Monte Carlo integration

Example of a Monte Carlo sampler in 2D:

* imagine a circle (radius L/2) within a square of
LXL.

* |f points are randomly generated over the
square, what'’s the probability to hit within
circle?

* Byalgebra: n(L/2)%/L?> = n/4.

e By simulation: 1 K k
P(6e3)~ Ezl{ees}(e )
k=1

* This also provides a Monte Carlo approx of .



Monte Carlo integration

Wanted: e.g. posterior mean
E(0]X)=[ep(0] X)do

But assume we do not have conjugate

priors, no closed form solution.

Could try numerical integration methods.

Or Monte Carlo: draw random (i.i.d)

samples Ok from the distribution,
k=1,....,K. (large K).

1 K
E(HlX)zEZQk 0 ~ p(@] X)
k=1



Monte Carlo integration

Even if we had solved the density, it can
be difficult to evaluate E( g(0) | X)

Note also:
E(Lpes; (0)| X)=1P(0 €S| X)+0P(0 eS| X)=P(0 eS| X)

So that we can approximate probabilities

b 1 K
Y poes|x)= 3 5 (6)
k=1

And likewise any quantiles.



Monte Carlo integration

What remains is to generate samples
from the correct distribution.

This is easy for known distributions, just
read the manual of your software.

N-dimensional distributions? Non-
standard distributions?

- Need other sampling methods than
directly drawing i.i.d.



Monte Carlo Markov chain

Innovation:

Construct a sampler that works as a
Markov chain, for which stationary

C
C

C

Istri
Istri
Istri

oution exists, and this stationary
oution is the same as our target

oution.



Gibbs sampler
* Gibbs sampling in 2D

Example: uniform distribition in a triangle.

1
Y k f (X1 y) — 2 ><1{y<1—x,0<x<1, O<y<1}(X’ y)

0 x 1



Gibbs sampler
* Gibbs sampling in 2D

Remember product rule:

p(x,y) = p(x]y)ply) = ply|x)p(x)
Solve the marginal density p(x)

p(x) = [ p(x, y)dy

O'~—~.H

1-x
2 X 1{y<1—x,0<x<1, O<y<1}(X1 y)dy — jz dy — 2(1_ X)
0

Then: p(y[x)=p(x,y)/p(x)



Gibbs sampler
* Gibbs sampling in 2D

Solve the conditional density:

X) — p(X’ y) _ 2><1{y<1—x,0<x<1, O<y<1}(X’ y)
p(x) 2(1—X)
1

— E 1{y<1—x,0<y<1}(y) = U (011_ X)

 Note: above it would suffice to recognize p(y|x) up
to a constant term, so that solving p(x) is not
necessary.

* Similarly, get p(x|y) = U(0,1-y).

p(Yy |



Gibbs sampler

Gibbs sampling in 2D

Starting from the joint density p(x,y), we have
obtained two important conditional densities:

p(x|y) and p(y|x)
Gibbs algorithm is then:

(1) start from x°,y°. Set k=1.

(2) sample x* from p(x]|y*?)

(3) sample yk from p(y|xX). Set k=k+1.

(4) go to (2) until sufficiently large sample.

These samples are no longer i.i.d.



start

Gibbs sampler

end
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Gibbs sampler

In R, you could:

X <- numeric()

y <- numeric()

x[1] <- 0.5

v[1] <- 0.4

for(i in 2:500){
y[i] <- runif(1,0,1-x[i-1])
x[i] <- runif(1,0,1-y[i])
}

plot(x,y)
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Gibbs sampler

* Jumping around? Possible problems.
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Gibbs sampler

* Consider again the binomial model,
“"conditional to N”

Joint distribution p(0,X|N) can be expressed either
as p(X|6,N)p(0|N) or p(0|X,N)p(X|N).

From the first, we recognize p(X|0,N)=Bin(N,0)
with e.g. uniform prior p(0|N)=p(0). Then, we
would know p(0|X,N) = Beta(X+1,N-X+1).

This gives p(0|X) and p(X|0) for Gibbs.
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Gibbs sampler

* Consider again the binomial model,
“"conditional to N”

Gibbs sampling (X,0) gives the joint distribution of
X and 6.

