Multiparameter models

- Usually, we have models with many parameters, let's start with k=2.
 - $\mathbf{p}(\theta_1, \theta_2 | \mathbf{X}) = \mathbf{p}(\mathbf{X} | \theta_1, \theta_2) \mathbf{p}(\theta_1, \theta_2)$
 - $p(\theta_1, \theta_2)$ is joint prior. Often used: $p(\theta_1) p(\theta_2)$
 - Prior could also be hierarchical $p(\theta_1 | \theta_2) p(\theta_2)$
 - $p(X|\theta_1, \theta_2)$ could be e.g. $N(\mu, \sigma^2)$
 - Marginal posterior density
 - $\mathbf{p}(\theta_1 | \mathbf{X}) = \int \mathbf{p}(\theta_1, \theta_2 | \mathbf{X}) d\theta_2$
 - = $\int \mathbf{p}(\theta_1 | \theta_2, \mathbf{X}) \mathbf{p}(\theta_2 | \mathbf{X}) d\theta_2$

Multiparameter models

- The parameter of interest can be θ_1 while θ_2 is just a nuisance parameter.
 - Example: diagnostic testing with sensitivity <100%
 - X ~ Bin(N, $\theta_1 * \theta_2$)
 - Here, θ_1 is the unknown true prevalence, θ_2 is the unknown test sensitivity for which we could have an informative prior, though.
 - We should take into account the uncertainty of both parameters jointly, given the data (and prior).
 - $p(\theta_1, \theta_2 \mid X) = Bin(X \mid N, \theta_1 \theta_2) p(\theta_1) p(\theta_2)$

...Solving posterior is difficult, that's why WinBUGS is used...

• Assume we observed N=100, X=1.

Multiparameter models

- The aim could also be to predict a multivariate response. (Correlated data models)
 - This requires several parameters in the model.
 - **p(X₁,X₂ | θ₁,..., θ_k)**
 - Posterior prediction p(X₁*,X₂*|X₁,X₂) requires integration over all parameters
 - Then, some more integration to get marginal predictive distributions p(X₁*| X₁,X₂)= ∫p(X₁*,X₂*|X₁,X₂)dX₂*

time vs temp

Identifiability

- Parameters are unidentifiable (from data) if $P(X | \theta_1) = P(X | \theta_2)$, with $\theta_1 \neq \theta_2$
- Posterior result then depends solely on prior.
- Example: $X \sim N(\theta_1 + \theta_2, 1)$
 - All combinations with $\theta_1 + \theta_2 = c$ are equally probable, unless prior can make a difference.
 - Is the posterior a proper density?
 - Multiparameter models with insufficient data may lead to problems of identifiability. Useful to check the likelihood.

Multinomial model

- E.g. large bag of balls of k different colors. Pick N balls (with replacement)
- X₁,...,X_k = number of balls of each color.

- Vector X is multinomially distributed, given the true proportions $\theta_1, ..., \theta_k$.
- Find out $p(\theta_1,...,\theta_k | X)$

Multinomial model

- This is a generalization of earlier inference problem with Binomial & Beta
- $p(\theta_1,...,\theta_k) = Dirichlet(\alpha_1,...,\alpha_k)$
- $\Sigma \theta_i = 1$
- Thanks to conjugate prior:
 p(θ₁,...,θ_k | X) = Dirichlet(α₁+X₁,...,α_k+X_k)
- Marginal densities easy, if θ ~ Dir(α), then
 p(θ_i | X) = Beta(α_i, Σα_j α_i)

Multinomial model

- Example: there are 12 subtypes of bacteria. In a sample of 20, we observed the following numbers of each type:
- X=(0,1,4,0,8,0,3,1,3,0,0,0)
- $p(\theta_1,...,\theta_k | X) = Dir(\alpha_1 + X_1,...,\alpha_k + X_k)$
- Note the 'pseudo data' n=12 in the Dir(1,...,1) prior.

u

u

u

0.6

u

10

Normal model N(X| μ , σ)

- Take a look at the easy cases first:
- p(μ|X,σ) and p(σ|X,μ)
- Convenient notation: precision $\tau = 1/\sigma^2$ this parameterization is also used in BUGS with normal densities.
- Conjugate prior for μ is N(μ_0, σ_0) $p(\mu \mid \mu_0, \tau_0) = \exp(-0.5\tau_0(\mu - \mu_0)^2)/c$
- Assume first a single observation X_i : $p(X_i | \mu, \tau) = \exp(-0.5\tau(X_i - \mu)^2)/c$

