
Bayesian probability:  P State of the World:  X 

P(X | your information I) 
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First example: bag of balls 
• Every probability is conditional to your 

background knowledge ”I”: P(A | I)  
• What is the (your) probability that there 

are r red balls in a bag?  (Assuming N 
balls which can be red/white) 

• Before any data, you might select your 
prior probability as P(r)=1/(N+1) for all 
possible r. (0,1,2,…,N).  
• Here r is the unknown parameter, and your data will be 

the observed balls that will be drawn. 
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First example: bag of balls 
• Given that there are i/N red balls, you 

might say: the probability of picking 
’blindly’ one red ball is                                 
P( X=red | i/N) = i/N  

• This is your (subjective) model choice. 
• Calculate posterior probability:                    

P( r=i/N | X=red)   
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First example: bag of balls 
• Remember some probability calculus: 
• P(A,B)=P(A|B)P(B)=P(B|A)P(A)=P(B,A) 
• Joint probability in this example: 
• P(X=red,r=i/N) = (i/N)*(1/(N+1)) 
• Calculate:    P(r=i/N | X=red)                       

= (i/N)*(1/(N+1)) / P(X=red) 
• P(X=red) is just normalizing constant, i.e.   
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First example: bag of balls 
• The posterior probability is therefore: 
• P(r=i/N | X=red) = 2i/(N*(N+1)) 
• What have we learned from the 

observation ”X=red”?  
• Compare with the                                   

prior probability.   
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First example: bag of balls 
• Our new prior is: 2i/(N*(N+1)) 
• After observing two red balls ”X=2red”: 
• Now:  P(r=i/N | X=2)       
    = (i/N) * 2i/(N(N+1))/c  
    =  2i2/(N2(N+1))/c    
• Normalizing constant  
 c = (2N+1)/3N 
• So: P(r=i/N | X=2)  
    = 6i2/(N(N+1)(2N+1)) 
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First example: bag of balls 
• The result is the same if 

• Start with original prior, + use the probability 
of observing two red balls 

• Start with the posterior we got after 
observing one red ball, + use the probability 
of observing one red ball (again) 

• The model would be different if we 
assume that balls are not replaced in the 
bag. 
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First example: bag of balls 
• The prior (and posterior) probability P(r) 

can be said to describe epistemic 
uncertainty.  

• The conditional probability P(X|r) can be 
said to describe aleatoric uncertainty. 

• Where do these come from? 
• Background information. 
• Model choice. 
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Elicitation of a prior from an expert 
• P(A) should describe the expert’s beliefs. 
• Consider two options: 

• You’ll get €300  if ”A is true” 
• You’ll get a lottery ticket knowing n out of 

100 wins €300. 
Which option do you choose? 
nsmall/100  <   P(A | your)   <   nlarge/100  
Can find out:  n/100 ≈ P(A | your)  
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Elicitation of a prior from an expert 
• Also, in terms of odds  w = P(A)/(1-P(A)), a 

fair bet is such that  
 P(A)wR + (1-P(A))(-R) = 0  
 Find out P(A) = 1 /(1+w) 

 
• Probability densities more difficult to elicit. 
• Multivariate densities even more difficult. 
• Psychological biases. 
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Elicitation of a prior from an expert 
• Assume we have elicited densities pi(x) 

from experts i=1,…,N. 
• Combination? 
     Mixture density 

 
 

     Product of densities:                                     
(needs normalizing constant c) 
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The height of Eiffel? 
• What’s your minimum and maximum? 
 pi = U(mini,maxi) 
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Choice of prior 
• Subjective expert knowledge can be 

important 
• When we have little data. 
• When it is the only source of information. 
• When data would be too expensive. 
• Difficult problems never have sufficient 

data… 
• Alternatively: uninformative, ’flat’ priors. 

 
• ’Objective Bayes’ & ’Subjective Bayes’ 
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• Assume parents with unknown genotypes:  
–  Aa, aa or AA.   
 

• Assume a child is observed to be of type AA. 
• Question1: now what is the probability for the 

genotypes of the parents? 
• Question2: what is the probability that the next child 

will also be of type AA?  

An example from school book 
genetics 
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• Graphically: there is a conditional probability for the 
genotype of each child, given the type of parents: 

Xmom=? 
Ydad=? 

X1=AA X2=? 

This is the ”data model” 
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• Now, given the prior AND the observed child, we 
calculate the probability of the 2nd child: 

Xmom=? 
Ydad=? 

X1=AA X2=? 

