Posterior summaries

- In classical statistics, we have estimators
for parameters. These are functions of data, e.g. mean of observations, or sample variance.
- Parameter is thought fixed but unknown.
- Data is random, therefore estimator is random.

Posterior summaries

- In Bayes: posterior density describes our uncertainty about the unknown parameter θ, after observing data X .
- Observed data is fixed - it's what it is. (=evidence).
- Parameter is random, because it is uncertain. Probability is a measure of uncertainty.
- Posterior density is complete description.
- Mode = the 'most probable' value.
- Mean = expected value, if you'd make a bet.
- Median = with 50% probability, it's below this.

Posterior summaries

- Comparison of mean, median, mode:
- Define a loss function $L\left(\theta, \delta_{x}\right)$ to describe the loss due to estimating θ by point estimate δ_{x} based on data x .
- For any x , choose δ_{x} to minimize the posterior loss

$$
E\left(L\left(\theta, \delta_{x}\right) \mid x\right)=\int L\left(\theta, \delta_{x}\right) p(\theta \mid x) d \theta
$$

- If the loss function is quadratic $L\left(\theta, \delta_{x}\right)=\left(\theta-\delta_{x}\right)^{2}$ then the posterior loss becomes $\mathrm{V}(\theta \mid \mathrm{X})+\left(\mathrm{E}(\theta \mid \mathrm{X})-\delta_{\mathrm{x}}\right)^{2}$ which is minimized by choosing $\delta_{\mathrm{x}}=\mathrm{E}(\theta \mid \mathrm{X})$, the posterior mean.

Posterior summaries

- But if our loss function is $L\left(\theta, \delta_{x}\right)=\left|\theta-\delta_{x}\right|$ then we should choose $\delta_{x}=$ posterior median, to minimize posterior loss (for any x).
- And if $L\left(\theta, \delta_{x}\right)=1_{\{\theta=\delta x\}}\left(\delta_{x}\right)$ "all-or-nothing error", then the choice would be posterior mode.
- E.g. if you prefer choosing posterior mean, this means that you behave as if you had a quadratic loss function.
- No point value can fully convey the complete information contained in a posterior distribution.

Posterior summaries

- Compare: classical 95\% Conf. Interval?
- In classical statistics: confidence interval is a function of data, therefore random.
- With 95% frequency, the interval will cover the true parameter value, in the long run. (If the experiment is repeated). i.e. we are 95% confident of this.

Posterior summaries

- 95\% Credible interval.
- In Bayes: credible interval is an interval in which the parameter is with 95% probability, given this actual data we now had.

- Can choose 95\% interval in many ways, though.

Posterior summaries

- 95\% Credible interval.
- Posterior density can be bimodal or multimodal.
- Cl does not need to be a connected set.

- A shortest possible interval with a given probability is Highest Posterior Density Interval

Posterior summaries

- Generally:

- With little data \rightarrow posterior is dictated by prior
- With enough data \rightarrow posterior is dictated by data
- Savage: "When they have little data, scientists disagree and are subjectivists; when they have piles of data, they agree and become objectivists".
- $\mathbf{V}(\boldsymbol{\theta})=\mathbf{E}(\mathbf{V}(\boldsymbol{\theta} \mid \mathbf{X}))+\mathbf{V}(\mathbf{E}(\boldsymbol{\theta} \mid \mathbf{X}))$ which means that posterior variance $V(\theta \mid X)$ is expected to be smaller than the prior variance $V(\theta)$. (But sometimes it can increase).

Further use of posteriors

- Hypotheses:
- About a parameter: " $\theta<0$ "
- Compute $\mathrm{P}(\theta<0 \mid X)$, the cumulative density at 0 .
- $P\left(H_{0} \mid X\right)$ and $P\left(H_{1} \mid X\right)$ possible to compute if " $H^{\prime \prime}$ is a region of parameter space .
- We do not reject or accept a H, just calculate its probability, given evidence.

Further use of posteriors

- Hypotheses:
- Sometimes used: posterior odds $\mathrm{P}\left(\mathrm{H}_{0} \mid \mathrm{X}\right) / \mathrm{P}\left(\mathrm{H}_{1} \mid \mathrm{X}\right)$.
- If " >1 ", shows support for H_{0}.
- Bayes factor: a ratio of prior and posterior odds
- $B F=\left[P\left(H_{0} \mid X\right) / P\left(H_{1} \mid X\right)\right] /\left[P\left(H_{0}\right) / P\left(H_{1}\right)\right]$ $=\left[P\left(H_{0} \mid X\right) P\left(H_{1}\right)\right] /\left[P\left(H_{1} \mid X\right) P\left(H_{0}\right)\right]$

Posterior odds = Prior odds x BF

This is a different way of expressing Bayes theorem:
BF expresses how much data change prior odds.

Further use of posteriors

- Hypotheses:

- A point hypothesis $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$
- We must have positive probability $\mathrm{P}\left(\mathrm{H}_{0}\right)=1-\mathrm{P}\left(\mathrm{H}_{1}\right)$
- The BF then becomes the same as 'likelihood ratio'

$$
\frac{P\left(\theta=\theta_{0} \mid X\right)}{P\left(\theta=\theta_{1} \mid X\right)}=\frac{P\left(\theta=\theta_{0}\right)}{P\left(\theta=\theta_{1}\right)} \frac{p\left(X \mid \theta=\theta_{0}\right)}{p\left(X \mid \theta=\theta_{1}\right)}
$$

Because constant $p(X)$ cancels out.

- But: how big (small) BF is big (small) enough ?
- Composite hypothesis, one-sided, two-sided...

