Bayesian probability: P

State of the World: X

$\mathrm{P}(\mathbf{X} \mid$ your information I)

First example: bag of balls

- Every probability is conditional to your background knowledge " 1 ": P(A | I)
- What is the (your) probability that there are r red balls in a bag? (Assuming N balls which can be red/white)
- Before any data, you might select your prior probability as $\mathrm{P}(\mathrm{r})=1 /(\mathrm{N}+1)$ for all possible r. (0,1,2,...,N).
- Here r is the unknown parameter, and your data will be the observed balls that will be drawn.

First example: bag of balls

- Given that there are i / N red balls, you might say: the probability of picking 'blindly' one red ball is
$P(X=$ red | $i / N)=i / N$
- This is your (subjective) model choice.
- Calculate posterior probability:
$P(r=i / N \mid X=r e d)$

First example: bag of balls

- Remember some probability calculus:
- $P(A, B)=P(A \mid B) P(B)=P(B \mid A) P(A)=P(B, A)$
- Joint probability in this example:
- $P(X=r e d, r=i / N)=(i / N)^{*}(1 /(N+1))$
- Calculate: $\mathrm{P}(\mathrm{r}=\mathrm{i} / \mathrm{N} \mid \mathrm{X}=\mathrm{red})$
$=(\mathrm{i} / \mathrm{N})^{*}(1 /(\mathrm{N}+1)) / \mathrm{P}(\mathrm{X}=\mathrm{red})$
- $P(X=r e d)$ is just normalizing constant, i.e.
$P(X=r e d)=\sum_{i=0}^{N} P(X=r e d \mid r=i / N) P(r=i / N)=1 / 2$

First example: bag of balls

- The posterior probability is therefore:
- $P(r=i / N \mid X=r e d)=2 i /\left(N^{*}(N+1)\right)$
- What have we learned from the observation " $\mathrm{X}=\mathrm{re}$
Compare with the prior probability.

First example: bag of balls

- Our new prior is: $2 \mathrm{i} /\left(\mathrm{N}^{*}(\mathrm{~N}+1)\right)$
- After observing two red balls " $X=2$ red":
- Now: $P(r=i / N \mid X=2)$

$$
\begin{aligned}
& =(\mathrm{i} / \mathrm{N}) * 2 \mathrm{i} /(\mathrm{N}(\mathrm{~N}+1)) / \mathrm{c} \\
& =2 \mathrm{i}^{2} /\left(\mathrm{N}^{2}(\mathrm{~N}+1)\right) / \mathrm{c}
\end{aligned}
$$

- Normalizing constant

$$
c=(2 N+1) / 3 N
$$

- So: $P(r=i / N \mid X=2)$

$$
=6 \mathrm{i}^{2} /(\mathrm{N}(\mathrm{~N}+1)(2 \mathrm{~N}+1))
$$

First example: bag of balls

- The result is the same if
- Start with original prior, + use the probability of observing two red balls
- Start with the posterior we got after observing one red ball, + use the probability of observing one red ball (again)
- The model would be different if we assume that balls are not replaced in the bag.

First example: bag of balls

- The prior (and posterior) probability P(r) can be said to describe epistemic uncertainty.
- The conditional probability $\mathrm{P}(\mathrm{X} \mid \mathrm{r})$ can be said to describe aleatoric uncertainty.
- Where do these come from?
- Background information.
- Model choice.

Elicitation of a prior from an expert

- $P(A)$ should describe the expert's beliefs.
- Consider two options:
- You'll get $€ 300$ if " A is true"
- You'll get a lottery ticket knowing n out of 100 wins $€ 300$.
Which option do you choose?
$\mathrm{n}_{\text {small }} / 100<\mathrm{P}(\mathrm{A} \mid$ your $)<\mathrm{n}_{\text {large }} / 100$
Can find out: $\mathrm{n} / 100 \approx \mathrm{P}(\mathrm{A} \mid$ your $)$

Elicitation of a prior from an expert

- Also, in terms of odds $w=P(A) /(1-P(A))$, a fair bet is such that

$$
\begin{aligned}
& P(A) w R+(1-P(A))(-R)=0 \\
& \text { Find out } P(A)=1 /(1+w)
\end{aligned}
$$

- Probability densities more difficult to elicit.
- Multivariate densities even more difficult.
- Psychological biases.

Elicitation of a prior from an expert

- Assume we have elicited densities $\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ from experts $i=1, \ldots, N$.
- Combination?