Normal model N(X| μ , σ)

Posterior for μ is then

$$p(\mu \mid X_i, \tau, \mu_0, \tau_0) = \exp(-0.5(\tau_0(\mu - \mu_0)^2 + \tau(X_i - \mu)^2))/c$$
$$= N\left(\frac{n_0\mu_0 + X_i}{n_0 + 1}, \frac{\sigma^2}{n_0 + 1}\right)$$

- Use 'completing a square' -technique.
- Here $n_0 = \tau_0 / \tau$ can be interpreted as 'pseudo sample size' from the prior.
- Posterior mean: $w\mu_0 + (1-w)X_i$, $w = \tau_0 / (\tau_0 + \tau)$

Normal model N(X | μ , σ)

• With several measurements $X_1, ..., X_N$, we can write the data-model as

$$p(\overline{X} \mid \mu, \sigma) = N(\overline{X} \mid \mu, \sigma^2 / N)$$

• Similar to previous case, the posterior is

$$N\left(\frac{n_0\mu_0+\overline{X}}{n_0+1},\frac{\sigma^2/N}{n_0+1}\right)$$

• Here $n_0 = \tau_0 / (N\tau)$

 Posterior mean and variance can also be expressed as

• What happens when $N \rightarrow 0$, or $N \rightarrow \infty$?

Normal model N(X| μ , σ)

- Improper prior $p(\mu) \propto 1$
- The posterior is proper density, and $p(\mu | \overline{X}) = N(\overline{X}, \sigma^2 / N)$
- Compare with non-bayesian statistics, where the inference is based on

 $p(\overline{X} \mid \mu) = N(\mu, \sigma^2 / N)$

• These are like mirror images...

Normal model N(X| μ , σ)

- p(σ|X,μ) ?
- Assume observations X₁,...,X_N

$$p(X \mid \mu, \sigma) \propto \sigma^{-N} \exp(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (X_i - \mu)^2)$$

$$= (\sigma^2)^{-N/2} \exp(-\frac{N}{2\sigma^2} s_0^2) = \tau^{N/2} \exp(-\frac{N\tau}{2} s_0^2)$$

• Here
$$s_0^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \mu)^2$$

• Conjugate prior for τ ?gamma(α , β)

• Following from Bayes, the posterior $p(\sigma|X,\mu)$ is proportional to

$$\tau^{N/2} \exp\left(-\frac{N\tau}{2}s_0^2\right) \times \tau^{\alpha-1} \exp\left(-\beta\tau\right)$$
$$= \tau^{N/2+\alpha-1} \exp\left(-\left(\frac{N}{2}s_0^2+\beta\right)\tau\right)$$

- This is recognized as gamma(N/2+ α ,Ns₀²/2+ β)
- Uninformative prior $\alpha \rightarrow 0$, $\beta \rightarrow 0$.

- p(μ,σ|X) ?
- Assume observations X₁,...,X_N
- Several options:
- 1. conjugate 2D prior $p(\mu,\sigma)=p(\mu | \sigma)p(\sigma)$
- 2. independent priors $p(\mu)$, $p(\sigma)$
- 3. improper prior $p(\mu, \tau) \propto 1/\tau$

This will get more mathematical, you are free to skip details unless you love the math...

• Difficulties:

1. conjugate 2D prior $p(\mu,\sigma)=p(\mu|\sigma)p(\sigma)$ Not very practical to express prior of μ , conditionally on σ .

• Difficulties:

2. independent priors $p(\mu)$, $p(\sigma)$ Not possible to choose so that posterior could be solved in any familiar form.

Normal model N(X| μ , σ)

• Difficulties:

3. Improper prior $p(\mu, \tau) \propto 1/\tau$ same as $p(\mu, \sigma) \propto 1/\sigma^2$ same as $p(\mu, \log(\sigma)) \propto 1$ Posterior can be solved by factorization $p(\mu, \sigma^2 | X) = p(\mu | \sigma^2, X) p(\sigma^2 | X)$

...we already have solved the first part before.

Normal model N(X| μ , σ)

- The second part is $p(\sigma^2|X)$
- = Scaled-Inverse- χ^2 (n-1,s)

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2}$$

- Or: p(τ | X)
- = Gamma((n-1)/2,(n-1)s²/2)
- The full joint density can thus be written as a product of two known densities.
 - Convenient for Monte Carlo simulations. (draw σ^2 , then μ conditionally on σ^2)
 - Also, can solve $p(\sigma^2 | \mu, X)$, useful for Gibbs sampling.

