
• Short history of Bayes’ theorem 
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– S B McGrayne: The theory that would not die: 
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• 1740: reverent Bayes.  

– Studied theology in Edinburgh, but was also 
’amateur’ mathematician. 

– 1748: David Hume (Edinburgh): ”we can rely only 
on what we learn from experience” 

• Dilemma in those times: we cannot be sure that a 
specific cause will lead to a specific effect                             
 only probable causes with probable effects. 

• Newtonian mechanics had promised something exact! 



 

The question:     probabilities of causes? 

 

– Probability calculus could solve: P(effect | cause). 

– But not: P(cause | effect) 

• This was called ”inverse probability” 

• ”What is the probability that a dice is weighted if we 
get 5 times six in 5 trials?”  ”then what is the 
probability to get a six in the next trial?” 



 

– Cause, effect, uncertainty…  

 

Bayes , sometime between 1746-1749 Heureka! 

Solution by using a specific example. 



• The example: 

– Imagine a square, flat table. 

– An assistant throws ”randomly” a ball on the table 
and takes note of where it stops.  

– The assistant throws new balls and tells whether 
they stop to the left or right from the first ball. 

– If all balls stop to the right , what can we say 
about the position of the first ball?  



• Bayes figured out: 

– The more balls are thrown, the better we should 
know the position of the first ball. 

– This is a learning process.  

– Before observations, any position is as possible as 
any other  Uniform(0,1) distribution. 

• Understandable if the first ball is thrown  ”randomly” 
 can this be generalized?  



• The example in modern notations: 
– Observations X have conditional distribution P(X | p):  

• Binomial(N,p)   where p = unknown position in [0,1] 

– Want to calculate P(p | X) 

– Note that: P(X,p) = P(X|p)P(p) = P(p|X)P(X) 

– Solve:            P(p|X) = P(X,p)/P(X) =  P(X|p)P(p)/P(X) 

– Nowadays known as Bayes’ formula! 
• P(X|p) is easy to write and calculate: binomial probability. 

• P(p) is uniform density function  (prior) 

• P(X) is normalizing constant  =  ∫ P(X|p)P(p) dp = const.  



Bayes solved the inverse problem 
for binomial model 

• Bayes’ solution: 

– We obtain P(p |X),  posterior 
probability density of p. 

– This is Beta(X+1,N-X+1) 

– Bayes left it forgotten in the 
drawer… 

– After Bayes had died, 1761, 
Richard Price studied the 
papers and published them. 



• But Price first edited and corrected the 
manuscript for 2 years. 

– ”an imperfect solution of one of the most difficult 
problems in the doctrine of chances” 

– It gave a response to Hume’s critique of causes 
and effects. 

– Royal Society’s Philosophical Transactions: ”An 
Essay toward solving a Problem in the Doctrine of 
Chances”. 1763. 

– Bayes theorem  Bayes-Price theorem ? 

 



• Bayes did not create modern concepts such as 
Bayesian statistics or Bayesian inference. 
These were introduced in 1950’s. 

• Bayes did not provide any other examples, or 
more general interpretations. 



Laplace 

• After Bayes and Price, hardly 
anyone touched the problem,  
Until: 

 

• ”The man who did 
everything” 

                 

            Pierre Simon Laplace 

            1749-1827     



• D’Alembert urged Laplace to study astronomy. 

• Dilemma of the times: was the universe 
stable?  

• Newton’s theory vs observations.  

    theory could be validated by exact 
observations. 

   … exact? 



• Laplace noted: big problem was the data! 

• Empirical planetary data was from ancient 
studies from China 1100 BC, Mesopotamy 600 
BC, Greece 200 BC, Rome 100 AD, Arabia 1000 
AD.  

• Lots of errors, missing data, imperfections, 
uncertainty. 



• Also new observations were gathered.  

• Transit of Venus, observed at 120 locations on 
Earth. 

– By comparing these French mathematicians 
estimated the distance of Earth from the Sun. 

Increased need to analyse complicated empirical 
data. 

 



• Laplace thought probability could be the tool 
for dealing with uncertainties. 

– Found a book about probabilities in games of 
chances:   de Moivre: The Doctrine of Chances. 

– Bayes had read the earlier edition of the same 
book.   

– Laplace: Mémoire on the Probability of the Causes 
Given Events.  

• Contains the first version of what we now call Bayes 
theorem !  

 



• Even so, Laplace did not write formally Bayes 
theorem, but described it in words. 

– Idea: enumerate all possible reasons C, and 
compare them after we observe E. 

