Multiparameter models

Usually, we have models with many
parameters, let’s start with k=2.

p(6,, 6,|X) =p(X]0,,6,)p(0,, 6,)
p(0,, 0,) is joint prior. Often used: p(6,) p(0,)
Prior could also be hierarchical p(9,]9,) p(6,)
p(X|06,, 6,) could be e.g. N(u,5?)

Marginal posterior density
p(0,1X) = J p(0,, 6,1X) db,
= [p(0;] 6,,X) p(6, |X) dO,



Multiparameter models

The parameter of interest can be 0, while

0, is just a nuisance parameter.
 Example: diagnostic testing with sensitivity <100%
«  X~Bin(N, 0,*9,)

* Here, 0, is the unknown true prevalence, 0, is the

unknown test sensitivity — for which we could have
an informative prior, though.

 We should take into account the uncertainty of both
parameters jointly, given the data (and prior).

© p(0,0, | X)= Bin(X | N,0,6,) p(0;) p(6,)



..Solving posterior is difficult, that’s
why WinBUGS is used...

e Assume we observed N=100, X=1.

psen psen
Without any Assuming Lol
prior sensitivity is
knowledge of average 0.97, -
sensitivity 2 SD 0.01 > '
094 |-
092 |-
! ' ! ! ! 1 1 1 1 1
00 05 0.0 0.05
i p
p sample: 10000 p sample: 10000
8-0 _ 400 B ey
6.0 I \ 200 [/,
4.0 = ‘{III 200 _ ] I“Il.,'ll
2.0 |- e, 100 || T
0.0 [ e 0.0 |- P —




Multiparameter models

 The aim could also be to predict a

multivariate response. (Correlated data
models)

This requires several parameters in the model.
p(Xy,X; | 0y,..., 6,)

Posterior prediction p(X,*,X,*|X{,X,) requires
integration over all parameters

Then, some more integration to get marginal
predictive distributions p(X;*| X4, X,)=
Ip(X %, X, * | X, X, )dX, *
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ldentifiability

Parameters are unidentifiable (from data)
fP(X|0y)=P(X]|0,),withe, #6,
Posterior result then depends solely on prior.
Example: X~ N(0, +0,,1)

* All combinations with 0, + 0, =c are equally
probable, unless prior can make a difference.

* |Isthe posterior a proper density?

 Multiparameter models with insufficient data may
lead to problems of identifiability. Useful to check
the likelihood.



Multinomial model

E.g. large bag of balls of k different colors.
Pick N balls (with replacement)

X,,--,X, = number of balls of each color.
X+, =N

Vector X is multinomially distributed,
given the true proportions 0,,...,0, .

Find out p(0,,...,0, | X)



Multinomial model

This is a generalization of earlier
inference problem with Binomial & Beta

p(0,,...,0, ) = Dirichlet(a,,...,a,)

20.=1

Thanks to conjugate prior:

p(0,,...,0, |X) = Dirichlet(a,+X,,...,0, +X,)

Marginal densities easy, if 0 ~ Dir(a), then
p(6;|X) = Beta(a;, ;- o)



Multinomial model

Example: there are 12 subtypes of
bacteria. In a sample of 20, we observed
the following numbers of each type:

X=(OI 114101810131 113101010)
p(0,,...,0, | X) = Dir(o;+X,,...,0,,+X,)

Note the ‘pseudo data’ n=12 in the
Dir(1,...,1) prior.
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Normal model N(X| p,o)

Take a look at the easy cases first:

p(L[X,c) and p(c|X,u)
Convenient notation: precision t=1/c?

this parameterization is also used in
BUGS with normal densities.

Conjugate prior for p is N(u,,0,)
P(u| 24, 75) = 0(=0.570 (11— 14,)") I €

Assume first a single observation X:
p(X; | ,7) =exp(-0.52(X; — u)*) / c
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Normal model N(X| p,o)

Posterior for u is then

Put| X7, g, 7)) = eXp(_O-5(To(/U_IUo)2 +7(X, _ﬂ)z))/c

— N n01u0+xi 0-2
N+1 n,+1

Use ‘completing a square’ —technique.

Here n,=1,/1 can be interpreted as
‘pseudo sample size’ from the prior.
Posterior mean: wp, +(1-w)X. ,
w=T,/(Ty+7)
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Normal model N(X| p,o)

* With several measurements X,,..., X, , we
can write the data-model as

p(X | 1,0) =N(X| 1,0 IN)

* Similar to previous case, the posterior is

N Ny, + X o’ /N
N+1 n,+1

* Hereny=1,/(N1)
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Normal model N(X| p,o)

Posterior mean and variance can also be
expressed as

,Uo_l_NX 1
O'g o’ V X)) =
E(u] X)=——0 (] X) =R
_|_
0'0+0'2 o, o

What happens when N=20, or N->oo ?
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Normal model N(X| p,o)

Improper prior p(u)«<l
The posterior is proper density, and
p(u| X)=N(X,6”/N)

Compare with non-bayesian statistics,
where the inference is based on

p(X | 1) =N(g,c” I N)
These are like mirror images...
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Normal model N(X| p,o)

p(c|X,u) ?

Assume observations X,,...,Xy

1

P(X | i,0)oc o™ exp(-

N
2\—N/2

=\O e —_

( ) xp( 2 2

1 N
Here S :NZ(Xi_:u)Z
=1

Conjugate prior for t?

