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1. Fourier series and Walsh series

1.1. Fourier series. The functions ek(x) := ei2πkx, k ∈ Z, form an orthonormal basis of L2(0, 1).
Thus, by basic Hilbert space functional analysis, we have the following identity:

f =
∞∑

k=−∞

〈f, ek〉ek = lim
n→∞

Snf, Snf =
n∑

k=−n

〈f, ek〉ek,

with convergence in the norm of L2(0, 1); thus ‖f − Snf‖L2 → 0 as n→∞. The scalar products

〈f, ek〉 :=
ˆ 1

0

f · ek =
ˆ 1

0

f(x)e−i2πkx dx

are called the Fourier coefficients of f , and denoted by f̂(k) := 〈f, ek〉. A much deeper theorem
is the following pointwise convergence result:

Theorem 1.1 (L. Carleson 1966). Let f ∈ L2(0, 1). Then we have

f(x) = lim
n→∞

Snf(x)

for almost every x ∈ [0, 1).

The essence of this theorem is captured in an estimate for the maximal partial sum operator

S∗f(x) := sup
n∈N
|Snf(x)|.

Namely, this nonlinear operator satisfies the estimate:

Theorem 1.2. For some constant C <∞, we have for all f ∈ L2(0, 1) the bound

‖S∗f‖L2,∞ := sup
λ>0

λ|{x ∈ [0, 1) : |S∗f(x)| > λ}|1/2 ≤ C‖f‖L2 .

Once we know such maximal control (which is a very deep result!), the proof of the convergence
is relatively easy. It suffices to observe that the convergence holds for a dense class of functions in
L2(0, 1). We take for granted that the trigonometric polynomials

g(x) =
m∑

k=−m

akek(x)

form such a dense subspace. But for such a g, we have Sng(x) = g(x) as soon as n ≥ m, so the
convergence is trivial. For a general f ∈ L2(0, 1) and ε > 0, we can find a trigonometric polynomial
(by density) g so that ‖f − g‖L2 < ε. Then we argue as follows:

{x : Snf(x) 6→ f(x)} = {x : lim sup
n→∞

|Snf(x)− f(x)| > 0}

=
∞⋃
j=1

{x : lim sup
n→∞

|Snf(x)− f(x)| > 1
j
},
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and
|Snf(x)− f(x)| ≤ |Sn(f − g)(x)|+ |Sng(x)− g(x)|+ |g(x)− f(x)|

≤ S∗(f − g)(x) + |Sng(x)− g(x)|+ |g(x)− f(x)|,

so that
lim sup
n→∞

|Snf(x)− f(x)| ≤ S∗(f − g)(x) + |g(x)− f(x)|,

observing that lim supn→∞ |Sng(x)− g(x)| = 0. Thus

|{x : lim sup
n→∞

|Snf(x)− f(x)| > 1
j
}| ≤ |{x : |S∗(f − g)(x)| > 1

2j
}|+ |{x : |g(x)− f(x)| > 1

2j
}|

≤
( C

1/2j
‖f − g‖L2

)2

+
( 1

1/2j
‖f − g‖L2

)2

= 4j2(C2 + 1)‖f − g‖2L2 < 4j2(C2 + 1)ε2.

This holds for every ε > 0, so taking ε→ 0 we deduce that the left side is 0, and hence also

|{x : Snf(x) 6→ f(x)}| = 0.

Thus Snf(x)→ f(x) for almost every x ∈ [0, 1).
The previous argument is quite standard, and applies to different pointwise convergence prob-

lems. The difficult part is controlling the maximal operator. Instead of attempting this now, we
look instead at a simpler model case.

1.2. Walsh series. The Walsh model consist of replacing the smooth sine wave sin(2πx) (the
imaginary part of ei2πx) by the block wave

w1(x) := r0(x) :=
∑
m∈Z

(1[m,m+1/2) − 1[m+1/2,m+1))(x),

which is in fact the sign sgn sin(2πx) (expect at the zeros of sine, where we define the values as
above). We give this function two names, it is both the first Walsh function w1 and the zeroth
Rademacher function r0. Note that 1 = 20.

More generally, we let

w2k(x) := rk(x) := r0(2kx) =
∑
m∈Z

(12−k[m,m+1/2)−12−k[m+1/2,m+1))(x), k ∈ N := {0, 1, 2, . . .}.

For other values n 6= 2k, we make a more complicated definition of wn. This is motivated by the
following observation about the functions en: Let

n =
∞∑
i=0

ni2i, ni ∈ {0, 1}

be the binary expansion of n ∈ N. Of course, only finitely many ni are different from zero. Then

en(x) = exp(i2πnx) = exp(i2π
∞∑
j=0

2inix) =
∞∏
j=0

exp(i2π2inix) =
∞∏
j=0

(e2i(x))ni .

For the trigonometric function en, this is a lemma, a consequence of their definition. For the Walsh
functions, we make it the definition:

wn(x) :=
∞∏
i=0

(ri(x))ni =
∏

i∈N:ni=1

ri(x), n =
∞∑
i=0

ni2i.

Let us record a useful observation:

Lemma 1.1. If the binary expansions of n,m ∈ N satisfy nimi = 0 for all i ∈ N, then wn+m =
wnwm.
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Proof. That nimi = 0 means that {i : ni = 1} and {i : mi = 1} are disjoint, and then {i :
(n+m)i = 1} = {i : ni = 1} ∪ {i : mi = 1}. Thus

wn+m =
∏

i:(n+m)i=1

ri =
∏
i:ni=1

ri ×
∏

i:mi=1

ri = wn × wm.

�

Lemma 1.2. If 0 ≤ b < 2k, then w2ka+b = w2kawb.

Proof. We have (2ka)i = 0 for i < k, whereas bi = 0 for i ≥ k. The claim follows from the previous
lemma. �

Lemma 1.3. w2ka(x) = wa(2kx).

Proof. Easy from the definition and ri+k(x) = r0(2i+kx) = ri(2kx). �

We now develop for the Walsh function wn a theory analogous to the trigonometric functions
en.

Proposition 1.1. (wn)∞n=0 is an orthonormal basis of L2(0, 1).

Proof. Checking the identity

〈wn, wm〉 =
ˆ 1

0

wn · wm = δmn =

{
1 m = n,

0 m 6= n,

is left as an exercise. It remains to check that span(wn)∞n=0 is dense in L2(0, 1). This in turn
follows from the known fact that step functions (with arbitrarily small step) are dense in L2(0, 1),
and the following lemma: �

Lemma 1.4. { 2k−1∑
j=0

aj12−k[j,j+1) : aj ∈ C
}

= span(wn)2k−1
n=0 .

Proof. First observe that both spaces have equal dimension 2k. Indeed, the step functions 12−k[j,j+1)

are clearly linearly independent, and so are the wn, since they are orthogonal. Thus it suffices to
prove “⊇”. For n < 2k, we have ni 6= 0 only for i < k, hence

wn =
k−1∏
i=0

ri.

But ri(x) = r0(2ix) is constant on intervals of length 2−i−1 ≥ 2−k, and so hence is wn as the
product. This proves the inclusion ⊇. �

Let us redefine the notation SN to denote the partial Walsh sums now:

SNf(x) :=
N−1∑
n=0

〈f, wn〉wn(x).

By elementary Hilbert space theory, we have that ‖SNf − f‖L2 → 0 as N →∞. The analogue of
Carleson’s theorem is this:

Theorem 1.3 (Billard 1966). For every f ∈ L2(0, 1), we have

SNf(x) =
N−1∑
n=0

〈f, wn〉wn(x)→ f(x)

for almost every x ∈ [0, 1).

Note that by the previous lemma, the convergence is trivial for the step functions, since then
Snf(x) = f(x) for all sufficiently large n. By a similar argument as before, the general convergence
then follows from:
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Theorem 1.4. There is a constant C <∞ such that for every f ∈ L2(0, 1),

S∗f(x) := sup
N∈N
|SNf(x)|

satisfies
‖S∗f‖L2,∞ ≤ C‖f‖L2 .

We will prove this by using the modern time-frequency analysis of M. Lacey and C. Thiele.

1.3. Time-frequency analysis for the Walsh model. Let us work with the (horizontal) time
axis R+ = [0,∞), and the (vertical) frequency axis, also equal to R+ = [0,∞). In both time and
frequency, we consider the dyadic intervals

D := {2−k[m,m+ 1) : k ∈ Z,m ∈ N}.

A key feature of D is the following nestedness:

∀I, J ∈ D : I ∩ J ∈ {∅, I, J};

any two intervals are either disjoint, or one contains the other.
We write I(1) for the parent of I: the smallest dyadic interval which strictly contains I. The

two intervals I0, I1, which have I as their parent, are called the children of I, and they are called
siblings of each other. We usually denote time intervals by I and frequency intervals by ω.

The product R+ × R+ of time and frequency axes is called the phase plane. The sets

P = I × ω, I, ω ∈ D

are called dyadic rectangles. A tile is a dyadic rectangle of area |P | = 1 and a bitile is a dyadic
rectangle of area |P | = 2. A bitile P = I × ω naturally splits into its up-tile Pu = I × ωu and
down-tile Pd = I ×ωd, where ωd and ωu are two siblings whose parent is ω. We often write IP for
the time interval and ωP for the frequency interval of a tile or bitile P .

Since a tile has area 1 and both time and frequency intervals are dyadic, it can also be written
as

P = I × 1
|I|

[n, n+ 1), I ∈ D , n ∈ N.

Then we define the Walsh wave packet as

wP (x) :=
1I(x)
|I|1/2

wn(
x

|I|
).

Clearly ‖wP ‖L2 = 1. It is left as an exercise to check that

〈wP , wP ′〉 :=
ˆ ∞

0

wP · wP ′ = 0, if P ∩ P ′ = ∅.

Hence:

Lemma 1.5. If P is a disjoint collection of tiles, then {wP : P ∈ P} is an orthonormal basis of a
subspace of L2(0,∞), and ∑

P∈P
〈f, wP 〉wP

is the orthogonal projection of f onto this substpace.

In the wave packet formalism, wn1[0,1) = w[0,1)×[n,n+1). The partial Walsh sums can be written
as

SNf(x) =
N−1∑
n=0

〈f, wn〉wn(x) =
∑
P tile

IP=[0,1)
minωP<N

〈f, wP 〉wP (x).

For the further analysis, it is useful to rewrite this:
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Proposition 1.2 (Key identity).∑
P tile

IP=[0,1)
minωP<N

〈f, wP 〉wP (x) =
∑

P bitile
IP⊆[0,1)
ωPu3N

〈f, wPd〉wPd(x).

Note that, even though the summation variable in the second sum is a bitile, inside the sum we
have its down-tile Pd, which is a tile, as in the original sum.

To prove the above identity, a key observation is this:

Lemma 1.6. The collection of tiles P in the first sum, and the collection of down-tiles Pd in the
second sum, are both disjoint, and they both cover the same domain [0, 1) × [0, N) of the phase
plane.

You can best convince yourself of this by drawing a picture of the tiles in a special case like
N = 7, and figuring from there what is going on in general. A detailed proof follows further below.

Hence, both sides of the key identity represent orthogonal projections of f to certain subspaces
of L2(0,∞). It only remains to check that these subspaces are the same, for then so are the
projections. This is a special case of the following:

Proposition 1.3. Let Pi, i = 1, 2, be two finite collections of tiles such that⋃
P∈P1

P ⊆
⋃
P∈P2

P

as subsets of R2
+. Then also

span{wP : P ∈ P1} ⊆ span{wP : P ∈ P2}
as subspaces of L2(R+). In particular, if there is equality on the first line, then also on the second.

It is convenient to handle two special cases first:

Lemma 1.7.
wI×ω ∈ span{wIi×ω(1) : i = 0, 1},

where Ii, i = 0, 1, are the two children of I, and ω(1) is the parent of ω.

Proof. Let ω = |I|−1[n, n+ 1) and ω(1) = 2|I|−1[m,m+ 1). Then ω ⊂ ω(1) implies that

2m ≤ n, n+ 1 ≤ 2(m+ 1) ⇒ n = 2m+ r, r ∈ {0, 1}.
Thus

wI×ω = |I|−1/21Iwn(
·
|I|

) = |I|−1/21Iw2m+r(
·
|I|

) = |I|−1/21Iwm(2
·
|I|

)wr(
·
|I|

).

Here wr(·/|I|) ≡ (−1)ir on Ii, i = 0, 1, and hence

|I|−1/21Iwm(2
·
|I|

)wr(
·
|I|

) =
1∑
i=0

2−1/2

|Ii|1/2
1Iiwm(

·
|Ii|

)(−1)ir =
1∑
i=0

(−1)ir√
2

wIi×ω(1) . �

Lemma 1.8.
wI×ω ∈ span{wI(1)×ωi : i = 0, 1},

where I(1) is the parent of I, and ωi, i = 0, 1, are the two children of ω.