Information about 1st child 
tells something about the 
parents, hence about the       
 2nd child. 
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The posterior probability is 1/4 for each of the 
parental combinations: 
 
 
 
 
 
This Results to: P(AA)=9/16 for the 2nd child. 
Compare this with prior probability: P(AA)=1/4. 
New evidence changed this. 

[AA,AA] , [Aa,Aa] , [AA,Aa] , [Aa,AA] 



• Using Bayes:  
 
• the posterior probability for the parents can be 

calculated as: 
 
 

 
• This describes our final degree of uncertainty. 
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• The posterior probability is 1/4 for each of the 
parental combinations: 

 
 
• Notice, ”aa” is no longer a possible type for 

either parent. The prediction for the next child is 
thus: 
 

 
• Resulting to: 9/16 
• Compare this with prior probability: P(AA)=1/4 
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[AA,AA] , [Aa,Aa] , [AA,Aa] , [Aa,AA] 
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• The previous example had all the elements that 
are essential.  
 
– The same idea is just repeated in various forms. 
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Binomial model 
• Recall Bayes’ original example. 
• X ~ Binomial(N,θ) 
• p(θ) = prior density. 

• U(0,1) 
• Beta(α,β) 

• Find out p(θ|X) 
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Binomial model 
• Posterior density: P(θ | X)=P(X|θ)P(θ)/c 

• Assuming uniform prior: 
 
 

• Take a look at this as a function of θ, with N, 
x, and c as fixed constants. 

• What probability density function can be 
seen?  Hint: compare to beta-density. 
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Binomial model 
• The posterior can be written, up to a 

constant term as 
 
 

• Same as beta(x+1,N-x+1) 
• If the uniform prior is replaced by beta(α,β), 

we get beta(x+α,N-x+β)  
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Binomial model 
• The uniform prior corresponds to having 

two ’pseudo observations’: one red ball, 
one white ball.   

• The posterior mean is (1+X)/(2+N) 
• Or:  (α+X)/(α+β+N)  
• Can be expressed as 

 
 With w = (α+β)/(α+β+N) 
• See what happens if  N  ∞, or if N0. 
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Binomial model 
• Simulated    

sample from      
the joint 
distribution 
p(θ,X)= 

 P(X|N,θ)p(θ) 
 

• See P(X|N,θ) and  
     p(θ|X) in the Fig.              
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Binomial model 
• The binomial distribution (likelihood 

function) and the beta-prior are said to 
be conjugate. 

• Conjugate choice of prior leads to closed 
form solutions. (Posterior density is in the 
same family as prior density). 

• Can also interpret conjugate prior as 
’pseudo data’ in comparison with real 
data. 

• Only a few conjugate solutions exist!  
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Binomial model & priors 
• The uniform prior U(0,1) for θ was 

’uninformative’. In what sense? 
• What if we study the density of θ2 or 

log(θ), assuming θ ~ U(0,1)?  
• Jeffreys’ prior is uninformative in the 

sense that it is transformation invariant:  
 

      with  
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Binomial model & priors 
• J(θ) is known as ’Fisher information for θ’ 
• With Jeffreys’ prior for θ we get, for any 

one-to-one smooth transformation 
φ=h(θ) that:  
 
 
 

 
        where  L = P(X|parameter) 
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Binomial model & priors 
• For the binomial model, Jeffreys’ prior is 

Beta(1/2,1/2).  
• But in general: 

•  Jeffreys’ prior can lead to improper densities 
(integral is infinite). 

•  Difficult to generalize into higher dimensions. 
•  Violates likelihood principle which states that 

inferences should be the same when the likelihood 
function is the same. 
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Binomial model & priors 
• Also: Haldane’s prior Beta(0,0) is 

uninformative.  
• (How? Think of ’pseudo data’… )  
• But is improper. 

• Can a prior be improper density? 
• Yes, but!  - the likelihood needs to be such that the 

posterior still integrates to one. 
• With Haldane’s prior, this works only when the 

binomial data X is either >0 or <N. 
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Binomial model & priors 
• For the binomial model P(X|θ), when 

computing the posterior p(θ|X), we have 
at least 3 different uninformative priors: 
 
• p(θ)=U(0,1)=Beta(1,1)   Bayes-Laplace 
• p(θ)=Beta(1/2,1/2)  Jeffreys’ 
• p(θ)=Beta(0,0) Haldane’s 

 
• Each of them is uninformative in different ways!  
• Unique definition for uninformative does not exist. 
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Binomial model & priors 
• example: estimate the mortality    

THIRD DEATH 
The expanded warning came as Yosemite announced that a third 

person had died of the disease and the number of confirmed cases 
rose to eight, all of them among U.S. visitors to the park. 

