- In classical statistics, we have estimators for parameters. These are functions of data, e.g. mean of observations, or sample variance.
  - Parameter is thought fixed but unknown.
  - Data is random, therefore estimator is random.

- In Bayes: posterior density describes our uncertainty about the unknown parameter θ, after observing data X.
  - Observed data is fixed it's what it is. (=evidence).
  - Parameter is random, because it is uncertain.
    Probability is a measure of uncertainty.
  - Posterior density is complete description.
  - Mode = the 'most probable' value.
  - Mean = expected value, if you'd make a bet.
  - Median = with 50% probability, it's below this.

- Comparison of mean, median, mode:
  - Define a loss function  $L(\theta, \delta_x)$  to describe the loss due to estimating  $\theta$  by point estimate  $\delta_x$  based on data x.
  - For any x, choose  $\delta_{\rm x}$  to minimize the posterior loss

$$E(L(\theta, \delta_x) | x) = \int L(\theta, \delta_x) p(\theta | x) d\theta$$

• If the loss function is quadratic  $L(\theta, \delta_x) = (\theta - \delta_x)^2$  then the posterior loss becomes  $V(\theta | X) + (E(\theta | X) - \delta_x)^2$ which is minimized by choosing  $\delta_x = E(\theta | X)$ , the posterior mean.

- But if our loss function is  $L(\theta, \delta_x) = |\theta \delta_x|$  then we should choose  $\delta_x =$  posterior median, to minimize posterior loss (for any x).
- And if  $L(\theta, \delta_x) = 1_{\{\theta = \delta_x\}}(\delta_x)$  "all-or-nothing error", then the choice would be posterior mode.
- E.g. if you prefer choosing posterior mean, this means that you behave as if you had a quadratic loss function.
- No point value can fully convey the complete information contained in a posterior distribution.

- Compare: classical 95% Conf. Interval?
  - In classical statistics: confidence interval is a function of data, therefore random.
  - With 95% frequency, the interval will cover the true parameter value, in the long run. (If the experiment is repeated). i.e. we are 95% **confident** of this.



- 95% Credible interval.
  - In Bayes: credible interval is an interval in which the parameter is with 95% probability, given this actual data we now had.



• Can choose 95% interval in many ways, though.

- 95% Credible interval.
  - Posterior density can be bimodal or multimodal.
  - CI does not need to be a connected set.



• A shortest possible interval with a given probability is Highest Posterior Density Interval

- Generally:
  - With little data  $\rightarrow$  posterior is dictated by prior
  - With enough data  $\rightarrow$  posterior is dictated by data
  - Savage: "When they have little data, scientists disagree and are subjectivists; when they have piles of data, they agree and become objectivists".
  - V(θ) = E(V(θ | X)) + V(E(θ | X)) which means that posterior variance V(θ | X) is *expected* to be smaller than the prior variance V(θ). (But sometimes it can increase).

#### • Hypotheses:

- About a parameter: " $\theta < 0$ "
- Compute  $P(\theta < 0 | X)$ , the cumulative density at 0.
- P(H<sub>0</sub> | X) and P(H<sub>1</sub> | X) possible to compute if "H" is a region of parameter space.
- We do not reject or accept a H, just calculate its probability, given evidence.

#### • Hypotheses:

- Sometimes used: posterior odds  $P(H_0 | X)/P(H_1 | X)$ .
- If ">1", shows support for  $H_0$ .
- **Bayes factor**: a ratio of prior and posterior odds
- $BF = [P(H_0 | X)/P(H_1 | X)] / [P(H_0)/P(H_1)]$ =  $[P(H_0 | X) P(H_1)] / [P(H_1 | X) P(H_0)]$

#### **Posterior odds = Prior odds x BF**

This is a different way of expressing Bayes theorem: BF expresses how much data change prior odds.

### • Hypotheses:

- A point hypothesis  $H_0: \theta = \theta_0$  against  $H_1: \theta = \theta_1$
- We must have positive probability P(H<sub>0</sub>)=1-P(H<sub>1</sub>)
- The BF then becomes the same as 'likelihood ratio'

$$\frac{P(\theta = \theta_0 \mid X)}{P(\theta = \theta_1 \mid X)} = \frac{P(\theta = \theta_0)}{P(\theta = \theta_1)} \frac{p(X \mid \theta = \theta_0)}{p(X \mid \theta = \theta_1)}$$

Because constant p(X) cancels out.

- But: how big (small) BF is big (small) enough ?
- Composite hypothesis, one-sided, two-sided...