Working out $p(\sigma^2|X)$

• First, write $p(\mu, \sigma^2 | X_1, ..., X_n)$ in the form:

Then, integrate over μ to get marginal density.

Working out $p(\sigma^2|X)$

• Solving $p(\sigma^2|X)$: integrate the joint density $p(\sigma^2,\mu|X)$ over μ .

$$p(\sigma^{2} | X) \propto \int_{-\infty}^{\infty} \sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} [(n-1)s^{2} + n(\overline{X} - \mu)^{2}]) d\mu$$

= $\sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} (n-1)s^{2}) \times \int_{-\infty}^{\infty} \exp(-\frac{n}{2\sigma^{2}} (\overline{X} - \mu)^{2}) d\mu$
= $\sigma^{-n-2} \exp(-\frac{1}{2\sigma^{2}} (n-1)s^{2}) \times \sqrt{2\pi\sigma^{2}/n}$
 $\propto (\sigma^{2})^{-(n+1)/2} \exp(-\frac{(n-1)s^{2}}{2\sigma^{2}})$

= Scaled-Inverse- χ^2 (n-1,s) For $\tau=1/\sigma^2$: this is Gamma((n-1)/2,(n-1)s²/2)

Working out $p(\sigma^2|X)$

- That required a few steps and manipulations...
- The lesson was:
 - To give you an impression of what kind of tricks and techniques are needed for exact solutions.
 - To see why and how the seemingly simple principle of Bayes theorem leads to increasingly complicated math which has been a major obstacle in practical Bayesian applications in the past.
 - To give motivation for the next sessions on Monte Carlo methods and WinBUGS/OpenBUGS.

Other multiparameter models

- Regression models, e.g. linear regression
 - Example: Y_i ~ N(μ_i,σ²)
 - $\mu_i = \beta_1 X_{i1} + ... + \beta_k X_{ik} = X_i \beta$ (vector notation)
 - β = regression parameters.
 - X = matrix of explanatory variables.
 - Y = observations from i=1,...,n individuals.
 - Aim to compute p(β,σ²|Y,X) which is k+1 dimensional density.
 - Typical priors aim to be uninformative.
 - Posterior is then proper, if n>k, and the rank of X (number of linearly independent columns) is k. This is the case in most applications.

Other multiparameter models

- Regression models, e.g. linear regression
 - Example: $Y_i \sim N(\mu_i, \sigma^2)$, assume σ^2 is 'known'.
 - p(β|Y,X,σ) can then be solved, and it is:
 N((X^TX)⁻¹ X^T Y , (X^TX)⁻¹ σ²)
 - Here, posterior mean (X^TX)⁻¹ X^T Y is the same as max likelihood estimate (in this case it's also the least squares estimate) of β.

Multiparameter models

- Generalized linear models
 - Example: $Y_i \sim Bin(N_i, \theta_i)$,
 - Link function: $logit(\theta_i) = log(\theta_i/(1-\theta_i)) = X_i \beta$
 - Prior **p(β)**
 - Posterior $p(\beta | Y, X) = p(Y | X, \beta)p(\beta)/c =$ $\prod Bin(Y_i | N_i, \theta_i)p(\beta)/c$

Other multiparameter models

- Hierarchical models
 - Example:

 $Y_{ijk} \sim N(\mu_{ij}, \sigma^2_{ij})$, result from patient k in hospital j, in district i.

- $\mu_{ij} \sim N(\phi_i, \sigma_i^2)$, mean of hospital j, in district i
- $\phi_i \sim N(\theta, \sigma^2)$, mean of district i.
- θ ~ N(0,10000) prior of 'grand mean'
- Also need priors for variance components.
- Compute: $p(\mu_{ij}, \phi_i, \theta, \sigma^2_{ij}, \sigma^2_i, \sigma^2 | Y) = p(Y|\mu_{i}, \sigma^2_{ij}) p(\mu_{ij}|\phi_i, \sigma^2_i) p(\phi_i|\theta, \sigma^2) p(\theta) p(\sigma^2_{ij}) p(\sigma^2_i) p(\sigma^2) / c$

Other multiparameter models

• Hierarchical models

- Intuition: compare with a genetic model of a family tree: grand parents, parents, children. An observation from a child gives information about cousins too!
- Also used in meta-analysis & evidence synthesis.
- Also known as multilevel models.
- Random effect models, mixed effects, spatial models, spatiotemporal models, applications are wide...

• Hierarchical models... (more about DAGs later)

