
1 Examples

1.1 Detecting signal from noise

Reference: D.S.Sivia: Data analysis, a Baysian tutorial, 2nd ed. p.35-42.

Assume we have measurements (counts) yi taken at points xi. The simple model is Poisson with
parameter ei. This expected value is assumed to be a combination of background noise and the signal
so that:

ei = 100(ae−0.5(xi−x0)2/s2 + b)

And we assume the location and the width of the signal to be known, speci�ed by constants x0 =
0, s = 1. The unknown parameters to be estimated are the signal amplitude a and the level of noise
b. Generate some data yi by choosing values for a, b and xi. Study the 2D-posterior distribution of
(a, b), based on uniform priors over su�cient range, e.g. U(0, 1000). Try with di�erent number of data
points and study how the posterior behaves.

model{

x0 <- 0; s <- 1; v<- s*s # assumed known constants

#a <- 1; b <- 2 # true values

a ~ dunif(0,1000); b ~dunif(0,1000) # priors

for(i in 1:L+1){

x[i] <- -5 + 10*(i-1)/L # measurement points

y[i] ~dpois(e[i])

e[i] <- 100*(a *exp(-0.5*pow(x[i]-x0,2)/v) +b) # expected value (signal+noise)

}

}

list(L=2,y = c(212,299,194))

list(L=10,y = c(174,200,203,225,275,308,269,223,170,192,197))

list(L=100,

y = c(

225,201,189,206,222,

201,209,202,209,172,

182,213,176,215,213,

171,195,211,216,203,

175,192,197,218,203,

175,219,186,209,229,

204,238,222,243,233,

248,272,253,222,261,

243,269,252,257,301,

289,297,267,303,281,

306,293,291,280,288,

293,288,262,276,269,

265,241,271,269,243,

238,231,238,212,190,

215,209,194,220,208,
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199,218,228,200,207,

201,206,180,196,205,

215,205,204,179,207,

193,208,202,206,195,

215,182,213,215,183,

199))

1.2 Modeling sensitivity and prevalence

Assume n populations in which the disease prevalences are p1, . . . , pn. A sample of K individuals is
collected from each and tested. The test has sensitivity ps. Generate data by randomly generating
pi ∼ U(0, 1) and xi ∼ Bin(pips, K) with a chosen ps and K. Estimate p1, . . . , pn and ps.

model{

for(i in 1:n){

x[i] ~ dbin(pr[i],K)

pr[i] <- p[i]*ps

p[i] ~ dunif(0,1)

}

ps ~ dunif(0,1)

}

1.3 Zero in�ated model for microbial counts

Reference:
Aarnisalo K, Vihavainen E, Rantala L, Maijala R, Suihko M-L, Hielm S, Tuominen P, Ranta J, Raaska
L. Use of results of microbiological analyses for risk-based control of Listeria monocytogenes in mari-
nated broiler legs. International Journal of Food Microbiology, 2008, 121: 275-284.

The data set represents 165 observations of Listeria concentrations in broiler legs (CFU/g, transformed
to counts per 10 gram). Most observations are zeros, and only a few are fairly high. Any standard
distribution is unlikely to describe the data well. A zero in�ated model might be reasonable.

model{

# listeria in broiler legs

for(i in 1:N){

cfu10g[i] ~ dpois(la[i])

la[i] <- lambda[index[i]]*(1-U[i])

index[i] <- 1*equals(company[i],1)+

2*equals(company[i],8)+

3*equals(company[i],9)

U[i] ~ dbern(pu0[i])

pu0[i] <- p0[1]*equals(company[i],1)+

p0[2]*equals(company[i],8)+

p0[3]*equals(company[i],9)