Mixture density $p(x)=\sum_{i=1}^{N} p_{i}(x) \times \frac{1}{N}$

Product of densities: $p(x)=\prod_{i=1}^{N} p_{i}(x)^{1 / N} / c$ (needs normalizing constant c)

The height of Eiffel?

- What's your minimum and maximum?
$\rightarrow \mathrm{p}_{\mathrm{i}}=\mathrm{U}\left(\right.$ min $_{\mathrm{i}}$, max $\left._{\mathrm{i}}\right)$

Choice of prior

- Subjective expert knowledge can be important
- When we have little data.
- When it is the only source of information.
- When data would be too expensive.
- Difficult problems never have sufficient data...
- Alternatively: uninformative, 'flat' priors.
- 'Objective Bayes' \& 'Subjective Bayes'

An example from school book genetics

- Assume parents with unknown genotypes:
- Aa, aa or AA.
- Assume a child is observed to be of type AA.
- Question1: now what is the probability for the genotypes of the parents?
- Question2: what is the probability that the next child will also be of type AA?
- Graphically: there is a conditional probability for the genotype of each child, given the type of parents:

- Now, given the prior AND the observed child, we calculate the probability of the 2nd child:

The posterior probability is $1 / 4$ for each of the parental combinations:

$$
[A A, A A],[A a, A a],[A A, A a],[A a, A A]
$$

This Results to: $P(A A)=9 / 16$ for the $2 n d$ child. Compare this with prior probability: $P(A A)=1 / 4$. New evidence changed this.

- Using Bayes: $P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum_{A} P(B \mid A) P(A)}$
- the posterior probability for the parents can be calculated as:

$$
P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}} \mid \mathrm{X}_{1}=A A\right)=\frac{P\left(\mathrm{X}_{1}=A A \mid \mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right) P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right)}{\sum_{\mathrm{X}_{\mathrm{mom}}} \sum_{\mathrm{X}_{\mathrm{dad}}} P\left(\mathrm{X}_{1}=A A \mid \mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right) P\left(\mathrm{X}_{\mathrm{mom}}, \mathrm{X}_{\mathrm{dad}}\right)}
$$

- This describes our final degree of uncertainty.
- The posterior probability is $1 / 4$ for each of the parental combinations:

$$
[A A, A A],[A a, A a],[A A, A a],[A a, A A]
$$

- Notice, "aa" is no longer a possible type for either parent. The prediction for next child is thus:

$$
\begin{aligned}
& P\left(\mathrm{X}_{2}=A A \mid \mathrm{X}_{1}=A A\right)=\sum_{\mathrm{X}_{\text {max }} \mathrm{X}_{\text {dd }}} \mathrm{P}\left(\mathrm{X}_{2}=A A \mid \mathrm{X}_{\text {mom }} \mathrm{X}_{\text {dad }}\right) P \underbrace{\mathrm{X}_{\text {mom }} \mathrm{X}_{\text {dad }}}_{\text {Posterior }} \mathrm{X}_{1}=A A) \\
& \\
& \text { - Resulting to: } 9 / 16 \\
& \text { - Compare this with prior probability: } \mathbf{P (A A) = 1 / 4}
\end{aligned}
$$

- The previous example had all the elements that are essential.
- The same idea is just repeated in various forms.

Binomial model

- Recall Bayes' original example.
- $\quad X$ ~ Binomial (N, θ)
- $\mathrm{p}(\theta)=$ prior density.
- U(0,1)
- Beta (α, β)
- Find out $p(\theta \mid X)$

Binomial model

- Posterior density: $\mathrm{P}(\theta \mid X)=P(X \mid \theta) P(\theta) / c$
- Assuming uniform prior:
$p(\theta \mid x)=\binom{N}{x} \theta^{x}(1-\theta)^{N-x} 1_{\{0<\theta<1\}}(\theta) / c$
- Take a look at this as a function of θ, with N , x, and c as fixed constants.
- What probability density function can be seen? Hint: compare to beta-density.
$p(\theta \mid \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}$

Binomial model

- The posterior can be written, up to a constant term as

$$
p(\theta \mid N, x) \propto \theta^{x+1-1}(1-\theta)^{N-x+1-1}
$$

- Same as beta($x+1, N-x+1$)
- If the uniform prior is replaced by beta (α, β), we get beta($x+\alpha, N-x+\beta$)

Binomial model

- The uniform prior corresponds to having two 'pseudo observations': one red ball, one white ball.
- The posterior mean is $(1+\mathrm{X}) /(2+\mathrm{N})$
- Or: $(\alpha+X) /(\alpha+\beta+N)$
- Can be expressed as $w \frac{\alpha}{\alpha+\beta}+(1-w) \frac{X}{N}$

With $w=(\alpha+\beta) /(\alpha+\beta+N)$

- See what happens if $N \rightarrow \infty$, or if $N \rightarrow 0$.