 

Ok, it’s a small data,  
but we try: 
with uniform prior:  
p(r | data)=beta(3+1,8-3+1).  
Try also other priors. 
(Haldane’s in red )    
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Binomial model & N? 
• In previous slides, N was fixed (known). We can 

also think situations where θ is known , X is 
known, but N is unknown. 

• Exercise: solve P(N | θ,X) = P(X | N,θ)P(N)/c 
with suitable choice of prior.  
• Try e.g. discrete uniform over  a range of values. 
• Try e.g.   
 

• With Bayes rule we can compute probabilities 
of any unknowns, given the knowns & prior & 
likelihood (model). 

NNP /1)( ∝
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Poisson model 
• Widely applicable: counts of disease 

cases, accidents, faults, births, deaths 
over a time, or within an area, etc… 

 
 
• λ = Poisson intensity = E(X). 
• Aim to get: p(λ|X) 
• Bayes: p(λ|X) = P(X|λ)p(λ)/c 
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Poisson model 
• Conjugate prior? Try Gamma-density: 

 
 

• Then: 
 
 

• Simplify expression, what density you 
see? (up to a normalizing constant). 
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Poisson model 
• Posterior density is Gamma(X+α,1+β). 
• Posterior mean is (X+α)/(1+β)  
• Can be written as weighted sum of ’data 

mean’ X and ’prior mean’ α/β. 
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Poisson model 
• With a set of observations: X1,…,XN: 
 
 
• And with the Gamma(α,β)-prior we get: 

Gamma(X1+…+XN+α,N+β). 
 

• Posterior mean 
 

• What happens if N∞, or N0? 
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Poisson model 
• Gamma-prior can be informative or 

uninformative. In the limit (α,β)(0,0), 
posterior  Gamma(X1+…+XN,N).  
 
 

• Compare the conjugate analysis with 
Binomial model. Note similarities. 
 

 
 
 
 

 

 
 

 



Poisson model 
• Parameterizing with exposure 

• Type of problems: rate of cases per year, or per 
100,000 persons per year. 

• Model:  Xi ~ Poisson( λ Ei ) 
• Ei is exposure, e.g. population of the ith city (in a 

year).  
• Xi is observed number of cases.  

 
 
 
 

 

 
 

 



Poisson model 
• Example: 64 lung cancer cases in 1968-

1971 in Fredericia, Denmark, population 
6264. Estimate incidence per 100,000? 

• P(λ|X,E) 
     = gamma(α+ΣXi,β+ΣEi) 
• With non-informative                            

prior, X=64,E=6264, we                              
get gamma(64,6264), 

     (plot: 105 λ) 
 

 
 
 
 

 

 
 

 



Exponential model 
• Applicable for event times, 

concentrations, positive measurements,…  
 
 

• Mean E(X) = 1/θ 
• Aim to get P(θ|X), or P(θ|X1+…+XN). 
• Conjugate prior Gamma(α,β) 
• Posterior: Gamma(α+1,β+X) or 

Gamma(α+N,β+X1+…+XN).  
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Exponential model 
• Posterior mean is  (α+N)/(β+X1+…+XN) 
• What happens if N∞, or N0? 
• Uninformative prior (α,β)(0,0) 

 
• Similarities again. 

 
 
 

 
 
 

 

 
 

 



Exponential model 
• Example: life times of 10 light bulbs were 

T = 4.1, 0.8, 2.0, 1.5, 5.0, 0.7, 0.1, 4.2, 0.4, 
1.8 years. Estimate the failure rate? (true=0.5) 

• Ti ~ exp(θ) 
• Non-informative prior                                                 

gives p(θ|T) =                                     
gamma(10,20.6).    

• Could also parameterize                                    
with 1/θ  and                                                           
use inverse-gamma prior.   

 
 
 

 
 
 

 

 
 

 



Exponential model 
• Some observations may be censored, so 

we know only that Ti < ci,  or Ti > ci  
• The probability for the whole data is then 

of the form:  
• P(data |θ) =   
 ΠP(Ti|θ) Π P(Ti < ci |θ) Π P(Ti > ci |θ) 
• Here we need cumulative probability 

functions, but the Bayes theorem still 
applies, just more complicated.   

 
 

 
 
 

 
 
 

 

 
 

 



Binomial, Poisson, Exponential 
• The simplest one-parameter models. 
• Conjugate priors available. 
• Prior can be seen as ’pseudo data’ 

comparable with actual data. 
• Easy to see how the new data update the 

prior density to posterior density. 
• Posterior means, variances, modes, 

quantiles can be used to summarize. 
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