}

log(lambda[1]) <- beta[1]
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log(lambda[2]) <- beta[2]

log(lambda[3]) <- beta[3]

for(i in 1:3){beta[i] ~ dnorm(0,0.0001)

p0[i] ~ dunif(0,1); E[i] <- lambda[i]*(1-p0[i]) }

}

list(N=165,

cfu10g=c(0,0,0,0,0,0,20,0,0,0,3,0,3,0,0,8,0,0,0,0,0,0,0,5,10,13,

3,0,3,28,14,5,211,5,0,0,3,18,0,0,5,8,0,10,100,0,0,0,0,0,0,0,0,0,

0,64,0,55,0,70,0,35,0,0,0,0,0,0,5,27,0,0,20,84,0,68,0,52,0,0,34,

0,0,5,0,0,148,0,1470,0,0,0,0,0,0,5,8,5,0,0,0,5,0,8,5,103,0,0,25,

0,35,0,0,0,10,8,0,0,0,13,0,0,13,0,0,18,0,0,0,5,18,8,0,27,0,9,0,0,

0,0,26,0,0,3,0,0,297,0,5,0,5,0,0,0,0,27,0,0,15,0,0,0,0,0,0),

company=c(1,9,1,1,1,1,1,9,9,9,9,9,9,9,1,8,8,1,8,9,1,1,8,9,8,8,8,

8,9,8,8,8,8,9,9,1,1,8,1,1,1,9,9,8,8,1,1,8,1,1,1,1,1,8,1,8,9,8,1,

8,9,8,1,1,9,9,1,1,8,8,9,9,8,8,1,8,9,8,1,8,8,9,9,8,9,9,8,9,8,9,9,

9,1,9,9,8,8,8,1,1,9,1,1,9,8,1,1,1,9,9,8,1,8,8,9,9,8,9,1,8,8,9,8,

9,1,1,9,1,1,9,8,9,8,9,1,8,9,8,1,9,8,1,1,1,1,1,1,1,9,1,1,8,9,8,8,

8,8,9,8,8,9,9,9,9,9))

1.4 Change point of Poisson intensity

The change point estimation of coal mine accidents in Britain, 1851-1962, can be modeled as Poisson-
process with intensity µ = exp(β1) before the change, and µ = exp(β1 + β2) after the change. The
parameters, and the change point are to be estimated.

Decade Number of accidents
1851-1860 4 5 4 1 0 4 3 4 0 6
1861-1870 3 3 4 0 2 6 3 3 5 4
1871-1880 5 3 1 4 4 1 5 5 3 4
1881-1890 2 5 2 2 3 4 2 1 3 2
1890-1900 1 1 1 1 1 3 0 0 1 0
1901-1910 1 1 0 0 3 1 0 3 2 2
1911-1920 0 1 1 1 0 1 0 1 0 0
1921-1930 0 2 1 0 0 0 1 1 0 2
1931-1940 2 3 1 1 2 1 1 1 1 2
1941-1950 4 2 0 0 0 1 4 0 0 0
1951-1960 1 0 0 0 0 0 1 0 0 1
1961-1962 0 0

model{

for(year in 1:N){

T[year] <- year+1850

D[year] ~ dpois(mu[year])

log(mu[year]) <- b[1]+step(year-changeyear)*b[2]

}

for(j in 1:2){b[j]~dnorm(0,0.0001)}
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changeyear ~ dunif(1,N)

mu1 <- exp(b[1])

mu2 <- exp(b[1]+b[2])

}

list(D=c(4, 5, 4, 1, 0, 4, 3, 4, 0, 6,

3, 3, 4, 0, 2, 6, 3, 3, 5, 4,

5, 3, 1, 4, 4, 1, 5, 5, 3, 4,

2, 5, 2, 2, 3, 4, 2, 1, 3, 2,

1, 1, 1, 1, 1, 3, 0, 0, 1, 0,

1, 1, 0, 0, 3, 1, 0, 3, 2, 2,

0, 1, 1, 1, 0, 1, 0, 1, 0, 0,

0, 2, 1, 0, 0, 0, 1, 1, 0, 2,

2, 3, 1, 1, 2, 1, 1, 1, 1, 2,

4, 2, 0, 0, 0, 1, 4, 0, 0, 0,

1, 0, 0, 0, 0, 0, 1, 0, 0, 1,

0, 0),N=112)

1.5 Estimating within �ock prevalence for egg laying �ocks

Reference:

http://www.fsis.usda.gov/Science/Risk_Assessments/index.asp

Risk Assessment for Salmonella Enteritidis in Shell Eggs and Salmonella spp. in Egg Products (Oct
2005).

