
Monte Carlo integration 

• Example of a Monte Carlo sampler in 2D:  
• imagine a circle (radius L/2) within a square of 

LxL. 

• If points are randomly generated over the 
square, what’s the probability to hit within 
circle? 

• By algebra:  p(L/2)2/L2   =   p/4. 

• By simulation: 

 

 

• This also provides a Monte Carlo approx of p. 
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Monte Carlo integration 

• Wanted: e.g. posterior mean   

 

• But assume we do not have conjugate 
priors, no closed form solution. 

• Could try numerical integration methods. 

• Or Monte Carlo: draw random (i.i.d) 
samples k from the distribution, 
k=1,….,K. (large K).  
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Monte Carlo integration 

• Even if we had solved the density, it can 
be difficult to evaluate E( g() |X)  

• Note also: 

  

• So that we can approximate probabilities 
by  

 

• And likewise any quantiles. 
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Monte Carlo integration 

• What remains is to generate samples 
from the correct distribution. 

• This is easy for known distributions, just 
read the manual of your software. 

• N-dimensional distributions? Non-
standard distributions? 

 

•  Need other sampling methods than 
directly drawing i.i.d.    
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Monte Carlo Markov chain 

 Innovation: 

• Construct a sampler that works as a 
Markov chain, for which stationary 
distribution exists, and this stationary 
distribution is the same as our target 
distribution. 
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Gibbs sampler 

• Gibbs sampling in 2D 
• Example: uniform distribition in a triangle.  
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Gibbs sampler 

• Gibbs sampling in 2D 
• Remember product rule: 

 p(x,y)  =  p(x|y)p(y)  =  p(y|x)p(x) 

• Solve the marginal density p(x) 

 

 

 

 

 

• Then: p(y|x)=p(x,y)/p(x)  
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Gibbs sampler 

• Gibbs sampling in 2D 
• Solve the conditional density: 

 

 

 

 

 

• Note: above it would suffice to recognize p(y|x) up 
to a constant term, so that solving p(x) is not 
necessary. 

• Similarly, get p(x|y) = U(0,1-y). 
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Gibbs sampler 

• Gibbs sampling in 2D 
• Starting from the joint density p(x,y), we have 

obtained two important conditional densities: 
p(x|y) and p(y|x) 

• Gibbs algorithm is then:  

• (1) start from x0,y0.  Set k=1. 

• (2) sample xk from p(x|yk-1) 

• (3) sample yk  from p(y|xk). Set k=k+1. 

• (4) go to (2) until sufficiently large sample. 

 

• These samples are no longer i.i.d. 
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Gibbs sampler 
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Gibbs sampler 

• In R, you could: 
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Gibbs sampler 

• Jumping around? Possible problems. 
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Gibbs sampler 

• Consider again the binomial model, 
”conditional to N” 
• Joint distribution p(,X|N) can be expressed either 

as p(X|,N)p(|N) or p(|X,N)p(X|N). 

• From the first, we recognize p(X|,N)=Bin(N,) 
with e.g. uniform prior p(|N)=p(). Then, we 
would know p(|X,N) = Beta(X+1,N-X+1). 

 

• This gives p(|X) and p(X|) for Gibbs.  
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Gibbs sampler 

• Consider again the binomial model, 
”conditional to N” 
• Gibbs sampling (X,) gives the joint distribution of 

X and .  

• [  We know both conditional densities, but it 
would be also possible to obtain p(|X) by Monte 
Carlo sampling from the joint p(,X), and then 
accepting only those  (,X)-pairs for which X takes 
a given value.  This idea is used in Approximate 
Bayesian Computation (ABC).   ]  
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Gibbs sampler  

• Binomial model, ”conditional to N”, in R: 
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n<-20; p <- numeric(); x<- numeric() 
p[1] <- 0.5; x[1] <- 10   # initial values 
for(i in 2:1000){ 
p[i] <- rbeta(1,x[i-1]+1,n-x[i-1]+1) 
x[i] <- rbinom(1,n,p[i]) 
} 
plot(x,p) 



Gibbs and normal density 

• 2D normal density: 

 

 

• Marg. densities p(x) and p(y) are both N(0,1) 

 

 

• Conditional density p(y|x)=p(x,y)/p(x) is 
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Gibbs and normal density 

• Gibbs would then be sampling from: 

• p(y|x) = N(x,1-2) 

• p(x|y) = N(y,1-2 )  

• This can mix slowly if X & Y heavily correlated. 

• Recall the posterior p(m,s | X1,…,Xn) 

• This is a 2D problem. 

• Assume improper prior 

• Then we can solve p(m|s ,X) = N( Xi /n , s2/n ) 

• And p(t|m ,X) = gamma( n/2 , 0.5 (Xi -m)2 )  

 This makes Gibbs!    (try this with R) 
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Next time you estimate m,s2 from a sample X1,…,Xn, 
assuming normal model, try sampling the posterior 

distribution: 
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X <- rnorm(40,0,2) # generate example dataset, n=40, mean=0,sd=2 
m[1] <- mean(x);  t[1] <- 1/(sd(x)*sd(x))   # initial values 
for(i in 2:1000){   # Gibbs sampling 
m[i] <- rnorm(1,mean(x),sqrt((1/t[i-1])/40)); 
t[i] <- rgamma(1,40/2,0.5*sum((x[1:40]-m[i])^2)) 
} 
 



Metropolis-Hastings 

• This is a very general purpose sampler 

• The core is: ’proposal distribution’ and 
’acceptance probability’. 

 

• At each iteration: 

• Random draw is obtained from proposal density  
Q( *| i-1 ), which can depend on previous 
iteration. 

• Simply, it could be U(i-1  - L/2 , i-1  + L/2). 
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Metropolis-Hastings 
• At each iteration: 

• Proposal is accepted with probability 

 

 

 

• Note how little we need to know about p(|data)! 
• Normalizing constant cancels out from the ratio. 

• Enough to be able to evaluate prior and likelihood terms. 

• Proposals too far  accepted rarely  slow sampler 

• Proposals too near  small moves  slow sampler 

• Acceptance probability ideally about 20%-40% 

• Gibbs sampler is a special case of MH-sampler 
• In Gibbs, the acceptance probability is 1.  

• Block sampling also possible. 
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Metropolis-Hastings 

• Sampling from N(0,1), using MH-algorithm: 
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MCMC convergence 

• Remember to monitor for convergence! 

• Chain is only approaching the target density, when 
iterating a long time, k∞. 

• Convergence can be very slow in some cases. 

• Autocorrelations between iterations are then large 
 makes sense to take a thinned sample. 

• Systematic patterns, trends, sticking, indicate 
problems. 

 

• Pay attention to starting values! Try different 
values in different MCMC chains. (discard burn-in 
period). 
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MCMC convergence 

• Can only diagnose poor convergence, but 
cannot fully prove a good one! (e.g. 
multimodal densities). 
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MCMC in BUGS  

• Many different samplers, some of them 
are implemented in 
WinBUGS/OpenBUGS. 

•  Next, we leave the sampling for BUGS, 
and only consider building the models 
(which define a posterior distribution), 
and running the sampling in BUGS, and 
assessing the results. 

 

 

 

 

 
 

 

 

 

 

 

 

24 


