interpretation of the results (11.20) and (11.21) is that we can measure

the loss in efficiency due to the use of the Markov chain instead of i.i.d. sampling
by defining the parameter

τh =
σ2
h

varπ h(Θ(0))
= 1 + 2

∞∑
t=1

corrπ(h(Θ(0)), h(Θ(t))),

which is called the integrated autocorrelation time for estimating π(h) using
the Markov chain under consideration (see e.g. [11]). Here corrπ(h(Θ(0)), h(Θ(t)))
is the autocorrelation at lag t for the sequence

(
h(Θ(t))

)
, when the chain is

started from the invariant distribution π. We can also define the effective
sample size (for estimating π(h) using the Markov chain under consideration)
as

neff(h) =
n

τh

This is the sample size of an equivalent i.i.d. sample for estimating π(h), when
the Markov chain is run for n iterations.

Estimating the asymptotic variance can also be viewed as the problem of
estimating the spectral density at frequency zero either for the autocovariance
sequence or for the autocorrelation sequence. To simplify the notation, fix the
function h and denote the autocovariance sequence of (h(Θ(t)) for the stationary
chain by (Rt) and the autocorrelation sequence by (ρt),

Rt = covπ(h(Θ(0)), h(Θ(t))), ρt = corrπ(h(Θ(0)), h(Θ(t))), t = 0, 1, 2, . . .

Further, let us extend these sequences to negative lags by agreeing that

R−t = Rt, ρ−t = ρt, t = 1, 2, . . .

Then the spectral density of the sequence (Rt) at angular frequency w is defined
by the Fourier transform

gR(w) =
1

2π

∞∑
t=−∞

e−itwRt, −π < w < π,

where i =
√
−1. (Warning: there are several related but slightly different

definitions of the spectral density in the literature.) The spectral density gρ(w)
of the sequence (ρt) is defined similarly. Using these definitions,

σ2
h = 2π gR(0), τh = 2π gρ(0)

There are specialized methods available for the spectral density estimation prob-
lem, and these can be applied to estimating the asymptotic variance σ2

h or the
integrated autocorrelation time τh.
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All the usual methods for estimating Monte Carlo standard errors in MCMC
are ultimately based on the CLT for Markov chains. The methods differ in
how one estimates σ2

h. Some of the methods are based on estimates for the
integrated autocorrelation time or of the spectral density at zero. In the batch
means method we have already implicitly formed an estimate for σ2

h. See [2] for
further discussion.

11.12 Literature

See the articles [6, 12, 3] and [1, Ch. 14] for surveys of the Markov chain theory
needed in MCMC. See the books by Nummelin [7] or by Meyn and Tweedie [5]
for comprehensive presentations of the general state space theory. See also the
discussions in the books by Robert and Casella [10] and O’Hagan and Forster [8].
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