In this example, it is assumed that the �ocks are either completely free of salmonella (within �ock
prevalence zero), or that there is some positive prevalence in them. Furthermore, a false negative
rate of h = 15% is assumed for the testing. 58 pooled samples are analyzed from each �ock. Each
pooled sample consists of 5 individual sub-samples combined. The unknown fraction of completely
clean �ocks is p0. The within �ock prevalence of the ith �ock, if nonzero, is pi and logit(pi) ∼ N(µ, σ2).

Below, x is the number of observed positive pooled samples (out of 58), and nf is the number of �ocks
with the corresponding result.

# US data: h=false negative rate (assumption)

list(K=32, h = 0.15, S=58, ss=5,

x=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,

21,22,23,24,25,26,27,28,36,39,42,44),

nf=c(464,77,39,23,18,9,6,8,7,8,4, 6,4,4,2,2,6,1,3,3,

2,3,1,1,1,2,2,1,1,1,1,1))

Write hierarchical WinBUGS model for these data. Compute a predicted within �ock prevalence from
the hierarchical model.
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model{

pzero ~ dunif(0,1) # P(flock is uninfected | pzero) = pzero

mu ~ dnorm(0,0.001)

tau ~ dgamma(0.001,0.001)

logit(ep) <- mu # ep = mean prevalence for infected flocks

ep.all <- ep*(1-pzero) # ep.all = mean prevalence for all flocks

zeronew ~ dbern(pzero) # predicted status for a new flock

# predicted within prevalence for a new flock:

pnew <- (1-zeronew)*pnew0 + zeronew*0;

logit(pnew0) <- logitpnew0; logitpnew0 ~ dnorm(mu,tau)

# pnew0= predicted within prevalence for a new flock, given it's infected

for(i in 1:K){ # loop over data

for(j in 1:nf[i]){ # loop over number of flocks

xx[i,j] <- x[i]

xx[i,j] ~ dbin(pr[i,j],S); # S = number of pooled samples per flock

pr[i,j]<-(1-zeroflock[i,j])*(1-pow(1-p[i,j],ss) )*(1-h) +zeroflock[i,j]*0

# ss = number of individual samples pooled

zeroflock[i,j] ~ dbern(pzero) # status

logit(p[i,j]) <- logitp[i,j]; logitp[i,j] ~ dnorm(mu,tau) # prevalence

}}

}

# US data: h=false negative rate (assumption)

list(K=32, h = 0.15, S=58, ss=5,

x=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,

18,19,21,22,23,24,25,26,27,28,36,39,42,44),

nf=c(464,77,39,23,18,9,6,8,7,8,4, 6,4,4,2,2,6,1,3,3,

2,3,1,1,1,2,2,1,1,1,1,1))

list(mu=0,tau=1) # initial values

1.6 Multinomial model

Estimate the relative allele frequencies in a population. P (a) = p, P (A) = q. The probabilities of
individuals with genotypes aa, aA,AA are p2, 2pq, q2 in equilibrium, if no inbreeding. In a sample of
N individuals the observed frequencies were x1, x2, x3. Below also a model with inbreeding coe�cient.

model{ # no inbreeding

x[1:3] ~ dmulti(pr[],N)

pr[1] <- p*p

pr[2] <- 2*p*q

pr[3] <- q*q

p ~ dunif(0,1); q <- 1-p

}

model{ # inbreeding

x[1:3] ~ dmulti(pr[],N)

pr[1] <- p*p + f*p*q
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pr[2] <- 2*(1-f)*p*q

pr[3] <- q*q + f*p*q

p ~dunif(0,1); q <- 1-p

f <- w*(1-fmin)+fmin; w ~dunif(0,1)

fmin <- max(-p/q,-q/p)

}
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