– Formally expressed:  

  P(Ci |E) =    P(E| Ci)   /    [P(E | C1)+…+P(E | Cn)] 



 

 C1 

C2 

Cn 

…
 

E1 

E2 

Ek 

…
 

P(E | C1) 



After observing E2 

 

 C1 

C2 

Cn 

…
 

E2 

P(C | E2) 



• With this principle Laplace was able to do 
everything that Bayes could have done. 

– As long as one assumes all reasons C are equally 
possible before observing E. 

– Voilà !  general method for any empirical 
research! 

• BUT: mathematical solutions in real problems 
proved to be difficult even for Laplace.  

– Even today the computational burden shadows  
applications of Bayesian methods! 

 

 



• 1781 Price visits Paris and tells about Bayes’ 
original theorem. 

• Later, more challenges: 

– Equal prior probabilities criticised. 

– Serious technical computational problems in 
practice. 

 



• New applications: 1771 French provinces 
begin reporting birth and death statistics to 
Paris. 

• Apparently, more boys were born than girls, 
but X % ? 

• Binomial model, lots of data (big N). 

 Laplace tries to estimate X. 



• But assuming X=52%, and observing 58000 
boys, need to evaluate 0.52^58000, and 
similarly for girls. 

– Difficult even for Laplace. 

– Need to approximate this somehow. 



• Laplace collected birth and death statistics 
from many places and combined with 
previous data. 

– First real Bayesian analysis, in which new evidence 
was used to update earlier probabilities. 

– Mathematical model for scientific inference. 

– Conclusion in 1812: ”X>50% seems to be a general 
law for all humans”. 

– Laplace also estimated the size of French 
population. 



• 1810-1814 Laplace writes more general formula:   

 P(Ci |E) =  

 

P(E| Ci)P(Ci) / [P(E | C1)P(C1)+…+P(E | Cn)P(Cn)] 

 

”It was the formula he had been 
dreaming about” 
 From Bayes-Price example to Laplace’s general result. 

 



• Laplace and intuition: ”essentially, the theory 
of probability is nothing but good common 
sense reduced to mathematics”. 

• What kind of problems Laplace had? 

– Data from several sources. 

• Many imperfections and uncertainties. 

– Nothing like straightforward repeatable 
experiments. 

– In the end of his career, also developed frequentist approach. 



• Mechanique Celeste 

•  Exposition du Systeme du 
Monde  

• Theorie Analytique des 
Probabilités 

 

(St. Julien-de-Mailloc) 



• After Laplace 1827-  

– Bayes theorem unpopular: subjective =  bad. 

– More official statistical data collected: list of 
objective facts, mathematical analysis not 
thought important. 

”Facts, pure facts”, ”objective frequency” 

”Statistician has nothing to do with causation” 

– Theoreticians buried Bayes, uniform prior 
attacked (!uniformity is not required by Bayes!) 

 

 

Silence after Laplace 



Bayes remained in applications 

• Astronomy: objective frequency difficult to apply. 

• Artillery: Joseph Louis Francois Bertrand (1822-1900) 

• How to aim cannons?  

• Uniform prior only if all causes are known to be equally 
probably or if nothing at all is known. 

• Telecommunication, Bell Telephone Systems: Edward Molina: 
”Methods for utilizing both statistical and nonstatistical 
types of evidence were needed”. 

• Insurance mathematics: Isaac Rubinow: ”every scrap of 
information must be used!”, Albert Whitney: simplified Bayes 
formula, ’credibility theory’. 

 



Frequentist foundation of statistics 

 
• Karl Pearson, Ronald Fisher 
• Statistical Methods for Research Workers. Fisher 1925. 

• ”Cook book” of statistics for non-statisticians. 
• Seven editions. 

• Egon Pearson, Jerzy Neyman 1933: Neyman-Pearson 
theory for hypothesis testing.  
• Type I & type II errors. 

• Data was the only and sufficient source of knowledge. 
• Frequencies in repeatable, controllable experiments. 
• ”Subjective priors banned”. But ok, if ’a real prior’ known 

(=frequency). 
• No need for supplementary information. 
 



• Italy: 

• 1937, Bruno de Finetti: ”Bayes’ 
subjectivity on a firm 
mathematical foundation” 

• Representation theorem. 

• Exchangeability  ”as if” prior.  
(inevitable consequence).  

 



• Harold Jeffreys:  
• Almost the only Bayesian 1930-1940. 

• Geologist: earthquakes, tsunamis,… 

• Center of an earthquake? 
• Classical inverse problem  Bayes. 

• Wanted: probability of a hypothesis. 

• ”Perhaps in no other field were as many 
remarkable inferences drawn from so 
ambiguous and indirect data”. 

• Jeffreys’ prior: an objective prior. 
 

