
Multiparameter models 

• Usually, we have models with many 
parameters, let’s start with k=2. 
• p(q1, q2|X)  = p(X|q1, q2 )p(q1, q2 ) 

• p(q1, q2 ) is joint prior. Often used: p(q1) p(q2 ) 

• Prior could also be hierarchical p(q1|q2 ) p(q2 ) 

• p(X|q1, q2)  could be e.g. N(m,s2) 

  

• Marginal posterior density 

• p(q1|X) = ∫ p(q1, q2|X) dq2  

 =  ∫ p(q1| q2 ,X) p(q2 |X) dq2  
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Multiparameter models 

• The parameter of interest can be q1 while 
q2 is just a nuisance parameter. 
• Example: diagnostic testing with sensitivity <100% 

• X ~ Bin(N, q1* q2 ) 

• Here, q1 is the unknown true prevalence, q2 is the 
unknown test sensitivity – for which we could have 
an informative prior, though. 

• We should take into account the uncertainty of both 
parameters jointly, given the data (and prior). 

• p(q1, q2 | X) =  Bin(X | N,q1q2 ) p(q1) p(q2)    
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…Solving posterior is difficult, that’s 
why WinBUGS is used… 

p sample: 10000
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• Assume we observed N=100, X=1. 
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Multiparameter models 

• The aim could also be to predict a 
multivariate response. (Correlated data 
models) 
• This requires several parameters in the model.  

• p(X1,X2 | q1,..., qk)  

• Posterior prediction p(X1*,X2*|X1,X2) requires 
integration over all parameters 

• Then, some more integration to get marginal 
predictive distributions p(X1*| X1,X2)= 
∫p(X1*,X2*|X1,X2)dX2* 
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time vs temp
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• The goal could be to predict a 2D-
variable 

 

 

 

• Example: cooking times (t) vs cooking 
temperature (C) based on observed data, using 
bivariate normal model with 5 uncertain 
parameters.  

 

• Compute predictive distribution p(t,C | data)   
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Identifiability 

• Parameters are unidentifiable (from data) 
if P(X | q1 ) = P(X | q2 ), with q1  ≠ q2  

• Posterior result then depends solely on prior. 

• Example: X ~ N(q1  + q2 ,1)  

• All combinations with  q1  + q2 = c are equally 
probable, unless prior can make a difference. 

• Is the posterior a proper density? 

 

• Multiparameter models with insufficient data may 
lead to problems of identifiability. Useful to check 
the likelihood.   
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Multinomial model 

• E.g. large bag of balls of k different colors. 
Pick N balls (with replacement) 

• X1,…,Xk = number of balls of each color. 

• X1+,…,+Xk = N 

• Vector X is multinomially distributed, 
given the true proportions q1,...,qk . 

 

• Find out p(q1,...,qk |X) 
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Multinomial model 

• This is a generalization of earlier 
inference problem with Binomial & Beta  

• p(q1,...,qk ) = Dirichlet(a1,…,ak) 

• qi =1 

• Thanks to conjugate prior: 

    p(q1,...,qk |X) = Dirichlet(a1+X1,…,ak+Xk) 

 
• Marginal densities easy, if q ~ Dir(a), then 

 p(qi|X) = Beta(ai, aj - ai) 
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Multinomial model 

• Example: there are 12 subtypes of 
bacteria. In a sample of 20, we observed 
the following numbers of each type:  

• X=(0,1,4,0,8,0,3,1,3,0,0,0)    

• p(q1,...,qk |X) = Dir(a1+X1,…,ak+Xk) 

• Note the ’pseudo data’ n=12 in the 
Dir(1,…,1) prior. 
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Multinomial model 
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Normal model N(X|m,s) 

• Take a look at the easy cases first:   

• p(m|X,s)      and     p(s|X,m) 

• Convenient notation: precision t=1/s2 

this parameterization is also used in 
BUGS with normal densities.  

• Conjugate prior for m is N(m0,s0) 

 

• Assume first a single observation Xi: 
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Normal model N(X|m,s) 

• Posterior for m is then  

 

 

 

• Use ’completing a square’ –technique. 

• Here n0 = t0 /t can be interpreted as 
’pseudo sample size’ from the prior. 

• Posterior mean: wm0 +(1-w)Xi  , 
w=t0/(t0+t) 
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Normal model N(X|m,s) 

• With several measurements X1,…,XN , we 
can write the data-model as 

 

 

• Similar to previous case, the posterior is 

 

 

•  Here n0 = t0 /(Nt)  
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Normal model N(X|m,s) 

• Posterior mean and variance can also be 
expressed as 

 

 

 

 

•  What happens when N0, or N∞ ?  
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Normal model N(X|m,s) 

• Improper prior 

• The posterior is proper density, and  

 

• Compare with non-bayesian statistics, 
where the inference is based on  

 

• These are like mirror images… 
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Normal model N(X|m,s) 

• p(s|X,m)  ? 