### • X ~ N(θ,1), data: X=1.5

- A point hypothesis  $H_0: \theta = 0$  against  $H_1: \theta = 2$ .
- Assume prior  $p(\theta=0)=p(\theta=2)=0.5$
- Then, posterior odds = likelihood ratio.

p = 1/(1+odds)

$$\frac{P(\theta = \theta_0 \mid X)}{P(\theta = \theta_1 \mid X)} = \frac{P(\theta = \theta_0)}{P(\theta = \theta_1)} \frac{p(X \mid \theta = \theta_0)}{p(X \mid \theta = \theta_1)}$$



#### • **Predictions:**

- It is rather easy to compute predictive distribution of X based on given parameters θ and the model P(X|θ). And likewise for any function g(X).
  - Assuming you can generate samples from  $P(X|\theta)$ .
  - This would not take into account the uncertainty about parameters  $\theta$ .
- Aim: to compute posterior predictive distribution
  P(X<sub>new</sub> | X<sub>obs</sub>)
- This gives prediction based on the past data, not based on assumed parameter estimates.

 Consider series of observations: X<sub>1</sub>,...,X<sub>n</sub> and a model p(X<sub>i</sub> |θ) so that X<sub>i</sub> are conditionally independent, given θ.
 Posterior predictive distribution of X<sub>n+1</sub>:

$$p(X_{n+1} | X_1, \dots, X_n) = \int p(X_{n+1}, \theta | X_1, \dots, X_n) d\theta$$
  
= 
$$\int p(X_{n+1} | \theta, X_1, \dots, X_n) p(\theta | X_1, \dots, X_n) d\theta$$
  
= 
$$\int p(X_{n+1} | \theta) p(\theta | X_1, \dots, X_n) d\theta$$
  
Our model Posterior of  $\theta$ 

Likewise:
 Prior predictive distribution of X<sub>n+1</sub>:

$$p(X_{n+1}) = \int p(X_{n+1}, \theta) d\theta = \int p(X_{n+1} | \theta) p(\theta) d\theta$$
  
Our model Prior of  $\theta$ 

 "With the predictive approach parameters diminish in importance, especially those that have no physical meaning. From the Bayesian viewpoint, such parameters can be regarded as just place holders for a particular kind of uncertainty on your way to making good predictions". (Draper 1997, Lindley 1972).

• Note also, directly from Bayes:

 $p(X) = \frac{p(X \mid \theta) p(\theta)}{p(\theta \mid X)}$ 

- by inserting *prior*, *posterior*, *model of X*, we find prior predictive density of X.
- Similarly,

$$p(X_{n+1} | X_1, \dots, X_n) = \frac{p(X | \theta, X_1, \dots, X_n) p(\theta | X_1, \dots, X_n)}{p(\theta | X_1, \dots, X_{n+1})}$$

#### • Let's try with binomial model.

- Assume we have a posterior which is beta( $\alpha$ , $\beta$ ).
- 'Old data' is then included in  $\alpha$ , $\beta$ .

$$p(X \mid \alpha, \beta) = \int p(X, \theta \mid \alpha, \beta) d\theta = \int p(X \mid \theta) p(\theta \mid \alpha, \beta) d\theta$$

- Binomial(N, $\theta$ ) Beta( $\alpha$ , $\beta$ )
- This can be solved as:

$$p(X \mid \alpha, \beta) = \binom{N}{X} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(A)\Gamma(B)}{\Gamma(A + B)} \quad \mathbf{A} = \mathbf{X} + \alpha, \mathbf{B} = \mathbf{N} - \mathbf{X} + \beta$$

#### A BETA-BINOMIAL distribution.





- With Poisson model:
  - Assume we have a prior which is gamma( $\alpha$ , $\beta$ ).
  - If posterior, 'old data' is included in  $\alpha$ , $\beta$ .

$$p(X \mid \alpha, \beta) = \int p(X, \lambda \mid \alpha, \beta) d\theta = \int p(X \mid \lambda) p(\lambda \mid \alpha, \beta) d\lambda$$
  
Poisson( $\lambda$ ) gamma( $\alpha, \beta$ )

• The solution is NEGATIVE BINOMIAL distribution:

$$p(X \mid \alpha, \beta) = \binom{\alpha + X - 1}{X} \left(\frac{\beta}{\beta + 1}\right)^{\alpha} \left(\frac{1}{\beta + 1}\right)^{X}$$

- To solve predictive means, variances:
  - Use E(X) = E(E(X | θ))
  - Use  $V(X) = E(V(X|\theta)) + V(E(X|\theta))$
  - For example, with Poisson + Gamma:
  - E(X) = α/β
  - V(X) =  $\alpha/\beta + \alpha/\beta^2$
  - By including parameter uncertainty p(θ) to a model p(X|θ) we get models p(X) = ∫p(X|θ)p(θ)dθ, suitable for e.g. overdispersed data.