Further use of posteriors

- $\mathbf{X \sim} \sim(\theta, 1)$, data: $X=1.5$
- A point hypothesis $\mathrm{H}_{0}: \theta=0$ against $\mathrm{H}_{1}: \theta=2$.
- Assume prior $p(\theta=0)=p(\theta=2)=0.5$
- Then, posterior odds = likelihood ratio.
- Conversion to probability :
p = 1/(1+odds)

$$
\frac{P\left(\theta=\theta_{0} \mid X\right)}{P\left(\theta=\theta_{1} \mid X\right)}=\frac{P\left(\theta=\theta_{0}\right)}{P\left(\theta=\theta_{1}\right)} \frac{p\left(X \mid \theta=\theta_{0}\right)}{p\left(X \mid \theta=\theta_{1}\right)}
$$

Further use of posteriors

- Predictions:

- It is rather easy to compute predictive distribution of X based on given parameters $\boldsymbol{\theta}$ and the model $P(X \mid \theta)$. And likewise for any function $g(X)$.
- Assuming you can generate samples from $P(X \mid \theta)$.
- This would not take into account the uncertainty about parameters θ.
- Aim: to compute posterior predictive distribution $\mathbf{P}\left(\mathbf{X}_{\text {new }} \mid X_{\text {obs }}\right)$
- This gives prediction based on the past data, not based on assumed parameter estimates.

Predictive distributions

- Consider series of observations: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ and a model $p\left(X_{i} \mid \theta\right)$ so that X_{i} are conditionally independent, given θ. Posterior predictive distribution of X_{n+1} :

$$
\begin{aligned}
& p\left(X_{n+1} \mid X_{1}, \cdots, X_{n}\right)=\int p\left(X_{n+1}, \theta \mid X_{1}, \cdots, X_{n}\right) d \theta \\
& =\int p\left(X_{n+1} \mid \theta, X_{1}, \cdots, X_{n}\right) p\left(\theta \mid X_{1}, \cdots, X_{n}\right) d \theta \\
& =\int \underbrace{\int p\left(X_{n+1} \mid \theta\right)}_{\text {Our model }} \underbrace{p\left(\theta \mid X_{1}, \cdots, X_{n}\right) d \theta}_{\text {Posterior of } \theta}
\end{aligned}
$$

Predictive distributions

- Likewise: Prior predictive distribution of X_{n+1} :

$$
p\left(X_{n+1}\right)=\int p\left(X_{n+1}, \theta\right) d \theta=\int p(\underbrace{\left.X_{n+1} \mid \theta\right)}_{\text {Our model }} \underbrace{}_{\text {Prior of } \theta} p(\theta) d \theta
$$

- "With the predictive approach parameters diminish in importance, especially those that have no physical meaning. From the Bayesian viewpoint, such parameters can be regarded as just place holders for a particular kind of uncertainty on your way to making good predictions". (Draper 1997, Lindley 1972).

Predictive distributions

- Note also, directly from Bayes:

$$
p(X)=\frac{p(X \mid \theta) p(\theta)}{p(\theta \mid X)}
$$

- by inserting prior, posterior, model of X, we find prior predictive density of X.
- Similarly,

$$
p\left(X_{n+1} \mid X_{1}, \cdots, X_{n}\right)=\frac{p\left(X \mid \theta, X_{1}, \cdots, X_{n}\right) p\left(\theta \mid X_{1}, \cdots, X_{n}\right)}{p\left(\theta \mid X_{1}, \cdots, X_{n+1}\right)}
$$

Predictive distributions

- Let's try with binomial model.

- Assume we have a posterior which is beta(α, β).
- 'Old data' is then included in α, β.

$$
p(X \mid \alpha, \beta)=\int p(X, \theta \mid \alpha, \beta) d \theta=\int \underbrace{p(X \mid \theta)}_{\text {Binomial }(\mathrm{N}, \theta)} p \underbrace{p(\theta \mid \alpha, \beta)}_{\text {Beta }(\alpha, \beta)} d \theta
$$

- This can be solved as:

$$
p(X \mid \alpha, \beta)=\binom{N}{X} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(A) \Gamma(B)}{\Gamma(A+B)} \quad \mathrm{A}=\mathrm{X}+\alpha, \mathrm{B}=\mathrm{N}-\mathrm{X}+\beta
$$

A BETA-BINOMIAL distribution.

Predictive distributions

- With Poisson model:

- Assume we have a prior which is gamma(α, β).
- If posterior, 'old data' is included in α, β.

$$
p(X \mid \alpha, \beta)=\int p(X, \lambda \mid \alpha, \beta) d \theta=\int \underbrace{p(X \mid \lambda)}_{\text {Poisson }(\lambda)} p(\lambda \mid \alpha, \beta) d \lambda
$$

- The solution is NEGATIVE BINOMIAL distribution:
$p(X \mid \alpha, \beta)=\binom{\alpha+X-1}{X}\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{X}$

Predictive distributions

- To solve predictive means, variances:
- Use $\mathrm{E}(\mathrm{X})=\mathrm{E}(\mathrm{E}(\mathrm{X} \mid \theta))$
- Use $V(X)=E(V(X \mid \theta))+V(E(X \mid \theta))$
- For example, with Poisson + Gamma:
- $E(X)=\alpha / \beta$
- $V(X)=\alpha / \beta+\alpha / \beta^{2}$
- By including parameter uncertainty $p(\theta)$ to a model $p(X \mid \theta)$ we get models $p(X)=\int p(X \mid \theta) p(\theta) d \theta$, suitable for e.g. overdispersed data.