Z(Xi _ﬂ)z)

20° <

Nz ,

So)=1""° exp(—7so)

...gamma(a, [3)
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Normal model N(X| p,o)

* Following from Bayes, the posterior
p(c|X,u) is proportional to

P e (- L)X e (- fr)
=V ep (5% + A)7)

 Thisis recognized as
gamma(N/2+a,Ns,%/2+p)

* Uninformative prior =0, 3—=20.
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Normal model N(X| p,o)

* p(p,olX) ?

* Assume observations X, ...,Xy

* Several options:

1. conjugate 2D prior p(u,o)=p(u|o)p(o)
2. independent priors p(u), p(o)

3. improper prior p(ut)«cllz

This will get more mathematical, you are free
to skip details unless you love the math...
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Normal model N(X| p,o)

e Difficulties:

1. conjugate 2D prior p(u,0)=p(1|c)p(c)

Not very practical to express prior of L,
conditionally on .
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Normal model N(X| p,o)

* Difficulties:
2. independent priors p(u), p(o)

Not possible to choose so that posterior
could be solved in any familiar form.
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Normal model N(X| p,o)

* Difficulties:
3. Improper prior p(u,z)ocll/z
same as p(u, o) <l/ o’
same as p(ulog(o)) ocl
Posterior can be solved by factorization

p(w,64|X) = p(p|o?,X)p(c?]X)

...we already have solved the first part before.
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Normal model N(X| p,o)

* The second part is p(c?|X)

= Scaled-Inverse-y2(n-1,s) X =ﬁz(xi_xy

* Or: p(t]X)
= Gamma((n-1)/2,(n-1)s%/2)

 The full joint density can thus be written
as a product of two known densities.

* Convenient for Monte Carlo simulations. (draw c?,
then u conditionally on 6?)

* Also, can solve p(c? | u,X), useful for Gibbs sampling.
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Working out p(c?|X)

* First, write p(u,6?| Xy,...,X, ) in the form:

prior likelihood
A

’ 1 N ‘

P(u, 0| X)oco?c " exp(- 52 Z(Xi - 1)°)
O i Manipulation
—n-2 1 2 X 2
=0 " ep(———[(n-1)s* +n(X - 1)°])
20

N JE—
where s’ =ﬁz(xi - X)?
T+l

* Then, integrate over u to get marginal
density.
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Working out p(c?|x)

* Solving p(c?|X): integrate the joint density p(o?,u|X)
over L.

= 1(0-Ds* +n(X ~ 1))
O

p(c? [ X)x [o" exp(-

1

n —
202 2 (X —/J)z)d/,l

20

=0 " exp (- (n—1)s*) x _[exp(—

21 ~(n —1)52)><\/27z02/n
o

=0 " ep(-

(n—1)s’
20°

oc (0_2)—(n+1)/2 exp (_

)

= Scaled-Inverse-y?(n-1,s)
For t=1/c2: this is Gamma((n-1)/2,(n-1)s%/2)
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 That required a few steps anc

Working out p(c?|x)

manipulations...

e The lesson was:

To give you an impression of what kind of tricks and
techniques are needed for exact solutions.

To see why and how the seemingly simple principle
of Bayes theorem leads to increasingly complicated
math which has been a major obstacle in practical
Bayesian applications in the past.

To give motivation for the next sessions on Monte
Carlo methods and WinBUGS/OpenBUGS.
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Other multiparameter models

Regression models, e.g. linear regression
* Example: Y~ N(u,c?)

c w=PpX;+..+B X, = X B (vector notation)

* B =regression parameters.

X = matrix of explanatory variables.

Y =observations from i=1,...,n individuals.

* Aim to compute p(B,o?|Y,X) which is k+1
dimensional density.

e Typical priors aim to be uninformative.

 Posterioris then proper, if n>k, and the rank of X
(number of linearly independent columns) is k.
This is the case in most applications.
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Other multiparameter models

 Regression models, e.g. linear regression

Example: Y;~ N(u,o02), assume c?is ’known’.
p(B|Y,X,c) can then be solved, and it is:
N((X™X)LXTY, (XTX)1 o2 )

Here, posterior mean (X'™X)1 X" Y is the same as max

likelihood estimate (in this case it’s also the least
squares estimate) of 3.
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Multiparameter models

Generalized linear models
Example: Y;~ Bin(N,,0,),
Link function: logit(0.) = log(0./(1-0.)) = X. B
Prior p(pB)

Posterior p(BIY,X) = p(Y|X,B)p(B)/c =
L1 Bin(Y;|N,,0;)p(B)/c
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Other multiparameter models

e Hierarchical models
 Example:

Vi ™ N(uij,o'zij), result from patient k in hospital j,
in district i.

* W;~ N(¢;,6%), mean of hospital j, in district i
* ¢~ N(0,62), mean of district i.

0~ N(0,10000) prior of ‘grand mean’

* Also need priors for variance components.

* Compute: p(ny$,0, 0%, 0%, 6%| Y) =

p(Y]pi,,0%y) p(;l i %) p(d:10, 62) p(6) p(c?;) p(c?)
p(c?) /c



Other multiparameter models

e Hierarchical models

Intuition: compare with a genetic model of a family
tree: grand parents, parents, children. An
observation from a child gives information about
cousins too!

Also used in meta-analysis & evidence synthesis.
Also known as multilevel models.

Random effect models, mixed effects, spatial
models, spatiotemporal models, applications are
wide...
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 Hierarchical models... (more about DAGs later)




