Exercises III

1. Using the binomial model for $X, \operatorname{Bin}(N, p)$, assume that we know p and observe X (and always $X \geq 1$), but not what the sample size N was, and that we don't know any upper limit for N. Because we assume $X \geq 1$, also $N \geq 1$. The possible values after observing X are then $N \in\{X, X+1, X+2, \ldots\}$. To describe uncertainty prior to data, choose the improper prior $\pi(N) \propto 1 / N$. It is improper, because $\sum_{n=1}^{\infty} 1 / n=\infty$. Solve the posterior distribution $\pi(N \mid X, p)$. (Hint: look for Negative Binomial distribution when computing the normalizing constant).

$$
\pi(N \mid X, p) \propto \pi(X \mid N, p) \pi(N)=\binom{N}{X} p^{X}(1-p)^{N-X} \times \frac{1}{N}
$$

The easiest way is to see if this, as a function of N, can be written in the form of some familiar distribution. By rewriting it:

$$
\frac{1}{X}\binom{N-1}{X-1} p^{X}(1-p)^{N-X}
$$

which is proportional to a Negative Binomial distribution for $N \geq X$. Alternatively, by solving explicitly the normalizing constant

$$
\begin{gathered}
\sum_{N=X}^{\infty}\binom{N}{X} p^{X}(1-p)^{N-X} \times 1 / N=\sum_{N=X}^{\infty} \frac{N!}{X!(N-X)!} p^{X}(1-p)^{X} 1 / N \\
=\sum_{N=X}^{\infty} \frac{1}{X} \frac{(N-1)!}{(X-1)!(N-1-(X-1))!} p^{X}(1-p)^{N-X}=\frac{1}{X} \sum_{N=X}^{\infty} \underbrace{\binom{N-1}{X-1} p^{X}(1-p)^{N-X}}_{\text {NegBinDistrib for } N}=\frac{1}{X}
\end{gathered}
$$

The posterior is then (a proper distribution, even though prior was improper)

$$
\pi(N \mid X, p)=\frac{X}{N}\binom{N}{X} p^{X}(1-p)^{N-X}=\binom{N-1}{X-1} p^{X}(1-p)^{N-X}=\operatorname{Neg} \operatorname{Bin}(X, p)
$$

[Note: there are different parameterizations of Negative Binomial distribution in different books, leading to seemingly different expressions].
2. Let $\pi(X \mid N, p)=\operatorname{Bin}(N, p)$ and $\pi(p)=\mathrm{U}(0,1)$. Show that the prior predictive distribution of X is discrete uniform $\pi(X)=1 /(N+1), \forall X \in\{0,1,2, \ldots, N\}$.

$$
\begin{gathered}
\pi(X)=\int_{0}^{1}\binom{N}{X} p^{X}(1-p)^{N-X} \mathbf{d} p \\
=\binom{N}{X} \int_{0}^{1} \frac{\Gamma(X+1) \Gamma(N+2-(X+1))}{\Gamma(N+2)} \underbrace{\frac{\Gamma(N+2)}{\Gamma(X+1) \Gamma(N+2-(X+1))} p^{X+1-1}(1-p)^{N-X+1-1}}_{\operatorname{Beta}(X+1, N-X+1)} \mathbf{d} p \\
=\binom{N}{X} \frac{X!(N-X)!}{(N+1) N!}=\frac{1}{N+1}
\end{gathered}
$$

3. Compute the variance of beta-binomial distribution, using the law of total variance.

$$
\begin{gathered}
V(X)=E(V(X \mid r, N))+V(E(X \mid r, N)) \\
=E(N r(1-r))+V(r N)=N(E(r)-\underbrace{E\left(r^{2}\right)}_{V(r)+E(r)^{2}})+N^{2} \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
=N\left(\frac{\alpha}{\alpha+\beta}-\left(\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}+\frac{\alpha^{2}}{(\alpha+\beta)^{2}}\right)\right)+N^{2} \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
=N \frac{\alpha(\alpha+\beta)(\alpha+\beta+1)-\alpha \beta-\alpha^{2}(\alpha+\beta+1)}{(\alpha+\beta)^{2}(\alpha+\beta+1)}+N^{2} \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
=\frac{N \alpha \beta(\alpha+\beta)+N^{2} \alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
=\frac{N \alpha \beta(\alpha+\beta+N)}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
\end{gathered}
$$

4. Show that if we define $\psi=\log (p /(1-p))$ for $p \in(0,1)$, and uniform improper prior $\pi(\psi) \propto 1$, then this leads to Haldane's improper prior $\operatorname{Beta}(0,0)$ for p. (Hint: use transform of variables rule). Let X be binomially distributed as $\operatorname{Bin}(N, p)$. Why the posterior distribution of p is not proper density if $X=0$ or $X=N$?

$$
\pi(p)=\pi(\psi(p))\left|\frac{\mathbf{d} \psi(p)}{\mathbf{d} p}\right|=\frac{1-p}{p(1-p)^{2}}=p^{-1}(1-p)^{-1}
$$

With $X=0$ or $X=N$ the posterior of p is proportional to $p^{-1}(1-p)^{N-1}$ or $p^{N-1}(1-p)^{-1}$ which goes to infinity when approaching 0 or 1 .
5. Give an example of a $\pi(p)=\operatorname{Beta}(\alpha, \beta)$ prior distribution and data X from $\operatorname{Bin}(N, p)$ where the posterior variance is larger than prior variance.

```
This can happen with small values. For example, trying some in R:
a<-6;b<-1; X<-1; N<-7; A<-X+a; B<-N-X+b;
v<-c(a*b/((a+b+1)*(a+b)^2),A*B/((A+B+1)*(A+B)^2)); v
```