Proof. Left as an exercise. �

Proof of Proposition 1.3. It suffices to show that every wP1 , P1 ∈ P1, belongs to span{wP : P ∈
P2}. Here P2 is a collection of tiles which covers P1. It suffices to show that wP1 ∈ span{wP : P ∈
P}, whenever the tiles of P cover P1, and in fact (by removing some tiles), we may assume that P
is minimal, in the sense that if we remove any tile from P, then the new collection no longer covers
P1. We will make an induction on the number of elements in P. If #P = 1, then P = {P1}, and
the claim is trivial. Otherwise, P1 /∈ P. Then every tile P that intersects P1 either has IP ) IP1 ,
or ωP ) ωP1 . We call the first kind of tiles horizontal, and the second kind of tiles vertical.
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We claim that P contains either horizontal tiles only, or vertical tiles only. Suppose first that
the vertical tiles in P cover P1. Then the horizontal tiles do not occur in P by minimality. Suppose
then that the vertical tiles do not cover P1, and let (x, y) ∈ P1 be a point not covered by them.
But any vertical tile covers a part of P1 of the form I × ωP1 , so if (x, y) is not covered by vertical
tiles, then no point of the segment {x}×ωP1 is covered by vertical tiles. Hence all of this segment
must be covered by horizontal tiles. But any horizontal tile covers a part of P1 of the form IP1×ω,
so if the horizontal tiles cover all of {x} × ωP1 , they must cover all of IP1 × ωP1 = P1. And then,
as in the first part, no vertical tiles are needed to cover P1, and hence they do not occur in P.

Suppose for example that P1 is covered by horizontal tiles, where no tile can be removed from
the cover. Let P = I×ω be the longest tile in the cover (any of them, if there are many). Consider
its ‘sibling’ P ′ = I × ω′, where ω(1) = ω ∪ ω′. We claim that also P ′ ∈ P. In fact, some tiles
in P must cover the set P ′ ∩ P1 = IP1 × ω′. Since P is the longest tile, these must be shorter
than or equal to P . But if any such tile is strictly shorter than P , then its frequency interval is
strictly longer than ωP . By the properties of dyadic intervals, this frequency interval would then
cover ωP , and the hypothetical tile would cover P ∩ P1. Then P would be redundant, which is a
contradiction. Hence the only possibility is that a tile in P which covers P1 ∩ P ′ has equal length
with P , and then in fact it must be P ′. We are done with the claim that also P ′ ∈ P.

Next, consider the tile P̂ := Î × ω(1), where Î ⊇ IP1 is one of the children of I. Then P̂ covers
the same part of P1 as P and P ′ together. Thus P̂ := (P \ {P, P ′}) ∪ {P̂} is also a cover of P1. It
has one element less than P, so by induction assumption, we have that

wP1 ∈ span{wP ′′ : P ′′ ∈ (P \ {P, P ′}) ∪ {P̂}}

On the other hand, by Lemma 1.8, we have wP̂ ∈ span{wP , wP ′}, and hence finally

wP1 ∈ span{wP ′′ : P ′′ ∈ P},

completing this branch of the induction.
If, instead, P1 is covered by vertical tiles, then the induction step is exactly analogous, only

using Lemma 1.7 instead of Lemma 1.8. �

To complete the proof of the key identity of Proposition 1.2, we give:

Proof of Lemma 1.6. On the left side, the tiles are of the form P = [0, 1) × [n, n + 1), where
0 ≤ n < N , so clearly they cover disjointly the domain [0, 1)× [0, N).

We then analyse the right side. Since IP ⊆ [0, 1) has length at most 1, the frequency intervals
ωPd and ωPu have length 2k ≥ 1. Let P be one of the bitiles appearing in the sum with Pu =
IP × |IP |−1[n, n+ 1), where |IP | = 2−k. The fact that |IP |−1[n, n+ 1) = 2k[n, n+ 1) is the upper
half of a dyadic interval means that n is odd. For the parameter N of SN , let us make the binary
expansion

N =
∞∑
i=0

Ni2i.

Now the condition that N ∈ 2k[n, n+ 1) says that

n ≤ 2−kN =
∞∑
i=k

Ni2i−k +
k−1∑
i=0

Ni2i−k < n+ 1,

where
∑∞
i=kNi2

i−k is an integer, and
∑k−1
i=0 Ni2

i−k ∈ [0, 1 − 2−k], where the lower bound corre-
sponds to Ni ≡ 0, the upper bound to Ni ≡ 1. Hence
∞∑
i=k

Ni2i−k − 1 ≤
∞∑
i=k

Ni2i−k +
k−1∑
i=0

Ni2i−k − 1 < n ≤
∞∑
i=k

Ni2i−k +
k−1∑
i=0

Ni2i−k <
∞∑
i=k

Ni2i−k + 1,

which shows that (given k ∈ N) there is a unique admissible value of n, namely, n =
∑∞
i=kNi2

i−k.
This is odd exactly when Nk = 1. If ωPu = 2k[n, n+ 1), then ωPd is the “previous” interval of the
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same length, namely, ωPd = 2k[n− 1, n), and we have

n− 1 =
∞∑
i=k

Ni2i−k − 1 =
∞∑

i=k+1

Ni2i−k, Nk = 1.

We conclude that the frequency intervals ωPd appearing on the right side of the key identity are
exactly those of the form

2k[n− 1, n) =
[ ∞∑
i=k+1

Ni2i,
∞∑
i=k

Ni2i
)
, k ∈ N, Nk = 1.

Notice that if Nk = 0, then the lower and upper limits of the above interval coincide, so the
interval would be just ∅.

For the time intervals on the right of the key identity, the only condition is that IP ⊆ [0, 1).
Thus for a fixed k, we get all the intervals of the form 2−k[j, j+ 1), 0 ≤ j ≤ 2k − 1. So altogether,
the down-tiles Pd appearing on the right of the key identity are those of the form

Pd = 2−k[j, j + 1)×
[ ∞∑
i=k+1

Ni2i,
∞∑
i=k

Ni2i
)
, k ∈ N, Nk = 1, j = 0, . . . , 2k − 1.

For different k, the frequency intervals are disjoint, and for equal k but different j, the time
intervals are disjoint. Hence all these tiles are pairwise disjoint.

For a fixed k but variable j, the time intervals cover exactly all of [0, 1). And for variable k, it
is easy to check that the time intervals cover exactly all of[

lim
k→∞

∞∑
i=k

Ni2i,
∞∑
i=0

Ni2i
)

= [0, N).

This completes the proof. �

2. Approach to Billard’s theorem

We have already seen that to prove the pointwise convergence of the Walsh series, SNf(x) →
f(x), it suffices to estimate the maximal operator S∗f(x) = supN≥0 |SNf(x)| in the L2,∞ norm.
By monotone convergence, it suffices to estimate S∗N0

f(x) : − = max0≤N≤N0 |SNf(x)|, as long
as the bound is independent of the finite but arbitrarily large number N0. This approximating
operator has the advantage that we know a priori that it is finite. It is still a nonlinear operator,
but we can linearize it as follows:

Lemma 2.1. Given f ∈ L2(0, 1), we can choose a measurable function x ∈ [0, 1) 7→ N(x) ∈
{0, 1, . . . , N0} such that

S∗N0
f(x) = |SN(x)f(x)| ∀x ∈ [0, 1).

Proof. Consider the measurable sets

En := {x ∈ [0, 1) : |Snf(x)| = S∗N0
f(x)}, Fn := En \

⋃
k<n

Ek.

The sets Fn form a disjoint cover of [0, 1). Then

S∗N0
f(x) =

( N0∑
n=0

1Fn(x)
)
S∗N0

f(x) =
N0∑
n=0

1Fn(x)|Snf(x)| =
∣∣∣ N0∑
n=0

1Fn(x)Snf(x)
∣∣∣.

If we know define uniquely N(x) := n if x ∈ Fn, then we see that the right side is equal to
|SN(x)f(x)|. �

So it suffices to prove that

‖Cf‖L2,∞ := ‖SN(x)f‖L2,∞ . ‖f‖L2

for all f ∈ L2, where we abbreviate C := SN(x) — C for Carleson. For the estimation of the L2,∞

norm, the following lemma is useful:
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Lemma 2.2. For p ∈ (1,∞) and g ∈ L1
loc, we have

‖g‖Lp,∞ := sup
λ>0

λ|{|g| > λ}|1/p . A (2.1)

if and only if ∣∣∣ˆ
E

g
∣∣∣ . A|E|1/p′ , 1

p
+

1
p′

= 1, (2.2)

for all bounded measurable sets E.

Proof. By considering the positive and negative parts of the real and imaginary parts of g sepa-
rately, it is easy to see that it suffices to prove this for g ≥ 0. We only prove that (2.2) implies
(2.1) (which is the direction relevant for our approach to Billard’s theorem), and leave the other
direction as an exercise.

So let g ≥ 0, assume (2.2), fix λ > 0, and let E ⊆ {g > λ} be a bounded subset. Then

|E| =
ˆ
E

1 ≤
ˆ
E

g

λ
=

1
λ

ˆ
E

g ≤ 1
λ
A|E|1/p

′
,

thus λ|E|1/p = λ|E|1−1/p ≤ A. Letting E ⊆ {g > λ} approach {g > λ}, we deduce that
λ|{g > λ}|1/p ≤ A, which was to be proven. �

Hence, we are reduced to proving that∣∣∣ˆ
E

Cf
∣∣∣ = |〈Cf, 1E〉| . ‖f‖L2 |E|1/2.

Using the key identity for Cf(x) = SN(x)f(x), we find thatˆ
E

Cf(x) dx =
ˆ
E

∑
P bitile
IP⊆[0,1)
ωPu3N(x)

〈f, wPd〉wPd(x) dx

=
ˆ
E

∑
P bitile
IP⊆[0,1)

〈f, wPd〉wPd(x)1ωPu (N(x)) dx

=
∑

P bitile
IP⊆[0,1)

〈f, wPd〉〈wPd , 1EPu 〉, EPu := E ∩ {x : N(x) ∈ ωPu}.

As the final reduction, rather than the quantity as above, we simply choose to estimate∑
P∈P
〈f, wPd〉〈wPd , 1EPu 〉, EPu := E ∩ {x : N(x) ∈ ωPu},

where P is an arbitrary finite collection of bitiles. The actual estimate of interest is then obtained
by specializing to the particular collection appearing earlier.

The estimation of this object will depend on partitioning the arbitrary collection P into smaller
collections with more structure. For this purpose we introduce:

2.1. Order for the tiles and bitiles. A partial order “≤” between either two tiles or two bitiles
is defined as follows:

P ≤ P ′ if and only if IP ⊆ IP ′ and ωP ⊇ ωP ′ .
One can check (exercise) that

P ≤ P ′ if and only if Pd ≤ P ′d or Pu ≤ P ′u,
as well as (exercise): any two tiles or bitiles satisfy one of the following:

P ≤ P ′ or P ′ ≤ P or P ∩ P ′ = ∅.

Definition 2.1. A collection T of bitiles is called a tree if there exists a top bitile T (possibly,
but not necessarily an element of T) such that P ≤ T for all P ∈ T. The tree is called an up-tree,
if Pu ≤ Tu for all P ∈ T, and a down-tile id Pd ≤ Td for all P ∈ T.
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The top is not unique but (exercise) there always exists a minimal top.
The following result says something useful (as seen later) about the structure of the wavepackets

associated to a tree:

Lemma 2.3. Let T be an up-tree with top T . Then for all P ∈ T, we have

wPd(x) = εPT · w∞Tu(x) · hIP (x),

where
• εPT ∈ {−1,+1} are constants depending on P and T ,
• w∞Tu(x) := |ITu |1/2wTu(x) is the Walsh wave packet with L∞ normalization (so that its
absolute value is one on its support), and

• hIP are so-called Haar functions, defined by

hI(x) :=
1I(x)
|I|1/2

r0(
x

|I|
).

Proof. We have Tu = IT × |IT |−1[nT , nT + 1), with odd nT . Consider an element P ∈ T with
Pu = IP × |IP |−1[nP , nP + 1), again with odd nP , and let 2−k := |IP |/|IT |. Then Pu ≤ Tu says
that

IP ⊆ IT and 2−k(nT + 1)− 1 ≤ nP ≤ 2−knT .
If nT =

∑∞
i=0 2ini, then the unique integer value of nP in the given range is

nP =
∞∑
i=k

2i−kni,

which is odd if and only if nk = 1. For those values of k, we have Pd = IP × |IP |−1[nP − 1, nP ),
where

nP − 1 =
∞∑

i=k+1

2i−kni.

Hence

wPd(x) =
1IP (x)
|IP |1/2

wnP−1

( x

|IP |

)
=

1IP (x)
|IP |1/2

w2k(nP−1)

( x

|IT |

)
=

1IP (x)
|IP |1/2

∞∏
i=k+1

ri

( x

|IT |

)ni
(∗)
=

1IP
|IP |1/2

∞∏
i=0

ri

( x

|IT |

)ni
× rk

( x

|IT |

)
×
k−1∏
i=0

ri

( x

|IT |

)ni
= 1IT (x)wnT

( x

|IT |

)
× 1IP
|IP |1/2

r0

( x

|IP |

)
×
k−1∏
i=0

ri

( x

2k|IP |

)ni
= w∞Tu(x)× hIP (x)×

k−1∏
i=0

ri

( x

2k|IP |

)ni
.

Note that nk = 1 was used in (∗), together with r2
i ≡ 1. Notice that the last product takes a

constant value on IP , as ri is constant over dyadic intervals of length 2−i−1; this is our εPT . �

3. Tree analysis

Recall that our task is to estimate∑
P∈P
〈f, wPd〉〈wPd , 1EPu 〉, EPu := E ∩ {x : N(x) ∈ ωPu},

where P is an arbitrary finite collection of bitiles. The plan is to divide P into more structured
subcollections (trees), and to estimate the sum over each of them separately. The function f ∈ L2

and the measurable set E are considered to be fixed throughout the argument, so we do not always
indicate the dependence of some quantities on these objects.
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For every collection P of bitiles, we introduce two quantities to measure its “size”:

density(P) := sup
P∈P

sup
P ′≥P

|IP ′ ∩ EP ′ |
|IP ′ |

, EP ′ := E ∩ {x : N(x) ∈ ωP ′},

energy(P) := sup
T⊆P up-tree

( 1
|IT|

∑
P∈T
|〈f, wPd〉|2

)1/2

,

where IT is the minimal time interval of a top of T. Note that a more precise notation would be

densityE(P), energyf (P),

as these quantities depend on E and f . The “density” has also been called “mass”, but “density” is
more descriptive, since involves the ratio of the measures of IP ′∩EP ′ and IP ′ ; another name found
in the literature is “support-size”. The “energy” is also called “coefficient-size” or just “size”. The
name “energy” is motivated by the fact that such square-sums often describe energy in physical
applications. However, this is only a philosophical motivation, and there isn’t any deep physical
meaning behind our chosen terminology.

3.1. The tree lemma.

Proposition 3.1. For each tree T, we have∣∣∣∑
P∈T
〈f, wPd〉〈wPd , g1EPu 〉

∣∣∣ ≤ 10 · energy(T) density(T)|IT|,

where
EPu := E ∩ {x : N(x) ∈ ωPu}.

We start the proof by choosing J as the collection of maximal dyadic intervals J ⊆ IT which
do not contain any IP , P ∈ T. These intervals cover the set IT. Hence, observing that all wPd are
supported on IT,∣∣∣∑

P∈T
〈f, wPd〉〈wPd , g1EPu 〉

∣∣∣ ≤ ∥∥∥∑
P∈T

εP 〈f, wPd〉wPd1EPu
∥∥∥
L1(R+)

=
∑
J∈J

∥∥∥∑
P∈T

εP 〈f, wPd〉wPd1EPu
∥∥∥
L1(J)

=
∑
J∈J

∥∥∥ ∑
P∈T
IP)J

εP 〈f, wPd〉wPd1EPu
∥∥∥
L1(J)

,

(3.1)

where the last step is based on the following observations: First, only those wPd , whose support
suppwPd = IP intersects J contribute to the L1(J) norm. Second, if the dyadic intervals IP and
J intersect, then one is contained in the other. But J cannot contain any IP by the definition of
J , so the only possibility is that IP ) J . And this is exactly what we have written in the sum
above.

Note that the function inside the L1(J) norm in (3.1) is supported on the set GJ defined below:

Lemma 3.1. For a fixed J ∈J , the subset

GJ := J ∩
⋃
P∈T
IP)J

EPu

satisfies |GJ | ≤ 2 density(T)|J |.

Proof. Consider the dyadic parent Ĵ of J . By maximality of J , we have Ĵ ⊇ IP̃ for some P̃ ∈ T.
Let ω̂ be the dyadic interval of size 2/|Ĵ | such that ωP̃ ⊇ ω̂ ⊇ ωT , where T is the top of T, so that
the bitile P̂ := Ĵ × ω̂ satisfies P̃ ≤ P̂ ≤ T . Now we claim that

GJ ⊆ J ∩ EP̂ . (3.2)
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Indeed, consider one of the P appearing in GJ . Then P ∈ T, thus IP ⊆ IT and ωP ⊇ ωT , and
also IP ) J , thus IP ⊇ Ĵ . We also have |ωP | = 2/|IP | ≤ 2/|Ĵ | = |ω̂|, and ωP ∩ ω̂ ⊇ ωT 6= ∅,
hence ωP ⊆ ω̂. But this means that

EPu = E ∩ {N ∈ ωPu} ⊆ E ∩ {N ∈ ωP } ⊆ E ∩ {N ∈ ω̂} = EP̂ ,

which proves the claim (3.2).
The proof is completed as follows, recalling that P̂ ≥ P̃ ∈ T:

|GJ | ≤ |J ∩ EP̂ | ≤ |Ĵ |
|Ĵ ∩ EP̂ |
|Ĵ |

= 2|J |
|IP̂ ∩ EP̂ |
|IP̂ |

≤ 2|J | sup
P ′≥P̃

|IP ′ ∩ EP ′ |
|IP ′ |

≤ 2|J |density(T). �

Next, divide T into the down- and up-trees

Td := {P ∈ T : P ≤d T}, Tu := T \ Td,

and write
FjJ :=

∑
P∈Tj
IP)J

εJ〈f, wPd〉wPd1EPu , j ∈ {d, u}.

To continue the estimate (3.1), we want to control ‖FdJ + FuJ‖L1(J). We will use the simple
estimate ‖F‖L1(J) ≤ | supp(1JF )|‖F‖L∞(J), where we already controlled the size of the support
in the previous lemma. The L∞ norms of FdJ and FuJ will be controlled because of different
reasons.

Lemma 3.2.
‖FdJ‖L∞(J) ≤ energy(T).

Proof. Here the key observation is:
The ωPu appearing in FdJ are pairwise disjoint. Hence, so are the sets EPu =
E ∩ {N ∈ Pu}.

To prove this, suppose that P, P ′ ∈ Td appear in the same sum FdJ . Then ωPd , ωP ′d ⊇ ωTd . If ωPd
is the larger of the two, then ωPd ) ωP ′d and hence ωPd ⊇ ωP ′ . Thus ωPu is disjoint from ωP ′ and
in particular from ωP ′u .

Thanks to this disjointness of the supports, the L∞ norm of the sum is the maximum of the
individual terms:

‖FdJ‖∞ = max
P∈Td
IP)J

‖〈f, wPd〉wPd1EPu‖∞ ≤ max
P∈Td
IP)J

|〈f, wPd〉|
|IP |1/2

≤ energy(T),

where the last step used the observation that every collection {P} consisting of a single bitile is
always an up-tree! �

Lemma 3.3.
‖FuJ‖L∞(J) ≤ 2 inf

z∈J
Mf̃(z),

where
f̃ :=

∑
P∈Tu

〈f, wPd〉wPd ,

and M is the dyadic maximal operator, defined by

Mg(x) := sup
I∈D
I3x

1
|I|

ˆ
I

|f(y)|dy.
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Proof. Here, instead of disjointness, we have nestedness. To be more precise, consider a fixed x ∈ J
with FuJ(x) 6= 0; hence 1EPu (x) = 1E(x)1ωPu (N(x)) 6= 0 for some P ∈ Tu with IP ) J . Since Tu
is an up-tree, all ωPu contain ωTu for the top T , and hence they form a nested sequence of dyadic
intervals. If ωP ′u is the smallest interval among these, which contains the point N(x), then all the
bigger intervals ωPu also contain N(x). Thus 1EPu (x) 6= 0 holds for if and only if |ωPu | ≥ |ωP ′u |,
or equivalently, if and only if |IP | ≤ |IP ′ |. Since FuJ involves the summation condition IP ) J ,
all the appearing time intervals also form a nested sequence, and the last condition can be written
as IP ⊂ IP ′ . Thus

FuJ(x) =
∑
P∈Tu
J(IP

1EPu (x) 6=0

〈f, wPd〉wPd(x)

=
∑
P∈Tu

J(IP⊆IP ′

〈f, wPd〉wPd(x)

= w∞Tu(x)
∑
P∈Tu

J(IP⊆IP ′

εPT 〈f, wPd〉hIP (x),

where we used Lemma 2.3 in the last step.
To proceed, we make an observation about the dyadic averages

EKg :=
1K
|K|

ˆ
K

g, K ∈ D ,

of the Haar functions:

EKhI =

{
1KhI K ( I

0 else.
(3.3)

Indeed, hI is constant on the dyadic intervals strictly contained in K, so for K ( I, the average of
hI on K is just the value of hI on any point of K. The remaining cases are that either K ∩ I = ∅,
or K ⊇ I. In the first case, since hI is supported on I, its average outside is zero. And in the last
case, we notice that also the average of hI on its support is zero, since it takes the same positive
and negative value on sets of equal size.

From (3.3) it follows that for all x ∈ J ⊆ IP ′ ,∑
P∈Tu

J(IP⊆IP ′

εPT 〈f, wPd〉hIP (x) =
( ∑
P∈Tu
J(IP

−
∑
P∈Tu
IP ′(IP

)
εPT 〈f, wPd〉hIP (x)

= (EJ − EIP ′ )
∑
P∈Tu

εPT 〈f, wPd〉hIP (x) = (EJ − EIP ′ )w
∞
Tu

∑
P∈Tu

〈f, wPd〉wPd(x),

where we used again Lemma 2.3 in the last step, together with ε2PT = 1.
Let z ∈ J . Since both J and IP ′ contain any z, both EJg(x) and EIP ′ g(x) are among the

averages that occur in the definition of Mg(z). Thus

|(EJ − EIP ′ )g(x)| ≤ 2Mg(z).

We apply this to the results of the above computations, recalling that ‖w∞Tu‖∞ = 1:

|FuJ(x)| ≤
∣∣∣(EJ − EIP ′ )w

∞
Tu

∑
P∈Tu

〈f, wPd〉wPd(x)
∣∣∣

≤ 2M
( ∑
P∈Tu

〈f, wPd〉wPd
)

(z).

Taking the supremum over x ∈ J and the infimum over z ∈ J proves the claim. �
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Proof of the Tree Lemma (Proposition 3.1). We substitute the estimates from Lemmas 3.1, 3.2
and 3.3 to (3.1): ∣∣∣∑

P∈T
〈f, wPd〉〈wPd , g1EPu 〉

∣∣∣ ≤ ∑
J∈J

‖FdJ + FuJ‖L1(J)

≤
∑
J∈J

|GJ |
(
‖FdJ‖∞ + ‖FuJ‖∞

)
≤
∑
J∈J

2 density(T)|J |
(

energy(T) + 2 inf
J
Mf̃

)
≤ 2 density(T) energy(T)|IT |+ 4 density(T)

ˆ
IT

Mf̃(x) dx,

where we observed that

|J | inf
J
Mf̃ =

ˆ
J

inf
J
Mf̃ dx ≤

ˆ
J

Mf̃(x) dx

and used the disjointness of the intervals J ∈J , which are all contained in IT , to conclude that∑
J∈J

|J | ≤ |IT |,
∑
J∈J

ˆ
J

Mf̃(x) dx ≤
ˆ
IT

Mf̃(x) dx.

To conclude, we use Cauchy–Schwarz and the L2-boundedness of the dyadic maximal operator
(with norm 2; see Proposition 3.2 below):ˆ

IT

Mf̃(x) dx ≤ |IT |1/2
(ˆ

Mf̃(x)2 dx
)1/2

≤ 2|IT |1/2
( ˆ
|f̃(x)|2 dx

)1/2

.

Recall that f̃ =
∑
P∈Tu〈f, wPd〉wPd , and use the orthonormality of the functions wPd for P ∈ Tu

to see that (ˆ
|f̃(x)|2 dx

)1/2

=
( ∑
P∈Tu

|〈f, wPd〉|2
)1/2

≤ |IT |1/2 energy(T).

Thus
4 density(T)

ˆ
IT

Mf̃(x) dx ≤ 4 density(T)2|IT | energy(T),

and altogether ∣∣∣∑
P∈T
〈f, wPd〉〈wPd , g1EPu 〉

∣∣∣ ≤ (2 + 4 · 2) density(T) energy(T)|IT |,

where 2 + 4 · 2 = 10, as claimed. �

In the proof we used the following result:

Proposition 3.2. The dyadic maximal operator

Mf(x) := sup
I∈D

1I(x)
|I|

ˆ
I

|f(y)|dy

satisfies ‖Mf‖L2 ≤ 2‖f‖L2 .

A proof is indicated in the exercises.

3.2. The density lemma. Recall that our final goal is to estimate∑
P∈P
〈f, wPd〉〈wPd , 1EPu 〉,

where P is any finite collection of bitiles. From the Tree Lemma, we know how to make such an
estimate if P is a tree. This is not the case in general, so our task is to efficiently decompose an
arbitrary collection into trees. This is accomplished by means of two decomposition results, where
in both cases we extract some trees, and make sure that either the density or the energy of the
remaining collection decreases.
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We first address the somewhat easier case of density:

Proposition 3.3. Every finite set P of bitiles has a disjoint decomposition

P = Psparse ∪
⋃
j

Tj ,

where each Tj is a tree, and

density(Psparse) ≤ 1
4

density(P),
∑
j

|ITj | ≤ 4 density(P)−1|E|.

Proof. We make Psparse as big as possible by setting

Psparse :=
{
P ∈ P : sup

P ′≥P

|IP ′ ∩ EP ′ |
|IP ′ |

≤ 1
4

density(P)
}
.

Thus P \ Psparse is as small as possible, and we should now decompose it into tiles.
For every P ∈ P \ Psparse, we pick some bitile P ′ such that

|IP ′ ∩ EP ′ |
|IP ′ |

>
1
4

density(P).

Let Tj be the maximal bitiles (with respect to their partial order ≤) among these chosen P ′, and
let

Tj := {P ∈ P : P ≤ Tj}

be the tree in P with top Tj . Then

P \ Psparse =
⋃
j

Tj .

Observe that the sets ITj ∩ ETj = ITj ∩ E ∩ {N ∈ ωTj}, which are all contained in E, are
pairwise disjoint. Indeed, if

[ITj ∩ E ∩ {N ∈ ωTj}] ∩ [ITk ∩ E ∩ {N ∈ ωTk}] 6= ∅,

then necessarily
ITj ∩ ITk 6= ∅, and ωTj ∩ ωTk 6= ∅,

thus
Tj ∩ Tk = [ITj ∩ ITk ]× [ωTj ∩ ωTk ] 6= ∅,

and then one of Tj and Tk could not be maximal. Thus we have∑
j

|ITj | ≤ 4 density(P)−1
∑
j

|ITj ∩ ETj | ≤ 4 density(P)−1|E|,

where the last estimate used the fact that all ITj ∩ ETj are disjoint and contained in E. �

3.3. The energy lemma. The analogous statement for the energy is as follows:

Proposition 3.4. Every finite set P of bitiles has a disjoint decomposition

P = Plow ∪
⋃
j

Tj ,

where each Tj is a tree, and

energy(Plow) ≤ 1
2

energy(P),
∑
j

|ITj | ≤ 4 energy(P)−2‖f‖2L2 .
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Proof. For every tree T, let

∆(T) :=
( 1
|IT |

∑
P∈Tu

|〈f, wPd〉|2
)1/2

,

where T is a minimal top of T, and Tu := {P ∈ T : P ≤u T} is the up-tree supported by the same
top.

Let E := energy(P). We extract the trees Tj recursively as follows: Consider all maximal trees
T ⊆ P among the ones with ∆(T) > 1

2E . Among them, let T1 be one whose top frequency interval
ωT has the minimal center c(ωT). Replace P by P \ Tj , and iterate. When no trees can be chosen
anymore, the remaining collection Plow satisfies energy(Plow) ≤ 1

2E by definition.
The sum over the top intervals is immediately estimated by∑

j

|ITj | ≤
( 2

E

)2∑
j

∑
P∈Tj,u

|〈f, wPd〉|2. (3.4)

We would like to identify the double summation with the L2 norm of the orthogonal projection
of f onto the span of the appearing functions wPd . For this it is necessary to check that any two
wPd above are orthogonal to each other, equivalently, that any two Pd above are disjoint. This is
automatically the case if both bitiles belong to the same up-tree Tj,u, so it remains to consider the
case where Pj ∈ Tj,u, Pi ∈ Ti,u, and i 6= j. We argue by contradiction and assume that two such
bitiles intersect. And then it follows that, for example, Pj,d ≤ Pi,d, and hence ωPi,d ⊆ ωPj,d . Since
Pi 6= Pj are different bitiles, we must in fact have ωPi,d ( ωPj,d and hence ωPi ⊆ ωPj,d . Thus, we
have

ωTi ⊆ ωPi ⊆ ωPj,d , ωTj,u ⊆ ωPj,u ,
and therefore

c(ωTj ) = inf ωTj,u ≥ inf ωPj,u = supωPj,d > c(ωTi).
This means that the tree Ti was chosen first, thus i < j. But Pj,d ≤ Pi,d implies Pj ≤ Pi ≤ Ti,
so that Pj should have been taken to Ti by maximality. This gives a contradiction, proving the
falsity of our counterassumption.

Hence any two wPd appearing in (3.4) are disjoint, and thus we continue with∑
j

|ITj | ≤
( 2

E

)2∑
j

∑
P∈Tj,u

|〈f, wPd〉|2 ≤
4

E 2
‖f‖2L2 . �

3.4. Iterating the decomposition lemmas. By using the density and energy lemmas consec-
utively, we obtain the following result, whose verification is left as an exercise:

Lemma 3.4. Suppose that

density(Pn) ≤ 4n|E|, energy(Pn) ≤ 2n‖f‖L2 .

Then
Pn = Pn−1 ∪

⋃
j

Tn,j ,
∑
j

|ITj,n | ≤ C4−n,

where Pn−1 satisfies estimates similar to Pn with n− 1 in place of n.

The following result goes one step further:

Proposition 3.5. For any finite collection of bitiles P, there is a decomposition

P =
⋃
n∈Z

⋃
j

Tn,j ∪ P−∞,

where each Tn,j is a tree, and we have the estimates

density(Tn,j) ≤ 4n|E|, energy(Tn,j) ≤ 2n‖f‖L2 ,
∑
j

|ITn,j | ≤ C4−n

and density(P−∞) = energy(P−∞) = 0.
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Proof. Since the density and energy of every finite collection are some finite numbers, P satisfies
the conditions of Pn in Lemma 3.4 for some possibly large n0 ∈ Z. By iterating that Lemma, we
obtain

P = Pn0 =
⋃
j

Tn0,j ∪ Pn0−1 =
⋃
j

Tn0,j ∪
⋃
j

Tn0−1,j ∪ Pn0−2

=
n0∑

n=n1

⋃
j

Tn,j ∪ Pn1−1, n1 < n0,

where Pn0 ⊇ Pn0−1 ⊇ · · · ⊇ Pn1 ⊇ Pn1−1. Iterating indefinitely, we observe that every bitile in P
either gets chosen to some Tn,j , or else it belongs to every residual colllection Pn, hence also to
their intersection P−∞ :=

⋂
n≤n0

Pn. But then

density(P−∞) ≤ density(Pn) ≤ 4n|E|

for every n ≤ n0, and letting n → −∞ we see that density(P−∞) = 0. The argument for
energy(P−∞) = 0 is similar.

Finally, since Tn,j ⊆ Pn, it is clear that it satisfies the same density and energy bounds, and
the bound for

∑
j |ITn,j | is part of Lemma 3.4. �

3.5. Completion of the proof of Theorem 1.4. Recall that the proof has been reduced to
controlling ∑

P∈P
〈f, wPd〉〈wPd , 1EPu 〉,

where P is an arbitrary finite collection of bitiles. By Proposition 3.5, we have∑
P∈P
〈f, wPd〉〈wPd , 1EPu 〉 =

∑
n∈Z

∑
j

∑
P∈Tn,j

〈f, wPd〉〈wPd , 1EPu 〉+
∑

P∈P−∞

〈f, wPd〉〈wPd , 1EPu 〉.

From the fact that energy(P−∞) = 0, it follows that 〈f, wPd〉 = 0 for all P ∈ P−∞, so the last
sum may be ignored. And then we simply estimate with the Tree Lemma, observing that every
collection has the trivial density bound density(P) ≤ 1:∑

n∈Z

∑
j

∣∣∣ ∑
P∈Tn,j

〈f, wPd〉〈wPd , 1EPu 〉
∣∣∣

.
∑
n∈Z

∑
j

density(Tn,j) energy(Tn,j)|ITn,j |

.
∑
n∈Z

min{1, 4n|E|} × 2n‖f‖L2 ×
∑
j

|ITn,j |

.
∑
n∈Z

min{1, 4n|E|} × 2n‖f‖L2 × 4−n

.
∑

n:2n≤|E|−1/2

4n|E| × 2n‖f‖L2 × 4−n +
∑

n:2n>|E|−1/2

1× 2n‖f‖L2 × 4−n

.
∑

n:2n≤|E|−1/2

|E|‖f‖L22n +
∑

n:2n>|E|−1/2

‖f‖L2 × 2−n.

The two convergent geometric series give us

|E|‖f‖L2 |E|−1/2 + ‖f‖L2 |E|1/2 . ‖f‖L2 |E|1/2,

which was the required estimate to prove that

|〈SN(·)f, 1E〉| . ‖f‖L2 |E|1/2

and therefore
‖SN(·)f‖L2,∞ . ‖f‖L2 .

This completes the proof of the pointwise convergence of Walsh series.
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4. The Fourier transform

We now leave the Walsh model and return to classical Fourier analysis. However, instead of
the Fourier series from the motivating discussion in the beginning, we now investigate the Fourier
transform defined for f ∈ L1(R) and ξ ∈ R as

Ff(ξ) ≡ f̂(ξ) :=
ˆ

R
f(x)e−i2πx·ξ dx.

By taking absolute values inside the norm, it is clear that |f̂(ξ)| ≤ ‖f‖1 for all ξ. If ξ → ξ0, the
continuity of the exponential function implies that e−i2πx·ξ → e−i2πx·ξ0 for every x, and it follows
from dominated convergence that f̂(ξ)→ f̂(ξ0). So the function f̂ is continuous, and in particular
measurable. If f, g ∈ L1(R), then it is easy to check that their convolution

f ∗ g(x) :=
ˆ

R
f(x− y)g(y) dy =

ˆ
R
f(y)g(x− y) dy

satisfies f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ).
Important properties of the Fourier transform follow just from the knowledge of the transform

of one particular function:

Lemma 4.1. The function ϕ(x) := e−πx
2
satisfies ϕ̂ = ϕ.

Proof. Note that ϕ̂(0) is given by the familiar Gaussian integral,

ϕ̂(0)2 =
ˆ

R

ˆ
R
e−π(x2+y2) dx dy =

ˆ ∞
0

ˆ 2π

0

e−πr
2

dθr dr =
ˆ ∞

0

2πre−πr
2

dr =
∣∣∣∞
0
− e−πr

2
= 1,

and hence ϕ̂(0) = 1, since it is clearly positive. Now there are (at least) two ways to finish the
proof.

(By Cauchy’s theorem for complex path integrals.) Completing the square

f̂(ξ) =
ˆ ∞
−∞

e−π(x2+i2x·ξ+(iξ)2−(iξ)2) dx =
ˆ ∞
−∞

e−π(x+iξ)2 dx · e−πξ
2

=
ˆ ∞+iξ

−∞+iξ

e−πz
2

dz · e−πξ
2
.

By Cauchy’s theorem, it is easy to check that one can shift the integration path back to the real
axis, and this was just computed above.

(By the uniqueness theory of ordinary differential equations.) Notice that ϕ′(x) = −2πxϕ(x).
Taking the Fourier transform of both sides and integrating by parts, it follows that i2πξϕ̂(ξ) =
−iϕ̂′(ξ). Hence both ϕ and ϕ̂ are solutions of the differential equation

u′(x) = −2πxu(x), u(0) = 1,

and therefore must be equal. �

By Lemma 4.1 (interchanging the roles of x and ξ)

ϕ(x) = ϕ̂(x) =
ˆ

R
ϕ(ξ)e−i2πx·ξ dξ.

Since ϕ is real-valued, taking complex conjugates of both sides one can replace −i by +i in the
exponent. Substituting x/ε in place of x and changing integration variables, one further obtains

ϕε(x) :=
1
ε
ϕ
(x
ε

)
=
ˆ

R
ϕ(εξ)ei2πx·ξ dξ.

Lemma 4.2. For f ∈ Lp(R), p ∈ [1,∞), we have ϕε ∗ f(x)→ f(x) as ε→ 0 for almost every x.

Proof. This is a toy variant of the pointwise convergence questions that we study in this course.
First, we check that the convergence holds for a dense class of functions, say g ∈ Cc(R) (continuous
with compact support). We have

ϕε ∗ g(x) =
ˆ

R

1
ε
ϕ(
y

ε
)g(x− y) dy =

ˆ
R
ϕ(y)g(x− εy) dy.



18 TUOMAS HYTÖNEN

As ε → 0, we have g(x − εy) → g(x) for every y, and also that |ϕ(y)g(x − εy)| ≤ |ϕ(y)|‖g‖∞,
which is integrable with respect to y. Hence ϕε ∗ g(x) →

´
ϕ(y) dy · g(x) = g(x) by dominated

convergence.
Next, we need to control the maximal operator supε>0 |ϕε ∗ f(x)|. But it is easy to check

(exercise) that this is dominated by the Hardy–Littlewood maximal functionMf(x), which satisfies
‖Mf‖Lp,∞ ≤ C‖f‖Lp . Hence the pointwise convergence follows for every f ∈ Lp(R) by the
standard procedure. �

Theorem 4.1 (Fourier inversion). Suppose that both f ∈ L1(R) and f̂ ∈ L1(R). Then, a.e.,

f(x) =
ˆ

R
f̂(ξ)ei2πx·ξ dξ.

Accordingly, we call

F−1g(x) := ǧ(x) =
ˆ

R
g(ξ)ei2πx·ξ dξ

the inverse Fourier transform of g ∈ L1(R).

Proof. By Lemma 4.2, ϕε ∗ f(x)→ f(x) for a.e. x ∈ R, and then

f(x) = lim
ε↘0

ˆ
R
ϕε(y)f(x− y) dy

= lim
ε↘0

ˆ
R

ˆ
R
ϕ(εξ)ei2πy·ξ dξf(x− y) dy

= lim
ε↘0

ˆ
R
ϕ(εξ)

ˆ
R
e−i2π(x−y)·ξf(x− y) dy ei2πx·ξ dξ

= lim
ε↘0

ˆ
R
ϕ(εξ)f̂(ξ)ei2πx·ξ dξ =

ˆ
R
f̂(ξ)ei2πx·ξ dξ,

where the second to last equality was the definition of f̂(ξ), and the last one was dominated
convergence based on the fact that ϕ(εξ)→ ϕ(0) = 1 at every ξ. �

Corollary 4.1 (L2 isometry). If f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R) and ‖f̂‖2 = ‖f‖2.

Proof. Let first f̂ ∈ L1(R). Then

‖f̂‖22 =
ˆ

R
f̂(ξ)f̂(ξ) dξ =

ˆ
R

ˆ
R
f(x)e−i2πx·ξ dxf̂(ξ) dξ

=
ˆ

R
f(x)
ˆ

R
f̂(ξ)ei2πx·ξ dξ dx =

ˆ
R
f(x)f(x) dx = ‖f‖22.

In general, let again ϕ(x) = e−πx
2
. Then ϕε ∗ f ∈ L1 ∩ L2, and its Fourier transform is

ϕ(εξ)f̂(ξ) ∈ L1(R). Thus ‖ϕ(εξ)f̂(ξ)‖2 = ‖ϕε ∗ f‖2. As ε ↘ 0, we have ϕε ∗ f → f in the L2

norm. (We have this convergence pointwise by Lemma 4.2, and the L2 convergence follows easily
by dominated convergence, since |ϕε ∗ f | .Mf ∈ L2). Moreover, |ϕ(εξ)f̂(ξ)| ↗ |f̂(ξ)|, so

‖f̂‖2 = lim
ε↘0
‖ϕ(εξ)f̂(ξ)‖2 = lim

ε↘0
‖ϕε ∗ f‖2 = ‖f‖2

by monotone convergence. �

4.1. The Fourier transform on L2(R). The previous result allows to extend the Fourier trans-
form for all f ∈ L2(R): Note that L1∩L2 is dense in L2, since it contains for instance all continuous
compactly supported functions. If f ∈ L2(R) is arbitrary, let fn ∈ L2(R) ∩ L1(R) be a sequence
with fn → f in the L2 norm. Then

‖f̂n − f̂m‖2 = ‖F (fn − fm)‖2 = ‖fn − fm‖2 → 0,

and hence f̂n form a Cauchy sequence in L2(R). We denote its limit by f̂ := limn→∞ f̂n. It is
routine to check that this definition of f̂ is independent of the chosen approximating sequence fn,
and that we have ‖f̂‖2 = ‖f‖2.
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Since F and F−1 only differ by the sign of i in the exponent, it is clear that the same is true
for the inverse transform F−1: it also extends to an isometry F−1 : L2(R)→ L2(R). If g ∈ L1(R)
and ĝ ∈ L1(R), then F−1Fg = FF−1g = g. Since such functions are dense in L2(R), and both
F and F−1 are continuous on L2(R), these identities remain valid for all g ∈ L2(R). So F and
F−1 are both bijections, and inverses to each other, as operators on L2(R).

4.2. Pointwise inversion for f ∈ L2(R). For a general f ∈ L2(R), we can write the identities

f = F−1f̂ = lim
n→∞

F−1(1[−n,n]f̂),

where the limit is in the sense of L2 norm convergence. Since f̂ ∈ L2 ⊂ L1
loc, we have 1[−n,n]f̂ ∈

L1(R), and we can write the inverse Fourier transform explicitly as

F−1(1[−n,n]f̂)(x) =
ˆ

R
1[−n,n](ξ)f̂(ξ)ei2πxξ dξ =

ˆ n

−n
f̂(ξ)ei2πxξ dξ,

and these converge to f(x) in the sense of the L2 norm. The question we would like to address
is whether we can also have the pointwise convergence. This is the content of Carleson’s theorem
for the Fourier transform:

Theorem 4.2 (Carleson 1966). For all f ∈ L2(R), the following convergence takes place at almost
every x ∈ R:

f(x) = lim
n→∞

ˆ n

−n
f̂(ξ)ei2πxξ dξ.

To prove it, we use the usual procedure. First check the convergence for a dense class of
functions. A suitable dense class is given by the function f ∈ L1(R) with also f̂ ∈ L1(R), since
for them we already proved that

f(x) =
ˆ ∞
−∞

f̂(ξ)ei2πxξ dξ = lim
n→∞

ˆ n

−n
f̂(ξ)ei2πxξ dξ

by Theorem 4.1 and dominated convergence. After this observation, the proof of Carleson’s
theorem depends on the control of Carleson’s maximal operator

sup
n>0

∣∣∣ˆ n

−n
f̂(ξ)ei2πxξ dξ

∣∣∣ = sup
n>0

∣∣∣ˆ n

−∞
f̂(ξ)ei2πxξ dξ −

ˆ −n
−∞

f̂(ξ)ei2πxξ dξ
∣∣∣

≤ 2 sup
n∈R

∣∣∣ ˆ n

−∞
f̂(ξ)ei2πxξ dξ

∣∣∣ =: 2Cf(x).

Theorem 4.3 (Carleson). For all f ∈ L2(R), we have ‖Cf‖L2,∞(R) . ‖f‖L2(R).

The proof of this will depend on setting up an appropriate time-frequency analysis, after the
model from the Walsh case. However, let us first discuss some intrinsic difficulties in the construc-
tion of wave packets for the Fourier transform.

4.3. The uncertainty principle. A key difficulty is that both the function and its Fourier trans-
form cannot be arbitrarily well localized at the same time. Different versions of this phenomenon
are known as uncertainty principles.

Proposition 4.1 (A toy uncertainty principle). If supp f̂ is compact for some f ∈ L2(R), then
supp f = R (unless f is identically zero).

By symmetry, we also have a similar conclusion with the roles of f and f̂ reversed.

Proof. If supp f̂ ⊆ [−n, n], then

f(x) =
ˆ n

−n
f̂(ξ)ei2πxξ dξ

extends to a holomorphic function

f(z) =
ˆ n

−n
f̂(ξ)ei2πzξ dξ.
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Indeed, each z ∈ C 7→ ei2πzξ is a holomorphic function, and complex differentiation under the
integral is easily justified by dominated convergence. But it is well-known from complex analysis
that the zeros of a holomorphic function are isolated points, so in particular f cannot vanish
identically on any interval, so its support must contain all of R. �

Proposition 4.2 (Heisenberg’s uncertainty principle). For all f ∈ L2(R) and all x0, ξ0 ∈ R, we
have (ˆ

R
(x− x0)2|f(x)|2 dx

)1/2(ˆ
R

(ξ − ξ0)2|f̂(ξ)|2 dξ
)1/2

≥ 1
4π
‖f‖22.

In quantum mechanics, the state of a particle is represented by a wave function ψ. Then |ψ(x)|2
is interpreted as the probability density of finding the particle in the position x. Similarly |ψ̂(ξ)|2
is the probability density of momentum of the particle. The uncertainty principle gives a lower
bound on how well both the position and the momentum can be localized simultaneously. Note
that we are using dimensionless units in the above mathematical formulation; with physical units,
the Planck constant would appear in this formula.

Proof. We consider the case of f sufficiently nice, so that all the manipulations below are justified.
The general case follows easily by density considerations. Observe that

ξf̂(ξ) = ξ

ˆ
R
f(x)e−i2πxξ dx =

1
−i2π

ˆ
R
f(x)∂xe−i2πxξ dx

=
1
i2π

ˆ
R
∂xf(x)e−i2πxξ dx = F (

∂x
i2π

f)(ξ)

using integration by parts, assuming that f decays so that no boundary terms appear at ±∞.
Hence the left side of the claim, with x0 = ξ0 = 0, is equal to

‖xf(x)‖2‖ξf̂(ξ)‖2 = ‖xf(x)‖2‖
∂x
i2π

f(x)‖2.

The operators P = x (understood as pointwise multiplication by x) and Q = ∂x/i2π are known
as the position and momentum operators in quantum mechanics. Like all operators in quantum
mechanics, they are both self-adjoint (〈Af, g〉 = 〈f,Ag〉 for both A ∈ {P,Q}— for Q this amounts
to integration by parts, where the boundary terms disappear; note also that we are using the
sesqui-linear inner product, and i changes sign under the complex conjugation). The uncertainty
principle results from the fact that the two operators do not commute: [P,Q] := PQ − QP 6= 0.
In fact,

[P,Q]f :=
1
i2π

(x∂xf − ∂x(xf)) =
1
i2π

(x∂xf − f − x∂xf) =
i

2π
f.

Hence
1

2π
‖f‖22 = |〈f, [P,Q]f〉| = |〈f, PQf〉 − 〈f,QPf〉| = |〈Pf,Qf〉 − 〈Qf, Pf〉|

= |〈Pf,Qf〉 − 〈Pf,Qf〉| = |2i Im〈Pf,Qf〉| ≤ 2‖Pf‖2‖Qf‖2.
Unravelling the definitions, this is the claim for x0 = ξ0 = 0. The proof for general x0 and
ξ0 is almost the same, observing that ‖(ξ − ξ0)f̂(ξ)‖2 = ‖(∂x/i2π − ξ0)f(x)‖2, and that the
shifted operators P ′ = P − x0, Q′ = Q − ξ0 satisfy exactly the same commutation relation
[P ′, Q′] = i/2π. �

4.4. The Schwartz test functions. For the analysis of the Fourier transform, the following test
function class is often convenient:

S (R) := {f ∈ C∞(R) : ∀α, β ∈ N, sup
x∈R
|xα∂βxf(x)| <∞}.

Notice that C∞c (R) ⊂ S (R), where C∞c (R) is the space of smooth, compactly supported functions.
Since C∞c (R) is dense in Lp(R) (p ∈ [1,∞)), so is the bigger space S (R). A useful feature of S (R)
compared to C∞c (R) is that the Fourier transform (and the inverse Fourier transform) maps S (R)
into itself. This is left as an exercise. We will often define a function f ∈ S (R) by specifying its
Fourier transform f̂ . If f̂ ∈ S (R), then so is f .
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5. Time-frequency analysis for the Fourier transform

5.1. Wave packets. Given the restrictions on the possible wave packets dictated by the uncer-
tainty principle, we choose to work with functions that have perfect localization in frequency, and
infinite support (but with rapidly decaying tail) in the time domain. Our basic wave packet will
be a function φ ∈ S (R) defined by the properties of its Fourier transform φ̂ as follows:

supp φ̂ ⊆ [− 1
20 ,

1
20 ],

∑
k∈Z
|φ̂(ξ + 1

20k)|2 ≡ 1 ∀ξ ∈ R. (5.1)

A possible construction of such a function is indicated in the exercises.

Lemma 5.1. The basic wave packet satisfies

〈T20nφ, φ〉 =

{
1/20 if n = 0,
0 ∀n ∈ Z \ {0},

where Tyf(x) := f(x− y).

Proof. Since the Fourier transform is an L2-isometry, we have

〈T20nφ, φ〉 = 〈T̂20nφ, φ̂〉 = 〈M−20nφ̂, φ̂〉 =
ˆ

R
e−i2π·20nξφ̂(ξ)φ̂(ξ) dξ, (5.2)

where Myf(x) := ei2πyxf(x), and the proof that T̂yf = M−y f̂ is left as an exercise. We split the
domain of integration on the right of (5.2) as follows:

〈T20nφ, φ〉 =
ˆ

R
e−i2π·20nξ|φ̂(ξ)|2 dξ =

∑
k∈Z

ˆ (k+1)/20

k/20

e−i2π·20nξ|φ̂(ξ)|2 dξ

=
∑
k∈Z

ˆ 1/20

0

e−i2π·20n(ξ+k/20)|φ̂(ξ + k/20)|2 dξ

=
∑
k∈Z

ˆ 1/20

0

e−i2π·20nξ|φ̂(ξ + k/20)|2 dξ since e−i2π·20n·k/20 = 1

=
ˆ 1/20

0

e−i2π·20nξ
∑
k∈Z
|φ̂(ξ + k/20)|2 dξ

=
ˆ 1/20

0

e−i2π·20nξ · 1 dξ by assumption (5.1),

and the last integral is easily seen to give the claimed result for all n ∈ Z. �

Our tiles will be the same geometric objects as in the Walsh model, the only difference is that
both time and frequency axes are now equal to R, instead of R+. Following the literature, we
make a slight (inessential) deviation from the Walsh model: instead of tiles and bitiles (dyadic
rectangles of area 2), we now work with tiles and semitiles (dyadic rectangles of area 1

2 ). So for
every tile P = I×ω, we denote by Pu = I×ωu and Pd = I×ωd its up-semitile and down-semitile,
respectively. We will also use the upmost quarter-tile Puu := I × ωuu, where ωuu is the upmost
quarter of ω, hence the upper half of ωu.

The general wave packet on a tile P is built from the basic wave packet by three basic operations.
Above, we already encountered the translations and modulations

Tyf(x) := f(x− y), Myf(x) := ei2πyxf(x), y ∈ R.
The third kind of operation is the dilation

Dp
λf(x) := λ−1/pf(x/λ), λ > 0.

Here p ∈ [1,∞] (we interpret λ−1/∞ = λ0 = 1) is a parameter, which indicated that Dp
λ preserves

the Lp norm. We now define:

φP := Mc(ωd)Tc(I)D
2
|I|φ, P = I × ω,
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where c(ωd) is the centre of the down-half ωd of the frequency interval of ω, and c(I) is the centre
of the time interval I.

It is left as an exercise to check the following relations for the Fourier transforms of the basic
operations:

T̂yf = M−y f̂ , M̂yf = Ty f̂ , D̂p
λf = Dp′

λ f̂ ,

where p′ is the dual exponent (1/p+ 1/p′ = 1). Hence

φ̂P = Tc(ωd)M−c(I)D
2
|ω|φ̂,

where we also used the fact that |I| · |ω| = 1 when P = I × ω is a tile.
Note that

suppTyf = y + supp f, suppMyf = supp f, suppDp
λf = λ(supp f) = {λx : x ∈ supp f}.

Hence
supp φ̂P = c(ωd) + |ω| suppφ ⊆ c(ωd) + |ω|[− 1

20 ,
1
20 ].

5.2. The model operator Aξ. Recall that the relevant operator for the proof of Carleson’s
theorem is

Cf(x) = sup
ξ∈R
|Sξf(x)|, Sξf(x) =

ˆ ξ

−∞
f̂(η)ei2πxη dη.

In the Walsh model, we expressed the analogue of Sξ, namely as

Snf(x) =
n−1∑
k=0

〈f, wk〉wk(x) =
∑

P bitile
IP⊆[0,1)

〈f, wPd〉wPd(x)1ωPu (n).

We would like to have a similar identity for Sξ, and with this in mind, we define

Aξf(x) :=
∑
P tile

〈f, φP 〉φP (x)1ωPuu (ξ).

(As said, we are now using tiles in place of bitiles, and semitiles instead of tiles. Note that, by
definition, φP is actually in some sense associated with Pd rather than P , and could also be called
φPd , but we prefer the shorter notation. Having ωPuu instead of ωPu is an inessential technical
convenience later on.)

Now, it is not true that Sξ = Aξ. However, we will later see that there is nevertheless a useful
way of expressing Sξ in terms of Aξ. (This will involve averaging over different choices of the
system of dyadic cubes, which are implicitly behind the definition of tiles, and hence of Aξ.) Before
turning to this, let us analyse the operator Aξ a bit on its own right.

Lemma 5.2. If a tile P appears in Aξ, then

supp φ̂P ⊆ [ξ − 0.8|ωP |, ξ − 0.45|ωP |].

Proof. We now from above that, on the one hand,

supp φ̂P ⊆ [c(ωPd)− 0.05|ωP |, c(ωPd) + 0.05|ωP |],

and, on the other hand,
ξ ∈ ωPuu = [c(ωPu), c(ωPu) + 0.25|ωP |].

Also, it is clear that c(ωPu) = c(ωPd) + 0.5|ωP |. Thus

c(ωPd) ∈ [ξ − 0.75|ωP |, ξ − 0.5|ωP |],

and hence
supp φ̂P ⊆ [ξ − 0.75|ωP | − 0.05|ωP |, ξ − 0.5|ωP |+ 0.05|ωP |],

which simplifies to the claim. �

Proposition 5.1. For any tiles P, P ′ appearing in Aξ, with |ωP | 6= |ωP ′ |, we have 〈φP , φP ′〉 = 0.
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Proof. Suppose for instance that |ωP ′ | < |ωP |. Since these are dyadic intervals, it means that
|ωP ′ | ≤ 1

2 |ωP |, and then 0.8|ωP ′ | ≤ 0.4|ωP | < 0.45|ωP |. Thus the whole interval ξ − 0.45|ωP |,
which is the highest point of the support of φ̂P , is strictly smaller that ξ − 0.8|ωP ′ |, which is the
lowest point of the support of φ̂P ′ . �

Proposition 5.2. All tiles P appearing in Aξ with given frequency size |ωP | = |ω| can be divided
into 20 subcollections, so that for any tiles P, P ′ in the same subcollection, we have 〈φP , φP ′〉 = 0.

〈φP , φP ′〉 = 0.

Proof. When the length of the frequency interval |ω| is fixed, the full interval is uniquely deter-
mined by the condition that ξ ∈ ωuu. Since we are dealing with tiles (area 1), also the length
of the time interval is uniquely determined as |I| = 1/|ω|. Since the time intervals are dyadic,
their centres satisfy c(IP ) − c(IP ′) = n|I|, n ∈ Z. By picking every 20th such interval into a
subcollection, we can form 20 subcollections with c(IP ) − c(IP ′) = 20n|I| for P, P ′ in the same
subcollection. Then, for such P, P ′, we have

〈ωP , ωP ′〉 = 〈Mc(ωPd )Tc(IP )D
2
|IP |φ,Mc(ωP ′

d
)Tc(IP ′ )D

2
|IP ′ |φ〉

= 〈Mc(ωd)Tc(IP )D
2
|I|φ,Mc(ωd)Tc(IP ′ )D

2
|I|φ〉

= 〈Mc(ωd)D
2
|I|Tc(IP )/|I|φ,Mc(ωd)D

2
|I|Tc(IP ′ )/|I|φ〉

= 〈Tc(IP )/|I|φ, Tc(IP ′ )/|I|φ〉 = 〈Tc(IP )/|I|−c(IP ′ )/|I|φ, φ〉 = 〈T20nφ, φ〉 = 0,

where we used the simple-to-check identities 〈Myf,Myg〉 = 〈f, g〉 = 〈D2
λf,D

2
λg〉 and 〈Tyf, Tzg〉 =

〈Ty−zf, g〉, and finally Lemma 5.1 in the last step. �

Now we easily see:

Theorem 5.1. For every fixed ξ ∈ R, Aξ is a bounded operator on L2(R), and in fact

‖Aξf‖L2 ≤ ‖f‖L2 .

Proof. For each fixed side-length |ω| of the frequency interval, we divide the tiles appearing in Aξ
into 20 subcollections Pk(|ω|), k = 0, 1, . . . , 19, as in Proposition 5.2. Then we form Pk as the
union of Pk(|ω|) over all different side-lengths |ω|. By Propositions 5.1 and 5.2 together, if both
P, P ′ belong to the same Pk, then 〈φP , φP ′〉 = 0. Hence each∑

P∈Pk

〈f, φP 〉φP = ‖φ‖2L2

∑
P∈Pk

〈f, φP
‖φP ‖L2

〉 φP
‖φP ‖L2

(we used ‖φP ‖L2 = ‖φ‖L2) is ‖φ‖2L2 = 1/20 (by Lemma 5.1) times the orthogonal projection of f
into a certain subspace. In particular, the L2 norm of such a sum is bounded by 1

20‖f‖L2 .
Since

Aξf =
19∑
k=0

∑
P∈Pk

〈f, φP 〉φP ,

we find that ‖Aξf‖L2 ≤ 20 · 1
20‖f‖L2 = ‖f‖L2 . �

The intermediate results used in the proof of Theorem 5.1 yield us further information about
the operator Aξ. Suppose that we wanted to consider a truncated sum

A≤Ω
ξ f =

∑
P :|ωP |≤Ω

〈f, φP 〉φP · 1Puu(ξ),

where Ω is the maximal dyadic length that we allow for our frequency intervals. From Lemma 5.2
we see that

supp Â≤Ω
ξ f ⊆ [ξ − 0.8Ω, 0] ⊆ [ξ − 0.8Ω, ξ + 0.8Ω].

The complementary truncated sum

A>Ω
ξ f =

∑
P :|ωP |>Ω

〈f, φP 〉φP · 1Puu(ξ)
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in fact only contains tiles with |ωP | ≥ 2Ω (since the dyadic lengths increase by multiples of 2),
and hence, again by Lemma 5.2,

supp Â≤Ω
ξ f ⊆ (−∞, ξ − 0.45 · 2Ω] = (−∞, ξ − 0.9Ω].

We choose another auxiliary function χ ∈ S (R) as follows: Let χ̂ satisfy

χ̂(η) =

{
1 if |η| ≤ 0.8,
0 if |η| ≥ 0.85.

We check immediately that

χ̂
(η − ξ

Ω

)
Â≤Ω
ξ f(η) = Â≤Ω

ξ f(η), χ̂
(η − ξ

Ω

)
Â>Ω
ξ f(η) = 0,

and hence

χ̂
(η − ξ

Ω

)
Âξf(η) = Â≤Ω

ξ f(η).

Observe that

χ̂
(η − ξ

Ω

)
= TξD

∞
Ω χ̂(η) = F (MξD

1
1/Ωχ)(η),

and hence

F (A≤Ω
ξ f)(η) = F (MξD

1
1/Ωχ)(η)F (Aξf)(η) = F (MξD

1
1/Ωχ ∗Aξf)(η),

where ∗ means convolution — recall that ĝ ∗ f = ĝf̂ . Thus

(A≤Ω
ξ f)(x) = (MξD

1
1/Ωχ ∗Aξf)(x) =

ˆ
R
MξD

1
1/Ωχ(x− y)(Aξf)(y) dy

=
ˆ

R
ei2πξ(x−y)D1

1/Ωχ(x− y)(Aξf)(y) dy

= ei2πξx
ˆ

R
D1

1/Ωχ(x− y)e−i2πξy(Aξf)(y) dy

= Mξ(D1
1/Ωχ ∗M−ξAξf)(x).

Since χ is a Schwartz function, we have |D1
λχ ∗ g(x)| .Mg(x), where

Mg(x) := sup
I

1I(x)
1
|I|

ˆ
I

|f(y)|dy

is the Hardy–Littlewood maximal function. Thus

|(A≤Ω
ξ f)(x)| = |Mξ(D1

1/Ωχ ∗M−ξAξf)(x)|

= |(D1
1/Ωχ ∗M−ξAξf)(x)|

.M(M−ξAξf)(x) = M(Aξf)(x).

(Don’t confuse the modulation —Mξ with a subscript — with the maximal operator —M without
any subscript!)

Recall that
AΩ
ξ f(x) =

∑
P :|ωP |≤Ω

〈f, φP 〉φP (x) · 1ωPuu (ξ)

was the one-sided truncated sum of Aξf(x). A two-sided truncation∑
P :Ω1<|ωP |≤Ω2

〈f, φP 〉φP · 1ωPuu (ξ) =
( ∑
P :|ωP |≤Ω2

−
∑

P :|ωP |≤Ω1

)
〈f, φP 〉φP · 1ωPuu (ξ)

is a difference of two one-sided truncation, and hence satisfies a similar bound (just multiplied by
2).

Combining these considerations, we have shown:
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Proposition 5.3. The truncated sums

AΩ1,Ω2
ξ f(x) :=

∑
P :Ω1<|ωP |≤Ω2

〈f, φP 〉φP · 1ωPuu (ξ)

satisfy the uniform pointwise bound

|AΩ1,Ω2
ξ f(x)| .M(Aξf)(x).

This will be useful in combination with the dominated convergence theorem, observing that
M(Aξf) ∈ L2 for f ∈ L2 by Theorem 5.1 and the maximal inequality.

6. Recovering Carleson’s operator from the model operators

6.1. Motivation; translated and dilated dyadic intervals. In analogy to the Walsh formula

Snf(x) =
n−1∑
k=0

〈f, wk〉wk(x) =
∑

P bitile
IP⊆[0,1)

〈f, wPd〉wPd(x)1ωPu (n),

we would like to recover the Carleson operator Sξ from the model operators Aξ. There are simple
reasons that Sξf 6= Aξf . Note that supp Ŝξf ⊆ (−∞, ξ] (and there can be equality for suitable
f), whereas

supp Âξf ⊆
⋃
k∈Z

[
ξ − 0.8 · 2k|ω|, ξ − 0.45 · 2k|ω|

]
( (−∞, ξ],

where |ω| is a length of one chosen frequency interval, so that all other frequency intervals have
length 2k|ω| for some k ∈ Z. The reason for the strict containment ( is that the union of the
intervals above contains certain gaps, for instance, (ξ − 0.9|ω|, ξ − 0.8|ω|).

However, if we vary the value of |ω| continuously over (0,∞), then the gaps change position, and
every point of (−∞, ξ) will be covered by a suitable choice of |ω|. With standard dyadic intervals,
we always have |ω| = 2j , so we cannot vary it continuously, but the above remark motivates the
consideration of dilated dyadic intervals

rD := {rI : I ∈ D}, rI := {rx : x ∈ I}.

It suffices to consider r ∈ [1, 2), since r = 2j would just map D into itself.
Another reason for Sξf 6= Aξf is that the model operator does not possess the correct invariance

with respect to translations. Namely, it is easy to check that TySξ = SξTy for all y ∈ R, but this
is not true with Aξ in place of Sξ. To overcome this obstacle, we also want to consider different
translations of D . For definiteness, let us write

D := {2−k[m,m+ 1) : k,m ∈ Z}

for the standard dyadic system, and then

I+̇β := I +
∑

j:2−j<|I|

2−jβj , D+̇β := {I+̇β : I ∈ D},

where
β = (βj)j∈Z ∈ {0, 1}Z

is a binary sequence. The parameter space {0, 1}Z is equipped with a natural probability measure
P so that all coordinates βj are independent and satisfy P(βj = 0) = P(βj = 1) = 1

2 . We use the
probabilistic notation

EΦ :=
ˆ
{0,1}Z

Φ(β) dP(β)

for the expectation of a random variable Φ—a function on the probability space {0, 1}Z. We will use
two independent copies of the same probability space {0, 1}Z to parameterize the translation of the
time intervals and the frequency intervals. We denote the variables by β, β′, and the expectations
by E,E′.



26 TUOMAS HYTÖNEN

Combining both translations and dilations, we define general family of tiles as

Pυ := {P ∈ 1
r

(D+̇β)× r(D+̇β′) : |P | = 1}, υ := (β, β′, r) ∈ {0, 1}Z × {0, 1}Z × [1, 2)

Note that the translations are independent, but we use reciprocal dilations in time and frequency
to ensure the existence of rectangles with area 1. For the interval [1, 2), we use the measure dr/r.

6.2. General model operators and averaging. We define the model operator Aυξ for every
υ = (β, β′, r) as

Aυξ f :=
∑
P∈Pυ

1ωPuu (ξ)〈f, φP 〉φP =
∑
k∈Z

∑
P :|ωP |=r2k

|IP |=1/(r2k)

1ωPuu (ξ)〈f, φP 〉φP .

It is easy to check that everything we proved about Aξ = A
(0,0,1)
ξ remains true for every Aυξ , with

uniform bounds. The recovery of Sξ from the model operators is expressed by the following:

Theorem 6.1. For f ∈ S (R) and almost every x ∈ R, we have
ˆ 2

1

EE′Aυξ f(x)
dr
r

= c

ˆ ξ

−∞
f̂(η)ei2πxη dη,

where c is a positive constant.

Lemma 6.1. For almost every x ∈ R,
ˆ 2

1

EE′Aυξ f(x)
dr
r

= lim
m→−∞
n→+∞

n∑
k=m

ˆ 2

1

EE′
∑

P :|ωP |=r2k

|IP |=1/(r2k)

1ωPuu (ξ)〈f, φP 〉φP (x)
dr
r
.

Proof. Clearly we have

Aυξ f(x) = lim
m→−∞
n→+∞

n∑
k=m

∑
P :|ωP |=r2k

|IP |=1/(r2k)

1ωPuu (ξ)〈f, φP 〉φP (x),

so the claim amounts to exchanging the limit and the integrals
´ 2

1
EE′. Since each truncated

sum above is dominated by M(Aυξ f)(x), it suffices by dominated convergence to check that´ 2

1
EE′M(Aυξ f)(x) dr/r < ∞. We show that this is true for almost every x by showing that

in fact this quantity is in L2( dx). Indeed,∥∥∥ ˆ 2

1

EE′M(Aυξ f)(x)
dr
r

∥∥∥
L2( dx)

≤
ˆ 2

1

EE′‖M(Aυξ f)‖L2
dr
r
.
ˆ 2

1

EE′‖f‖L2
dr
r
≤ log 2 · ‖f‖L2 ,

since ‖M(Aυξ f)‖L2 ≤ C‖Aξf‖L2 ≤ C‖f‖L2 . �

Proof of Theorem 6.1. Thanks to the Lemma, we can concentrate on
ˆ 2

1

EE′
∑

P∈Pυ:|ωP |=r2k

|IP |=1/(r2k)

1ωPuu (ξ)〈f, φP 〉φP (x)
dr
r

=
ˆ 2

1

E′
∑

ω∈r(D+̇β′)

|ω|=r2k

1ωuu(ξ) E
∑

I∈ 1
r (D+̇β)

|I|=1/(r2k)

〈f, φI×ω〉φI×ω(x)
dr
r

for each fixed k ∈ Z. Let us denote t := r2k.
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The time interval sums E
∑
I . Write

〈f, φI×ω〉φI×ω(x) =
ˆ

R
f(y)ei2πc(ωd)(x−y) 1

|I|
φ̄
(y − c(I)
|I|

)
φ
(x− c(I)
|I|

)
dy.

With |I| = 1/t fixed, let u/t, u ∈ [0, 1), denote the first end-point of an interval immediately to
the right from the origin. Then all the centre points have the form (u+ 1/2 + k)/t, k ∈ Z. With
this parameterization, we have ∑

I∈(D+̇β)/r
|I|=1/t

=
∑
k∈Z

.

On the other hand, the expectation E also takes a simpler form. Let us consider the particular
interval 1

r ([0, 2−k)+̇β) with left end-point immediately right from the origin. By definition,

1
r

([0, 2−k)+̇β) =
1
r

(
[0, 2−k) +

∑
j:2−j<2−k

βj2−j
)
,

so the left end-point, which we have also denoted by u/t, takes the form

1
r

∑
j:2−j<2−k

βj2−j =
1
t

∞∑
j=k+1

βj2k−j .

When the binary digits βj are chosen randomly from {0, 1}, the value of the binary series above
is uniformly distributed on the interval [0, 1]. Hence E can be replaced by

´ 1

0
du.

Substituting the above observations, we get

E
∑

I∈ 1
r (D+̇β)

|I|=1/(r2k)

1
|I|
φ̄
(y − c(I)
|I|

)
φ
(x− c(I)
|I|

)

=
ˆ 1

0

∑
k∈Z

tφ̄(ty − k − u− 1
2 )φ(tx− k − u− 1

2 ) du =
ˆ ∞
−∞

tφ̄(ty − v)φ(tx− v) dv

=
ˆ ∞
−∞

t ˜̄φ(v)φ(t(x− y)− v) dv, φ̃(v) := φ(−v),

= D1
1/t(φ ∗ ˜̄φ)(x− y).

The frequency interval sum E′
∑
ω. Arguing in a similar way, denoting by ut the first end-point

of the intervals ω ∈ r(D+̇β′), |ω| = t, to the right of the origin, we find that E′ amounts to´ 1

0
du. Then all points c(ωd) have the form t(u+ 1/4 + k), k ∈ Z, the intervals ωuu are given by

c(ωd) + [1/2, 3/4]|ω| = [t(u+ 3/4 + k), t(u+ 1 + k)], and∑
ω∈r(D+̇β′)
|ω|=t

=
∑
k∈Z

.

Thus we can compute

E′
∑

ω∈r(D+̇β′)
|ω|=t

1ωuu(ξ)ei2πc(ωd)(x−y)

=
ˆ 1

0

∑
k∈Z

1[t(u+3/4+k),t(u+1+k)](ξ)ei2πt(u+1/4+k)(x−y) du

=
ˆ ∞
−∞

1[t(v+1/2),t(v+3/4)](ξ)ei2πtv(x−y) dv

=
ˆ ξ/t−1/2

ξ/t−3/4

ei2πv(x−y) dv = ei2πξ(x−y)

ˆ 3/4

1/2

e−i2πvt(x−y) dv.
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A combination of the time and frequency computions shows that

E′
∑

ω∈r(D+̇β′)

|ω|=r2k

1ωuu(ξ) E
∑

I∈ 1
r (D+̇β)

|I|=1/(r2k)

ˆ
R
f(y)φ̄I×ω(y) dyφI×ω(x)

=
ˆ 3/4

1/2

ˆ
R
f(y)D1

1/t(φ ∗ ˜̄φ)(x− y)ei2πξ(x−y)e−i2πvt(x−y) dy dv, t = r2k,

= ei2πξx
ˆ 3/4

1/2

ˆ
R

(M−ξf)(y)D1
1/tM−v(φ ∗ ˜̄φ)(x− y) dy dv,

where the last step just amounted to writing the complex exponentials in terms of the modulation
operators.

Fourier transform. Next, we want to have the Fourier transform f̂ appear. To this end, we apply
the formula 〈g, h〉 = 〈ĝ, ĥ〉 to the y-integral above. Recall that 〈g, h〉 =

´
R g(x)h(x) dx is the

sesqui-linear inner product, so we need to rewrite D1
1/tM−v(φ ∗

˜̄φ)(x− y) as a complex conjugate.
Using simple identities for the reflection g̃(x) = g(−x) and the pointwise complex conjugation
ḡ(x) = g(x), we have

D1
1/tM−v(φ ∗ ˜̄φ)(x− y) = [D1

1/tM−v(φ ∗ ˜̄φ)] (̃y − x)

= D1
1/tMv(φ̃ ∗ φ̄)(y − x) = TxD

1
1/tMv(φ̃ ∗ φ̄)(y)

= TxD1
1/tM−v(

˜̄φ ∗ φ)(y).

Thus ˆ
R

(M−ξf)(y)D1
1/tM−v(φ ∗ ˜̄φ)(x− y) dy =

ˆ
R

(M−ξf)(y)TxD1
1/tM−v(

˜̄φ ∗ φ)(y) dy

=
ˆ

R
M̂−ξf(η)F [TxD1

1/tM−v(
˜̄φ ∗ φ)](η) dη

=
ˆ

R
f̂(η + ξ)[M−xD∞t TvF ( ˜̄φ)F (φ)](η) dη

=
ˆ

R
f̂(η + ξ)MxD

∞
t Tv|φ̂|2(η) dη =

ˆ
R
f̂(η + ξ)ei2πηx|φ̂|2

(η
t

+ v
)

dη,

where we used the identity F ( ˜̄φ) = φ̂, and hence F ( ˜̄φ)F (φ) = φ̂φ̂ = |φ̂|2.

Synthesis. Collecting the results of different steps, we have seen that (recall the abbreviation
t = 2kr) ˆ 2

1

EE′Aυξ f(x)
dr
r

= lim
m→−∞
n→+∞

n∑
k=m

ˆ 2

1

ei2πξx
ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx|φ̂|2

( η

2kr
+ v
)

dη dv
dr
r

Now, in the r-integral, we substitute t = 2kr to continue with

= lim
m→−∞
n→+∞

n∑
k=m

ˆ 2k+1

2k
ei2πξx

ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx|φ̂|2

(η
t

+ v
)

dη dv
dt
t

= lim
m→−∞
n→+∞

ˆ 2n+1

2m
ei2πξx

ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx|φ̂|2

(η
t

+ v
)

dη dv
dt
t
.

We claim that the t-integral actually exists as a proper Lebesgue integral over (0,∞), and that
we can use Fubini’s theorem to change the order of integration. This is more easily justified a
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little later, after proceeding formally first:

=
ˆ ∞

0

ei2πξx
ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx|φ̂|2

(η
t

+ v
)

dη dv
dt
t

= ei2πξx
ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx

ˆ ∞
0

|φ̂|2
(η
t

+ v
) dt
t

dη dv.

(6.1)

The integral over dt/t. This looks potentially dangerous due to the singularity as t→ 0. However,
if η ≥ 0, then η/t+ v ≥ v ≥ 1/2, whereas supp φ̂ ⊆ [−1/20, 1/20], soˆ ∞

0

|φ̂|2
(η
t

+ v
) dt
t

= 0 if η ≥ 0.

Let then η < 0. We make the change of variable s = η/t + v. So that s → sgn(η)∞ = −∞ as
t→ 0 and s→ v as t→∞. Moreover, t = η/(s− v) and dt = −η ds/(s− v)2. Henceˆ ∞

0

|φ̂|2
(η
t

+ v
) dt
t

=
ˆ v

−∞
|φ̂|2(s)

ds
v − s

=
ˆ 1/20

−1/20

|φ̂|2(s)
ds

v − s
if η < 0.

The last identity follows again from supp φ̂ ⊆ [−1/20, 1/20] ⊆ (−∞, v] for any v ≥ 1/2.

Conclusion. These computations show that the t-integral in (6.1) exists with a uniform upper
bound independent of η and v. For f̂ ∈ S (R), the η-integral also converges absolutely, and so
does the v-integral over the finite interval [1/2, 3/4]. In retrospect, this legitimates the application
of Fubini’s theorem in (6.1), and we find that

(6.1) = ei2πξx
ˆ 3/4

1/2

ˆ
R
f̂(η + ξ)ei2πηx1(−∞,0)(η)

(ˆ 1/20

−1/20

|φ̂|2(s)
ds

v − s

)
dη dv

= c

ˆ 0

−∞
f̂(η + ξ)ei2π(η+ξ)x dη, c :=

ˆ 3/4

1/2

(ˆ 1/20

−1/20

|φ̂|2(s)
ds

v − s

)
dv,

= c

ˆ ξ

−∞
f̂(η)ei2π(η)x dη = cSξf(x).

This completes the proof of Theorem 6.1, and even provides an explicit expression for the constant
c > 0. �

6.3. The road to Carleson’s theorem. We want to show that (Sξ − S−ξ)f(x)→ f(x), which
by the familiar procedure is reduced to proving that

‖Cf‖L2,∞ . ‖f‖L2 , Cf(x) := sup
ξ∈R
|Sξf(x)|.

By linearizing the Carleson maximal operator C (replace ξ by an arbitrary measurable function
N : R→ R), and using the characterization of the L2,∞ as in the Walsh case, we have the further
reductions to showing that

|〈SN(·)f(·), 1E〉| . ‖f‖L2 |E|1/2.
By substituting ξ = N(x) in the statement of Theorem 6.1, we have

SN(x)f(x) = c

ˆ 2

1

EE′AυN(x)f(x)
dr
r
,

and hence

〈SN(·)f(·), 1E〉 =
ˆ
E

SN(x)f(x) dx = c

ˆ 2

1

EE′
ˆ
E

AυN(x)f(x) dx
dr
r

= c

ˆ 2

1

EE′〈AυN(·)f(·), 1E〉
dr
r
.

(6.2)

Suppose we can prove that
|〈AυN(·)f(·), 1E〉| . ‖f‖L2 |E|1/2 (6.3)
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uniformly in the parameter υ which controls the choice of the dyadic systems. By (6.2), this would
immediately give the corresponding bound for SN(·) in place of AυN(·).

So our task is to prove (6.3). In doing so, we will drop the reference to the parameter υ, since
the particular dyadic system that is used is unimportant for the argument, and it will be obvious
that all estimates are independent of this choice. Written out in full, we hence want to estimate

〈AN(·)f(·), f〉 =
∑
P∈P
〈f, φP 〉〈φP 1ωPuu (N(·)), 1E〉 =

∑
P∈P
〈f, φP 〉〈φP , 1EPuu 〉

where
EPuu := E ∩ {x : N(x) ∈ ωPuu}.

So the goal is now formally very similar to the Walsh case, the only difference being the replacement
of the Walsh wave packets wP by the Fourier wave packets φP .

7. Density, energy and trees for the Fourier model

Our proof of Carleson’s theorem for the Fourier model will be based on the same key concepts
as in the Walsh case: density, energy and trees.

7.1. Density. Recall that the Walsh-density of a collection P was defined by

Walsh-density(P) := sup
P∈P

sup
P ′≥P

|EP ′ ∩ IP ′ |
|IP ′ |

.

Here the ratio of the measures can also be written as
|EP ′ ∩ IP ′ |
|IP ′ |

=
ˆ
EP ′

1IP ′
|IP ′ |

=
ˆ
EP ′

Tc(IP ′ )D
1
|IP ′ |1[−1/2,1/2),

where the integrand 1IP ′/|IP ′ | is the L
1-normalized version of 1IP ′/|IP ′ |

1/2 = |wP ′ | for the Walsh
wave packet wP ′ .

The present definition of density will be accordingly adapted to the Fourier wave packets φP .
Since φ ∈ S (R), we have in particular that

|φ(x)| . (1 + |x|)−10 =: v(x),

and then
|φP | = |Mc(ωPd )Tc(IP )D

2
|IP |φ| = Tc(IP )D

2
|IP ||φ| . Tc(IP )D

2
|IP |v.

Changing to L1-normalization, we define

vI(x) := Tc(I)D
1
|I|v(x) =

1
|I|

(
1 +
|x− c(I)|
|I|

)−10

,

so that |φP | . |IP |1/2vIP . Then we define:

density(P) := sup
P∈P

sup
P ′≥P

ˆ
EP ′

vIP ′ .

Thanks to the next lemma, an immediate reformulation is

density(P) h sup
P∈P

sup
P ′≥P

∞∑
k=0

2−10k |EP ′ ∩ 2kIP ′ |
|IP ′ |

,

which clearly illustrates the difference compared to the Walsh case: The Walsh-density involves
just the zeroth term of the sum, whereas we now need to also handle the rapidly decaying tail.

Lemma 7.1.

vI(x) h
1
|I|

∞∑
k=0

2−10k12kI(x).
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Proof. Clearly

vI(x) = 1I(x)vI(x) +
∞∑
j=1

12jI\2j−1IvI(x) h
1
|I|

1I(x) +
∞∑
j=1

2−10j

|I|
12jI\2j−1I ,

since vI(x) h |I|−12−10j for x ∈ 2jI \ 2j−1I. On the other hand,
∞∑
k=0

2−10k12kI(x) =
∞∑
k=0

2−10k
(

1I(x) +
k∑
j=1

12jI\2j−1I(x)
)

= 1I(x)
∞∑
k=0

2−10k +
∞∑
j=1

12jI\2j−1I(x)
∞∑
k=j

2−10k h 1I(x) +
∞∑
j=1

12jI\2j−1I(x)2−10j ,

since
∑∞
k=j 2−10k h 2−10j . �

The statement of the density lemma is exactly as in the Walsh case, but the proof requires
elaboration due to the mentioned tail.

Proposition 7.1 (Density lemma). Let P be a finite collection of tiles. Then there is a disjoint
decomposition

P = Psparse ∪
⋃
j

Tj ,

where
density(Psparse) ≤ 1

4 density(P),
and each Tj is a tree with top Tj, such that∑

j

|ITj | . density(P)−1|E|.

Proof. Denote δ := density(P). As in the Walsh case, the collection

Psparse :=
{
P ∈ P : sup

P ′≥P

ˆ
EP ′

vIP ′ ≤
δ

4

}
satisfies the required bound. For each of the remaining tiles P ∈ P1 := P \ Psparse, there exists by
definition some P ′ ≥ P such that

δ

4
<

ˆ
EP ′

vIP ′ ≤ C
∞∑
k=0

2−10k |EP ′ ∩ 2kIP ′ |
|IP ′ |

≤ C
(

sup
k≥0

2−9k |EP ′ ∩ 2kIP ′ |
|IP ′ |

) ∞∑
k=0

2−k. (7.1)

Among all these P ′, let Tj be the maximal ones with respect to ≤. Then every P ∈ P1 satisfies
P ≤ P ′ ≤ Tj for some P ′ and Tj , and hence all P ∈ P1 can be arranged into trees Tj with tops
Tj . It remains to estimate

∑
|ITj |. To this end, we need to define additional decompositions.

Using (7.1) with P ′ = Tj , we find that for each Tj , there is some k ∈ N, such that

δ

4
< 2C · 2−9k |ETj ∩ 2kITj |

|ITj |
. (7.2)

We define
Jk := {j : (7.2) holds},

and conclude that every j belongs to at least one Jk. Hence∑
j

|ITj | ≤
∞∑
k=0

∑
j∈Jk

|ITj |. (7.3)

In the Walsh case, for k = 0, we simply estimated

|ITj | .
1
δ
|ETj ∩ ITj | =

1
δ
|E ∩ {x : N(x) ∈ ωTj} ∩ ITj | =

1
δ
|E ∩ {x : (x,N(x)) ∈ ITj × ωTj = Tj}|,

and observed that these sets, by the maximality of the Tj , are pairwise disjoint and contained in
E. Now we need additional considerations to ensure such disjointness. Let us write Ij := ITj ,
ωj := ωTj for short.
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A covering argument. Consider a fix k ∈ N. We choose a subcollection J̃k ⊆ Jk such that all
2kI` × ω` for ` ∈ J̃k are pairwise disjoint rectangles in the phase plance. We use the following
recursion:

Choose some ` ∈ Jk for which |I`| is maximal, and remove all j ∈ Jk for which 2kIj × ωj
intersects 2kI` × ω`. Repeat until all indices have been either chosen or removed.

By construction, for every j ∈ Jk, there exists an ` ∈ J̃k such that

|I`| ≥ |Ij | and (2kIj × ωj) ∩ (2kI` × ω`) 6= ∅. (7.4)

Indeed, if j ∈ J̃k, then we can take ` = j. If j /∈ J̃k is not among the chosen indices, then it must
have been removed exactly because 2kIj×ωj intersected some already chosen 2kI`×ω`. Moreover,
since ` was chosen instead of j, it must be that |I`| ≥ |Ij |.

For every ` ∈ J̃k, we define
Jk` := {j ∈ Jk : (7.4) holds},

so that
Jk =

⋃
`∈J̃k

Jk`.

Consequences of the covering. Let k ∈ N and ` ∈ J̃k be fixed. We claim that all Ij with j ∈ Jk`
are pairwise disjoint, and contained in 3 · 2kI`.

The containment is easy: we have Ij ⊆ 2kIj , and this intersects with 2kI` by (7.4). Also, 2kIj
is a shorter interval than 2kI`, which implies that 2kIj ⊆ 3 · 2kI`.

To prove the disjointness, let both j, j′ ∈ Jk`. Thus (7.4) holds for both j and j′ in place of j.
In particular, looking at the frequency intervals, we have

ωj ∩ ω` 6= ∅ 6= ωj′ ∩ ω`.
Since |Ij | ≤ |I`|, we have |ωj | ≥ |ω`|, and similarly for j′. As the intervals are dyadic, the previous
equation line takes the more precise form

ωj ⊇ ω`, ωj′ ⊇ ω`.
But then ωj ∩ωj′ ⊇ ω` 6= ∅. On the other hand, since the tiles Tj and Tj′ are maximal and hence
disjoint, we have

∅ = Tj ∩ Tj′ = (Ij ∩ Ij′)× (ωj ∩ ωj′).
The second factor on the right is non-empty, so the first factor must be empty, which is the claimed
disjointness.

Synthesis. Now we have performed a sufficient analysis, and it is time to collect the pieces together.
Continuing from (7.3), we complete the proof of the Density Lemma as follows:∑

j

|ITj | ≤
∞∑
k=0

∑
j∈Jk

|Ij | ≤
∞∑
k=0

∑
`∈J̃k

∑
j∈Jk`

|Ij |

≤
∞∑
k=0

∑
`∈J̃k

|3 · 2kI`| (since the Ij ⊆ 3 · 2kI` are pairwise disjoint)

.
∞∑
k=0

2k
∑
`∈J̃k

|I`| .
∞∑
k=0

2k
∑
`∈J̃k

1
δ

2−9k|ET` ∩ 2kIT` | (definition of Jk ⊇ J̃k)

.
1
δ

∞∑
k=0

2−8k
∑
`∈J̃k

|E ∩ {x : (x,N(x)) ∈ 2kIT` × ωT`}| (definition of ET`)

.
1
δ

∞∑
k=0

2−8k|E| (since the 2kIT` × ωT` , for ` ∈ J̃k, are pairwise disjoint)

.
1
δ
|E|. �
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7.2. Energy. The definition of energy looks exactly the same as in the Walsh case, just replacing
the Walsh wave packets wP by the Fourier wave packets φP :

energy(P) := sup
T⊆P

up-tree

( 1
|IT |

∑
P∈T
|〈f, φP 〉|2

)1/2

The difficulties arise from the fact that the orthogonality and localization properties of the φP ’s
are not as good as those of the wP ’s, and we again have some tails to estimate.

Proposition 7.2 (Energy lemma). Let P be a finite collection of tiles. Then there is a disjoint
decomposition

P = Plow ∪
⋃
j

Tj ,

where
energy(Plow) ≤ 1

2 energy(P),

and each Tj is a tree with top Tj, such that∑
j

|ITj | . energy(P)−2‖f‖2L2 . (7.5)

Proof assuming an intermediate estimate. The general strategy is the same as in the Walsh case.
For a tree T, let

∆(T) :=
( 1
|IT |

ˆ
P∈Tu

|〈f, φP 〉|2
)1/2

,

where Tu := {P ∈ T : Pu ≤ Tu} is the maximal up-tree supported by the same top T as T.
The trees Tj are chosen recursively as follows: Let E := energy(P). Consider all maximal trees

T ⊆ P among those with the property that ∆(T ) > E /2. Among them, let T1 be one with the
minimal c(ωT ). Remove T from P and iterate. When no trees Tj can be extracted anymore, the
remaining collection qualifies for Plow, and it remains to estimate

∑
j |ITj |.

As in the Walsh case, we get∑
j

|ITj | ≤
4

E 2

∑
j

∑
P∈Tu

|〈f, φP 〉|2.

However, unlike there, we cannot readily identify the double sum as the norm of an orthogonal
projection of f , and actually such an estimate is not in general valid. Instead, there is the following
weaker substitute, were the sum on the left, the one to be estimated, reappears:∑

j

∑
P∈Tu

|〈f, φP 〉|2 . ‖f‖2L2 +
(
E 2
∑
j

|ITj |
)1/3

‖f‖4/3L2 . (7.6)

Assuming this (nontrivial) estimate for the moment, we can conclude the proof: First, we get∑
j

|ITj | . E−2‖f‖2L2 + E−4/3
(∑

j

|ITj |
)1/3

‖f‖4/3L2 =: A+B.

If A ≥ B, then A+B ≤ 2A, which gives exactly the bound (7.5) that we wanted. Else, if A ≤ B,
then A+B ≤ 2B, and we get∑

j

|ITj | . E−4/3
(∑

j

|ITj |
)1/3

‖f‖4/3L2 .

However, dividing both sides by
(∑

j |ITj |
)1/3 and then raising to power 3/2 gives (7.5) again.

This completes the proof of the Energy Lemma, aside from the key estimate (7.6). �

The rest of this subsection will be concerned with the proof of (7.6). We first collect some
geometric lemmas about the structure of the relevant collection of three appearing in this estimate.
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Lemma 7.2. The up-trees Tj,u constructed in the energy lemma satisfy the following disjointness
property:

If P ∈ Tj,u and P ′ ∈ Tj′,u satisfy ωP ