
BUGS language 

• Collect several definitions by using 
indexing and looping: 
• for(i in 1:K){     X[i] ~ dbin(theta[i],N[i])     }  

• Give K as fixed value in the data listing.  

• Every definition within  ”for(i in 1:K){  }” should have 
index i.    

• Can make several nested loops, for ”x[i,j]” etc.   

• Can use nested indexing, for ”x[y[i]]”. 

• Can use arithmetics in indexing, for ”x[i+10]”   

• Be careful to index correctly!   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

1 



BUGS language 

• What distributions and logical 
functions are available? 
• Check the list from manual/menu.  

• Pay attention to parameterization!  

• A very useful deterministic function: 
step()  

• What you define should be logically 
correct and computable in all situations. 
1/X should not become 1/0 with 
stochastic  node X.   
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

2 



BUGS language 

• Data formatting  (every data variable 
should appear in the model) 
 list(x=4,   

         y=c(3.5,7.2,9.1), 
         z=structure( 
 .Data=c(7,3,5,1,8,2), 
 .Dim=c(2,3)) ) 
 
Alternative format 
 
z[,1]  z[,2] z[,3] 
7 3 5 
1 8 2 
END                           (Note: empty line after END) 

 
 

 
 

 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

3 



BUGS language 

• Irregular data can be coded using 
NA for ”missing” 
 list( z=structure( 

 .Data=c(7,NA,NA, 

      9,6,3, 

                             2,NA,5),  

 .Dim=c(3,3))) 

BUGS would generate predictions for NAs. 

Alternatively, use auxiliary indexing: 

list(z=c(7,9,6,3,2,5),person=c(1,2,2,2,3,3)) 

 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

4 



BUGS language 

• Transformations of data can be 
declared within model code 
 yy <- log(y) 

 yy ~ dnorm(mu,tau) 
 

Here y would be given in data. 

• Can check your data values from 
’info’  ’node  info’  ’values’  
  

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

5 



Some analyses with BUGS 

• Diagnostic testing. 

• Estimate a proportion. 

• Compare proportions in two 
populations. 

• Estimate a mean. 

• Compare means in two 
populations. 

• Linear & other regression. 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

6 



Some analyses with BUGS 

• Diagnostic testing with additional 
data on sensitivity and specificity 

     model{ 

x[1] ~ dbin(q[1],N[1]) 

x[2] ~ dbin(q[2],N[2]) 

y ~ dbin(pr,M); pr <- p*q[1]+(1-p)*(1-q[2]) 

q[1] ~ dunif(0,1); q[2] ~ dunif(0,1);                
p ~ dunif(0,1) 

} 

list(x=c(45,28),N=c(50,30),M=100,y=10) 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

7 



Some analyses with BUGS 

• Estimate and compare proportions 
     model{ 

 x ~  dbin(p,Nx);  p ~ dunif(0,1)  

 y ~  dbin(q,Ny);  q ~ dunif(0,1) 

 diff <-  p - q  # could assess the difference 

 r <- p/q  # could assess the ratio 

 pr <- step(diff)   # an indicator variable 

 } 

list(x=3,y=7,Nx=20,Ny=45) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

8 



Some analyses with BUGS 
• Estimate and compare means 

     model{ 
 for(i in 1:N){ 
 ahonen[i] ~  dnorm(m[1],tau[1])  
 janda[i] ~  dnorm(m[2],tau[2]) 
   }   
 for(i in 1:2){ 
 m[i] ~ dnorm(0,0.0001) 
 tau[i] ~  dgamma(0.01,0.01) 
 } 
 diff <-  m[1]-m[2]   
 pr <- step(diff)   
 } 
 

 
 
 

 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

9 



Some analyses with BUGS 
• Data: scores of J Ahonen and J Janda from 8 ski 

jumping competitions (Four Hills tournament, 
2006) 
 
 
 
 

• Tips: with very flat, vague priors, BUGS may 
generate bad starting values (better to assign inits 
yourself). 

• Generate predictions by adding this line:  
pred.ahonen ~ dnorm(m[1],tau[1])  
    

 
 
 

 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

10 

list( ahonen  = c(299.7, 255.2, 281.7, 238.0, 270.9, 
262.2, 255.4, 293.0), 
janda = c(238.7, 285.6, 287.1, 252.2, 262.6, 264.7, 
263.2, 291.0), N=8) 



Some analyses with BUGS 
• In 2006, they got exactly the same total score! 
• Assume you have the results after 7 competitions. Make a 

prediction for the total score. What’s the probability that the 
difference is < 1 point? 

• Set the 8th result as ’NA’ in data, then run the following: 
model{ 
 for(i in 1:N){ 
 ahonen[i] ~  dnorm(m[1],tau[1])  
 janda[i] ~  dnorm(m[2],tau[2]) 
   }   
 for(i in 1:2){ 
 m[i] ~ dnorm(0,0.0001) 
 tau[i] ~  dgamma(0.01,0.01) 
 } 

 ahonen.total  <- sum(ahonen[1:N]) 
 janda.total  <- sum(janda[1:N]) 
           pr <-   1- step(abs(ahonen.total-janda.total)-1) 
 } 

 
 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

11 



Some analyses with BUGS 
• Linear regression 

• York rainfall data: x= in November, y= in December 
 

model{ 
for(i in 1:10){ 
y[i] ~ dnorm(mu[i],tau) 
mu[i] <- beta[1] + beta[2]*x[i] 
# mu[i] <- beta[1]+ beta[2]*(x[i]-mean(x[]))    # standardized covariates 
 
for(i in 1:2){ 
beta[i] ~ dnorm(0,0.001) 
} 
tau ~ dgamma(0.01,0.01) 
# prediction with given value xnew: 
ynew ~ dnorm(munew,tau); munew <- beta[1] + beta[2]*xnew 
# munew <-beta[1] + beta[2]*(xnew-mean(x[])) # standardized covariates  
} 
Interpretation of beta[1] in both cases?  E(y | x=0)  vs  E(y|x=mean(x)) 

 
 

 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

12 

List(y = c(41,52,18.7,55,40,29.2,51,17.6,46.6,57), 
x = c(23.9,43.3,36.3,40.6,57,52.5,46.1,142,112.6,23.7)) 



Some analyses with BUGS 

• Linear & nonlinear regression 

• Atmospheric CO2, monthly, Mauna Loa, Hawaii 
: 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

13 

list(N=120,x=c(368.18,366.87,366.94,368.27,369.62,370.47, 
371.44,372.39,373.32,373.77,373.13,371.51,369.59,368.12, 
368.38,369.64,371.11,372.38,373.08,373.87,374.93,375.58, 
375.44,373.91,371.77,370.72,370.5,372.19,373.71,374.92, 
375.63,376.51,377.75,378.54,378.21,376.65,374.28,373.12, 
373.1,374.67,375.97,377.03,377.87,378.88,380.42,380.62, 
379.66,377.48,376.07,374.1,374.47,376.15,377.51,378.43, 
379.7,380.91,382.2,382.45,382.14,380.6,378.6,376.72, 
376.98,378.29,380.07,381.36,382.19,382.65,384.65, 
384.94,384.01,382.15,380.33,378.81,379.06,380.17, 
381.85,382.88,383.77,384.42,386.36,386.53,386.01, 
384.45,381.96,342, 
385.72,385.96,387.18,388.5,387.88,386.38,384.15, 
383.07,382.98,384.11,385.54,386.93,387.42,388.77, 
389.46,390.18,389.43,387.81) 



Some analyses with BUGS 

 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

14 



Some analyses with BUGS 

• Linear and nonlinear terms 
 

model{ 

tau ~ dgamma(0.01,0.01); 

for(i in 1:5){a[i] ~ dnorm(0,0.001)} 

for(i in 1:N){ 

month[i] <- i 

x[i] ~ dnorm(mu[i],tau) 

mu[i]<- a[1]+a[2]*i+a[3]*sin(2*pi*i/12)+a[4]*cos(2*pi*i/12) 

} 

pi <- 3.1415926 

} 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

15 



Some analyses with BUGS 

• Generalized linear model: Poisson 
• Number of lung cancer cases 

• Population counts 

 

• In age groups, in different cities, in 1968-1971.  

 

• Use the first age group in the first city as a 
reference, to compute age effects and city effects 

• log(lage,city) = m0 + aage + bcity  , with aage=1 = bcity=1 =0 

• Xage,city ~ Poisson(4lage,city popage,city ) 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

16 



17 

cases[] pop[] age[] city[] 
11 3059 1 1 
11 800 2 1 
11 710 3 1 
10 581 4 1 
11 509 5 1 
10 605 6 1 
13 2879 1 2 
6 1083 2 2 
15 923 3 2 
10 834 4 2 
12 634 5 2 
2 782 6 2 
4 3142 1 3 
8 1050 2 3 
7 895 3 3 
11 702 4 3 
9 535 5 3 
12 659 6 3 
5 2520 1 4 
7 878 2 4 
10 839 3 4 
14 631 4 4 
8 539 5 4 
7 619 6 4 
END 



Some analyses with BUGS 
 
model{  # design matrix X could also be written beforehand in data  

 # but it is here constructed from ’age’ and ’city’. 

 # The linear predictor can then be computed using inprod. 

for(i in 1:24){ 

cases[i] ~ dpois(mu[i]); group[i] <- i 

mu[i] <- pop[i]*4*lambda[i] # lambda = incidence per year 

LA[i] <- lambda[i]/100000 # LA = inc. per 10^5 per year 

log(lambda[i]) <- inprod(alpha[],X[i,]) 

X[i,1] <- 1 

for(k in 2:6){X[i,k] <- equals(age[i],k) } 

for(k in 2:4){X[i,k+5] <- equals(city[i],k) } 

} 

for(k in 1:9){  alpha[k] ~ dnorm(0,0.001)  

A[k] <- exp(alpha[k])  } 

} 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

18 



Tips 
• Always think it as a DAG.      
• Data variable has to correspond to  a (fixed) stochastic ”~”node in the model code, not 

”<-”. The latter would make ’multiple deterministic definitions’ error.  
• Ddistr( ? , ? )  Parameters, not expressions. Check parameterization ! 
• Test first with a small number of iterations how slow or fast it is. 
• Give constants in data, not within code. 
• Separate clearly what’s data, what’s model. 
• Use comments # there are never too many! 
• Collect definitions logically into groups (priors, likelihoods, predictions), easier to read.  
• Transformations of data can be defined within code. 
• Use indexing, and nested indexing. 
• Avoid multiple definitions (e.g. within for-loops!) they are syntax errors. 
• Break long expressions into short ones (avoid ’logical expression too complex’ error) 
• Pay attention to naming of parameters, variables. They should be meaningful at first 

sight. (or write good explanations in comment lines) 
• Constants cannot be monitored, but can check them from node-info menu button. 
• Sooner or later, it will be more convenient to run BUGS from R, try it. 
• For the inbuilt convergence diagnostics, you should pick overdispersed starting values 

for at least 3 chains. 
• Think of identifiability: is there sufficient data? Is  something hanging completely from 

prior? It is deceptively easy to build castles in the clouds….  
• Make use of inprod to avoid writing long expressions a[1]*X[1]+a[2]*X[2]+… … . 

 
 
 
 
 

 

 
 
 

 
 

 
 

 

 
 

 
 

 
 
 

 

 
 

 

19 