Binomial model

- Simulated sample from the joint distribution $p(\theta, X)=$

$$
P(X \mid N, \theta) p(\theta)^{a}
$$

- See $P(X \mid N, \theta)$ and $p(\theta \mid X)$ in the Fig.

Binomial model

- The binomial distribution (likelihood function) and the beta-prior are said to be conjugate.
- Conjugate choice of prior leads to closed form solutions. (Posterior density is in the same family as prior density).
- Can also interpret conjugate prior as 'pseudo data' in comparison with real data.
- Only a few conjugate solutions exist!

Binomial model \& priors

- The uniform prior $U(0,1)$ for θ was 'uninformative'. In what sense?
- What if we study the density of θ^{2} or $\log (\theta)$, assuming $\theta \sim U(0,1)$?
- Jeffreys' prior is uninformative in the sense that it is transformation invariant:

$$
p(\theta) \propto J(\theta)^{1 / 2} \text { with } J(\theta)=E\left[\left.\left(\frac{d \log (P(X \mid \theta))}{d \theta}\right)^{2} \right\rvert\, \theta\right]
$$

Binomial model \& priors

- $J(\theta)$ is known as 'Fisher information for θ^{\prime}
- With Jeffreys' prior for θ we get, for any one-to-one smooth transformation $\phi=h(\theta)$ that:

Binomial model \& priors

- For the binomial model, Jeffreys' prior is Beta(1/2,1/2).
- But in general:
- Jeffreys' prior can lead to improper densities (integral is infinite).
- Difficult to generalize into higher dimensions.
- Violates likelihood principle which states that inferences should be the same when the likelihood function is the same.

Binomial model \& priors

- Also: Haldane's prior Beta $(0,0)$ is uninformative.
- (How? Think of 'pseudo data'...)
- But is improper.
- Can a prior be improper density?
- Yes, but! - the likelihood needs to be such that the posterior still integrates to one.
- With Haldane's prior, this works only when the binomial data X is either >0 or $<\mathrm{N}$.

Binomial model \& priors

- For the binomial model $P(X \mid \theta)$, when computing the posterior $\mathrm{p}(\theta \mid \mathrm{X})$, we have at least 3 different uninformative priors:

$$
\begin{aligned}
& \text { - } \mathrm{p}(\theta)=\mathrm{U}(0,1)=\operatorname{Beta}(1,1) \text { Bayes-Laplace } \\
& \text { - } \mathrm{p}(\theta)=\operatorname{Beta}(1 / 2,1 / 2) \text { Jeffreys' } \\
& \text { - } \mathrm{p}(\theta)=\operatorname{Beta}(0,0) \text { Haldane's }
\end{aligned}
$$

- Each of them is uninformative in different ways!
- Unique definition for uninformative does not exist.

Binomial model \& priors

- example: estimate the mortality

THIRD DEATH
The expanded warning came as Yosemite announced that a third person had died of the disease and the number of confirmed cases rose to eight, all of them among U.S. visitors to the park.

Ok, it's a small data, but we try:
with uniform prior:
$p(r \mid$ data $)=b e t a(3+1,8-3+1)$.
Try also other priors.
(Haldane's in red \rightarrow)

Binomial model \& N ?

- In previous slides, N was fixed (known). We can also think situations where θ is known, X is known, but N is unknown.
- Exercise: solve $P(N \mid \theta, X)=P(X \mid N, \theta) P(N) / c$ with suitable choice of prior.
- Try e.g. discrete uniform over a range of values.
- Try e.g. $P(N) \propto 1 / N$
- With Bayes rule we can compute probabilities of any unknowns, given the knowns \& prior \& likelihood (model).

Poisson model

- Widely applicable: counts of disease cases, accidents, faults, births, deaths over a time, or within an area, etc...

$$
P(X \mid \lambda)=\frac{\lambda^{X}}{X!} e^{-\lambda}
$$

- $\lambda=$ Poisson intensity $=E(X)$.
- Aim to get: $p(\lambda \mid X)$
- Bayes: $p(\lambda \mid X)=P(X \mid \lambda) p(\lambda) / c$

Poisson model

- Conjugate prior? Try Gamma-density:

$$
p(\lambda \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}
$$

- Then:

$$
p(\lambda \mid X)=\frac{\lambda^{X}}{X!} e^{-\lambda} \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda} / c
$$

- Simplify expression, what density you see? (up to a normalizing constant).

