
Posterior summaries 
• In classical statistics, we have estimators 

for parameters. These are functions of 
data, e.g. mean of observations, or 
sample variance.  
• Parameter is thought fixed but unknown.  
• Data is random, therefore estimator is random. 
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Posterior summaries 
• In Bayes: posterior density describes our 

uncertainty about the unknown 
parameter θ, after observing data X. 
• Observed data is fixed – it’s what it is. (=evidence). 
• Parameter is random, because it is uncertain. 

Probability is a measure of uncertainty. 
• Posterior density is complete description. 
• Mode = the ’most probable’ value. 
• Mean = expected value, if you’d make a bet. 
• Median =  with 50% probability, it’s below this. 
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Posterior summaries 
• Comparison of mean, median, mode: 

• Define a loss function L(θ,δx) to describe the loss 
due to estimating θ by point estimate δx based on 
data x.  

• For any x, choose δx  to minimize the posterior loss 
 
 

• If the loss function is quadratic L(θ,δx)=(θ−δx)2  then 
the posterior loss becomes V(θ|X)+(E(θ|X)-δx)2  
which is minimized by choosing δx = E(θ|X), the 
posterior mean.  
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Posterior summaries 
• But if our loss function is L(θ,δx)=|θ−δx| then we 

should choose  δx = posterior median, to minimize 
posterior loss (for any x).  
 

• And if L(θ,δx)= 1{θ=δx } (δx)   ”all-or-nothing error”, 
then the choice would be posterior mode. 
 

• E.g. if you prefer choosing posterior mean, this 
means  that you behave as if you had a quadratic 
loss function. 

• No point value can fully convey the complete 
information contained in a posterior distribution.  
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Posterior summaries 
• Compare: classical 95% Conf. Interval? 

• In classical statistics: confidence interval is a 
function of data, therefore random. 

• With 95% frequency, the interval will cover the true 
parameter value, in the long run. (If the experiment 
is repeated). i.e. we are 95% confident of this.  

                                           θ 
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Posterior summaries 
• 95% Credible interval. 

• In Bayes:  credible interval is an interval in which 
the parameter is with 95% probability, given this 
actual data we now had.  
 
 
 
 
 

• Can choose 95% interval in many ways, though. 
 

 
 

 
 
 

 
 

 

 
 

 

95 % 

θ 
 

6 



Posterior summaries 
• 95% Credible interval. 

• Posterior density can be bimodal or multimodal. 
• CI does not need to be a connected set. 

 
 
 
 
 
 

• A shortest possible interval with a given 
probability is Highest Posterior Density Interval 
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Posterior summaries 
• Generally: 

• With little data  posterior is dictated by prior 
• With enough data  posterior is dictated by data 
• Savage: ”When they have little data, scientists 

disagree and are subjectivists; when they have piles 
of data, they agree and become objectivists”. 
 

• V(θ) = E( V(θ |X) ) + V( E(θ|X) )  which means that 
posterior variance V(θ |X) is expected to be smaller 
than the prior variance V(θ). (But sometimes it can 
increase).   
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Further use of posteriors 
• Hypotheses: 

• About a parameter:  ”θ<0”  
• Compute P(θ < 0 |X), the cumulative density at 0. 

 
• P(H0 | X) and P(H1 | X) possible to compute if ”H” is 

a region of parameter space . 
• We do not reject or accept a H, just calculate its 

probability, given evidence. 
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Further use of posteriors 
• Hypotheses: 

• Sometimes used: posterior odds P(H0 | X)/P(H1 | X). 
• If  ”>1”, shows support for H0. 
• Bayes factor: a ratio of prior and posterior odds 
• BF = [ P(H0 | X)/P(H1 | X)  ]  /  [ P(H0)/P(H1)  ] 
            = [P(H0 | X) P(H1) ]  /  [P(H1 | X) P(H0)] 
 
Posterior odds  = Prior odds  x  BF 
 
This is a different way of expressing Bayes theorem:  
BF expresses how much data change prior odds.  
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Further use of posteriors 
• Hypotheses: 

• A point hypothesis H0 : θ = θ0  against H1 : θ = θ1  
• We must have positive probability P(H0)=1-P(H1) 

 
• The BF then becomes the same as ’likelihood ratio’ 

 
 
 

 Because constant p(X) cancels out. 
• But: how big (small) BF is big (small) enough ? 
• Composite hypothesis, one-sided, two-sided… 
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Further use of posteriors 
• X ~  N(θ,1), data: X=1.5 

• A point hypothesis H0 : θ = 0  against H1 : θ = 2.  
• Assume prior  p(θ=0)=p(θ=2)=0.5  
• Then, posterior odds = likelihood ratio.  
• Conversion to probability : 
 p = 1/(1+odds) 
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Further use of posteriors 
• Predictions: 

• It is rather easy to compute predictive distribution 
of X based on given parameters θ and the model 
P(X|θ). And likewise for any function g(X).                  
- Assuming you can generate samples from P(X|θ).  
• This would not take into account the uncertainty about 

parameters θ. 

 
• Aim: to compute posterior predictive distribution 

P(Xnew | Xobs)     
• This gives prediction based on the past data, not 

based on assumed parameter estimates.   
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Predictive distributions 
• Consider series of observations: X1,…,Xn 

and a model p(Xi |θ ) so that Xi are 
conditionally independent, given θ. 
Posterior predictive distribution of Xn+1 : 
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Predictive distributions 
• Likewise:                                                                 

Prior predictive distribution of Xn+1 : 
 
 
 
 
 

• ”With the predictive approach parameters diminish in 
importance, especially those that have no physical 
meaning. From the Bayesian viewpoint, such 
parameters can be regarded as just place holders for a 
particular kind of uncertainty on your way to making 
good predictions”. (Draper 1997, Lindley 1972). 
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Predictive distributions 
• Note also, directly from Bayes:  

 
 

• by inserting prior, posterior, model of X, 
we find prior predictive density of X. 

• Similarly,                                                                
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Predictive distributions 
• Let’s try with binomial model. 

• Assume we have a posterior which is beta(α,β). 
• ’Old data’ is then included in α,β.     

 
 

 
• This can be solved as:  

 
                                                                  A = X+α, B = N-X+β 
 
A BETA-BINOMIAL distribution.                                                              
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Predictive distributions 
• With Poisson model: 

• Assume we have a prior which is gamma(α,β). 
• If posterior,  ’old data’ is included in α,β.     

 
 
 

 
• The solution is NEGATIVE BINOMIAL distribution:  
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Predictive distributions 
• To solve predictive means, variances: 

• Use  E(X) = E(E(X|θ)) 
• Use  V(X) = E(V(X|θ)) + V(E(X|θ))     

 
• For example, with Poisson + Gamma: 
• E(X) = α/β 
• V(X) = α/β + α/β2 

  
• By including parameter uncertainty p(θ) to a model 

p(X|θ) we get models p(X) = ∫p(X|θ)p(θ)dθ , 
suitable for e.g. overdispersed data.  
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