• Assume observations X1,…,XN 

 

 

 

 

• Here  

• Conjugate prior for t?    ….gamma(a,b) 
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Normal model N(X|m,s) 

• Following from Bayes, the posterior 
p(s|X,m) is proportional to 

 

 

 

 

• This is recognized as 
gamma(N/2+a,Ns0

2/2+b) 

• Uninformative prior a0, b0. 
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Normal model N(X|m,s) 

• p(m,s|X)  ? 

• Assume observations X1,…,XN  

• Several options: 

1. conjugate 2D prior p(m,s)=p(m|s)p(s) 

2. independent priors p(m), p(s) 

3. improper prior   

 

This will get more mathematical, you are free 
to skip details unless you love the math… 
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Normal model N(X|m,s) 

• Difficulties: 

1. conjugate 2D prior p(m,s)=p(m|s)p(s) 

Not very practical to express prior of m, 
conditionally on s. 
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Normal model N(X|m,s) 

• Difficulties: 

2. independent priors p(m), p(s) 

Not possible to choose so that posterior 
could be solved in any familiar form. 
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Normal model N(X|m,s) 

• Difficulties: 

3. Improper prior 

 same as 

 same as  

Posterior can be solved by factorization 

          p(m,s2|X) = p(m|s2,X)p(s2|X) 

 

…we already have solved the first part before. 
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Normal model N(X|m,s) 

• The second part is p(s2|X) 

= Scaled-Inverse-c2(n-1,s)        

• Or: p(t|X) 

= Gamma((n-1)/2,(n-1)s2/2) 

• The full joint density can thus be written 
as a product of two known densities. 
• Convenient for Monte Carlo simulations. (draw  s2, 

then m conditionally on s2)  

• Also, can solve p(s2 |m,X), useful for Gibbs sampling. 
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Working out p(s2|X) 

• First, write p(m,s2| X1,…,Xn ) in the form: 
 
 
 
 
 
 

   where 
 
• Then, integrate over m to get marginal 

density. 
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Working out p(s2|X) 

• Solving p(s2|X): integrate the joint density p(s2,m|X) 
over m. 
 
 
 
 
 
 
 
 
 

= Scaled-Inverse-c2(n-1,s) 
For t1/s2:  this is Gamma((n-1)/2,(n-1)s2/2) 
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Working out p(s2|X) 

• That required a few steps and 
manipulations… 

• The lesson was:  
• To give you an impression of what kind of tricks and 

techniques are needed for exact solutions. 

• To see why and how the seemingly simple principle 
of Bayes theorem leads to increasingly complicated 
math which has been a major obstacle in practical 
Bayesian applications in the past. 

• To give motivation for the next sessions on Monte 
Carlo methods and WinBUGS/OpenBUGS.  
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Other multiparameter models 

• Regression models, e.g. linear regression 
• Example: Yi ~ N(mi,s

2) 

• mi =  b1Xi1 + … + bkXik     =  Xi b  (vector notation) 

• b  = regression parameters. 

• X = matrix of explanatory variables. 

• Y = observations from i=1,…,n individuals. 

• Aim to compute  p(b,s2|Y,X) which is k+1 
dimensional density. 

• Typical priors aim to be uninformative.   

• Posterior is then proper, if n>k, and the rank of X 
(number of linearly independent columns) is  k.  
This is the case in most applications. 
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Other multiparameter models 

• Regression models, e.g. linear regression 
• Example: Yi ~ N(mi,s

2), assume s2 is ’known’. 

• p(b|Y,X,s) can then be solved, and it is: 

 N( (XTX)-1 XT Y , (XTX)-1 s2 ) 

• Here, posterior mean (XTX)-1 XT Y is the same as max 
likelihood estimate (in this case it’s also the least 
squares estimate) of b. 
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Multiparameter models 

• Generalized linear models  
• Example: Yi ~ Bin(Ni,qi),  

• Link function:   logit(qi) = log(qi/(1-qi)) = Xi b 

• Prior  p(b)  

• Posterior  p(b|Y,X) = p(Y|X,b)p(b)/c = 

  Bin(Yi|Ni,qi)p(b)/c 
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Other multiparameter models 

• Hierarchical models 
• Example:  

 Yijk ~ N(mij,s
2

ij),  result from patient k in hospital j, 
in district i. 

• mij ~ N(fi,s
2

i), mean of hospital j, in district i 

• fi ~ N(q,s2), mean of district i. 

• q ~ N(0,10000) prior of ’grand mean’ 

• Also need priors for variance components. 

 

• Compute:  p(mij,fi,q, s2
ij, s

2
i, s

2| Y) =  

p(Y|mi,,s
2

ij)  p(mij|fi, s
2

i)  p(fi|q, s2) p(q) p(s2
ij) p(s2

i) 
p(s2) /c  
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Other multiparameter models 

• Hierarchical models 
• Intuition: compare with a genetic model of a family 

tree: grand parents, parents, children. An 
observation  from a child gives information about 
cousins too! 

• Also used in meta-analysis & evidence synthesis. 

• Also known as multilevel models.   

• Random effect models, mixed effects, spatial 
models, spatiotemporal models, applications are 
wide… 
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• Hierarchical models…    (more about DAGs later)        
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