[ We know both conditional densities, but it
would be also possible to obtain p(0|X) by Monte
Carlo sampling from the joint p(0,X), and then
accepting only those (0,X)-pairs for which X takes
a given value. This idea is used in Approximate
Bayesian Computation (ABC). ]
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Gibbs sampler

 Binomial model, “conditional to N”, in R:
n<-20; p <- numeric(); x<- numeric()
p[1] <- 0.5; x[1] <- 10 # initial values

Gibbs sampling

for(i in 2:1000){ =
p[i] <- rbeta(1,x[i-1]+1,n-x[i-1]+1) o
X[i] <- rbinom(1,n,pl[i]) =
) | | 3 1 ==
plot(X,p) Gibbs sampling a N ° SE |
~ Q g —
o | r ;:i[;!%%:
a ) <L ;l tll ; 1I0 1|5 2|0
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Gibbs and normal density

2D normal density:

el 2]

 Marg. densities p(x) and p(y) are both N(0,1)
1 1

y) = . : 2 _9 2
p(x,y) S exp( 205 )(x Py +Y7))
e Conditional density p(y|x)=p(x,y)/p(x) is

1 1
= - —¥)?) = N(px,1- p?
p(y|x) e exp ( 2(1_p2)(px y)*) = N(px1-p%)
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Gibbs and normal density

Gibbs would then be sampling from:

*  plylx) = N(px,1-p?)

*  plx]y) =N(py,1-p?)

* This can mix slowly if X & Y heavily correlated.
Recall the posterior p(n,c | X,,...,X,)
 Thisis a 2D problem.

e Assume improper prior P(u,0)cl/ o’

*  Then we can solve p(u|o ,X) = N( ZX; /n, 6%/n)
*  And p(t|p ,X) = gamma( n/2, 0.5 Z(X. -pn)?)

= This makes Gibbs! (try this with R)
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Next time you estimate p,o? from a sample X,,...,X,
assuming normal model, try sampling the posterior
distribution:
X <- rnorm(40,0,2) # generate example dataset, n=40, mean=0,sd=2
m[1] <- mean(x); t[1] <- 1/(sd(x)*sd(x)) # initial values
for(iin 2:1000){ # Gibbs sampling
m[i] <- rnorm(1,mean(x),sqrt((1/t[i-1])/40));
t[i] <- rgamma(1,40/2,0.5*sum((x[1:40]-m[i])"2))

} o

Histogram of 1/sqrt(t)

1isqrt(t)




Metropolis-Hastings

This is a very general purpose sampler

The core is: ’proposal distribution’ and
'acceptance probability’.

At each iteration:

Random draw is obtained from proposal density
Q( 6*| "), which can depend on previous
iteration.

Simply, it could be U(0"1 - L/2, 0" +L/2).
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Metropolis-Hastings

At each iteration:
 Proposal is accepted with probability

o min( p(6*| data)Q(0'"" | %) 1)

p(6"" | data)Q(&*| ")

* Note how little we need to know about p(0|data)!
*  Normalizing constant cancels out from the ratio.

Enough to be able to evaluate prior and likelihood terms.

*  Proposals too far = accepted rarely = slow sampler
*  Proposals too near 2 small moves 2 slow sampler
*  Acceptance probability ideally about 20%-40%

 Gibbs sampler is a special case of MH-sampler
* In Gibbs, the acceptance probability is 1.
Block sampling also possible.
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Metropolis-Hastings

 Sampling from N(0,1), using MH-algorithm:

N(0,1)-jakauman MCMC-simulointi, n=100, x =4 N(0,1)-jakauman MCMC-simulointi, n=5000, X =4
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MCMC convergence

Remember to monitor for convergence!

 Chainis only approaching the target density, when
iterating a long time, k2> o°.
 Convergence can be very slow in some cases.

 Autocorrelations between iterations are then large
- makes sense to take a thinned sample.

 Systematic patterns, trends, sticking, indicate
problems.

* Pay attention to starting values! Try different
values in different MCMC chains. (discard burn-in
period).
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MCMC convergence

 (Can only diagnose poor convergence, but
cannot fully prove a good one! (e.g.
multimodal densities).

p[1] chains 1.4
) . . .
1 20000 40000
iteration

Target density
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MCMC in BUGS

Many different samplers, some of them

are implemented in
WinBUGS/OpenBUGS.

- Next, we leave the sampling for BUGS,
and only consider building the models
(which define a posterior distribution),
and running the sampling in BUGS, and
assessing the results.
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