 



• Jeffreys: 

• Book: ”Theory of probability” 

• Bayes still leads to difficult calculations in practical 
applications.  

• Jeffreys & de Finetti:  

• Objective Bayes & subjective Bayes ! 

 



WW2 and after 

• Encrypted messages, Enigma 
• Decryption: inference under insufficient data  Bayes. 

• Far too many possible combinations. 
• Impossible to try all of them. 
• Some are more probable than others. 
• Clues from different sources evidence builds up  probability 

can be updated  Bayes.  
• Example: word ”ein” was found in 90% of Enigma messages. 

This could still be coded in (only) 17,000 different ways. 
 

• Turing: measure of information: ”ban”  ”bit”  
• Birth of computer science.   



Still not widely applicable 

• First publication of Bayesian methods aimed for 
applied scientists not until 1963. 

• RAND: a question for a visiting statistician: how to 
estimate the probability of a breaking war in the next 
five years? 
• ”Oh, that question just doesn’t make sense. Probability 

applies to a long sequence of repeatable events, and this is 
clearly a unique situation. The probability is either 0 or 1, 
but we won’t know for five years”. 

- ”I was afraid you were going to say that. I have spoken to several 
other statisticians and they all told me the same thing”. 



Foundations 

• Savage, Lindley: aimed for axiomatic 
foundation of statistics. 

– Leads to Bayesian theory ’almost accidentally’.  

• Problem: if priors different, also posterior will 
be different. Objectivity? 

• Savage: ”When they have little data, scientists disagree and 

are subjectivists; when they have piles of data, they agree and 
become objectivists”. 

• Lindley agreed:  ”That’s the way science is done”.   

 

 



Foundations ok, but 

• Posterior probabilities still too difficult to 
compute. 

• Approximation methods developed. 

• Practical examples far too artificial. 

• Lindley: ”Bayesian statistics is not a branch of 
statistics, it is a way of looking at the whole of 
statistics”. 

 Bayes = science of uncertainty, but how to apply 
it? 



Breaking the wall: MCMC  

• Hierarchical Models (Lindley and Smith, Journal 
of the Royal Statistical Society, Series B, 1972) 
and Markov chain Monte Carlo (Gelfand and 
Smith, Journal of the American Statistical 
Society, 1990).  

• 1990: MCMC and WinBUGS 
• Easier practical computation. 

• Enables bigger, more realistic models. 

• Examples from many fields of application. 

• Finally a working  tool to apply Bayesian methods! 



Arguments… 

”Bayes added a distribution for a parameter, a 
distribution that was not part of the binomial 
example under consideration and then used that 
distribution for probability analysis”  
Fraser: Is Bayes Posterior just Quick and Dirty Confidence. Statistical Science 

2011, Vol 26, no 3, 299-316. 

Is this part of the problem or part of the solution?  
(Frequentists have also added other subjective things) 

Bayesian statistics / frequentist statistics ?   

 

 



This way or that way? 

 

Which one is of interest? 

P(X | q)     or     P(q | X)  ? 

 

 

 

But if we predict repeatedly, the predictions should be more 

often right than wrong. Bayesian updating should lead to 
better predictions , in the long run, in terms of frequency? 

“Thus conditioning on the data we have, rather than the data 
we might have had makes eminently more sense to me”.    
S.E. Fienberg. Statistical Science, 2011, Vol 26, no 2, 238-239. 



Bayesian methods in health 
technology assessment: a review 

Spiegelhalter, Myles, Jones, Abrams. Health Technology Assessment 2000; Vol 4. No. 
38. 

• Key points 
• Claims of advantages and disadvantages of Bayesian 

methods are now largely based on pragmatic reasons 
rather than blanket ideological positions. 

• A Bayesian approach can lead to flexible modelling of 
evidence from diverse sources.  

• Bayesian methods are best seen as a transformation from 
initial to final opinion, rather than providing a single 
’correct’ inference.  

 



ISBA Lectures on Bayesian Foundations are now available!

 

 

The videos from the four inaugural ISBA Lectures on Bayesian Foundations presented at the 2012 

ISBA World Meeting in Kyoto, Japan are now publically available. Click on any title to view the 

video and slides at  

 
Confidence in 

nonparametric credible 

sets? 

Aad van der Vaart 

 
Bayesian dynamic 

modelling 

Mike West 

 
Approximate Bayesian 

computation (ABC): advances 

and questions 

Christian P. Robert 

 
Slowly but surely, Bayesian 

ideas revolutionize medical 

research 

Donald A. Berry 

Be sure to check out other videos in the ISBA Video and Slide Gallery! 

http://bayesian.org/ 

http://bayesian.org/
http://bayesian.org/
http://bayesian.org/