Poisson model

- Posterior density is Gamma $(X+\alpha, 1+\beta)$.
- Posterior mean is $(X+\alpha) /(1+\beta)$
- Can be written as weighted sum of 'data mean' X and 'prior mean' α / β.

$$
\frac{1}{1+\beta} X+\frac{\beta}{1+\beta} \frac{\alpha}{\beta}
$$

Poisson model

- With a set of observations: $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$:

$$
P\left(X_{1}, \ldots, X_{N} \mid \lambda\right)=\prod_{i=1}^{N} \frac{\lambda^{X_{i}}}{X_{i}!} e^{-\lambda}
$$

- And with the Gamma($\alpha, \beta)$-prior we get:
$\operatorname{Gamma}\left(X_{1}+\ldots+X_{N}+\alpha, N+\beta\right)$.
- Posterior mean $\frac{1}{N+\beta} \sum_{i=1}^{N} X_{i}+\frac{\beta}{N+\beta} \frac{\alpha}{\beta}$
- What happens if $N \rightarrow \infty$, or $N \rightarrow 0$?

Poisson model

- Gamma-prior can be informative or uninformative. In the limit $(\alpha, \beta) \rightarrow(0,0)$, posterior \rightarrow Gamma $\left(\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{N}}, \mathrm{N}\right)$.
- Compare the conjugate analysis with Binomial model. Note similarities.

Poisson model

- Parameterizing with exposure
- Type of problems: rate of cases per year, or per 100,000 persons per year.
- Model: $X_{i} \sim \operatorname{Poisson}\left(\lambda E_{i}\right)$
- E_{i} is exposure, e.g. population of the $i^{\text {th }}$ city (in a year).
- $\quad X_{i}$ is observed number of cases.

Poisson model

- Example: 64 lung cancer cases in 19681971 in Fredericia, Denmark, population 6264. Estimate incidence per 100,000?
- $P(\lambda \mid X, E)$
$=\operatorname{gamma}\left(\alpha+\sum X_{i}, \beta+\sum E_{i}\right)$
- With non-informative prior, X=64,E=6264, we get gamma(64,6264), (plot: $10^{5} \lambda$)

Exponential model

- Applicable for event times, concentrations, positive measurements,...

$$
p(X \mid \theta)=\theta e^{-\theta X}
$$

- Mean $E(X)=1 / \theta$
- Aim to get $P(\theta \mid X)$, or $P\left(\theta \mid X_{1}+\ldots+X_{N}\right)$.
- Conjugate prior Gamma($\alpha, \beta)$
- Posterior: Gamma($\alpha+1, \beta+X)$ or Gamma $\left(\alpha+N, \beta+X_{1}+\ldots+X_{N}\right)$.

Exponential model

- Posterior mean is $(\alpha+N) /\left(\beta+X_{1}+\ldots+X_{N}\right)$
- What happens if $\mathrm{N} \rightarrow \infty$, or $\mathrm{N} \rightarrow 0$?
- Uninformative prior $(\alpha, \beta) \rightarrow(0,0)$
- Similarities again.

Exponential model

- Example: life times of 10 light bulbs were $\mathrm{T}=4.1,0.8,2.0,1.5,5.0,0.7,0.1,4.2,0.4$, 1.8 years. Estimate the failure rate? (true=0.5)
- $\mathrm{T}_{\mathrm{i}} \sim \exp (\theta)$
- Non-informative prior gives $p(\theta \mid T)=$ gamma(10,20.6).
- Could also parameterize with $1 / \theta$ and use inverse-gamma prior.

Exponential model

- Some observations may be censored, so we know only that $T_{i}<c_{i}$, or $T_{i}>c_{i}$
- The probability for the whole data is then of the form:
- $P($ data $\mid \theta)=$

$$
\Pi P\left(T_{i} \mid \theta\right) \Pi P\left(T_{i}<c_{i} \mid \theta\right) \Pi P\left(T_{i}>c_{i} \mid \theta\right)
$$

- Here we need cumulative probability functions, but the Bayes theorem still applies, just more complicated.

Binomial, Poisson, Exponential

- The simplest one-parameter models.
- Conjugate priors available.
- Prior can be seen as 'pseudo data' comparable with actual data.
- Easy to see how the new data update the prior density to posterior density.
- Posterior means, variances, modes, quantiles can be used to summarize.

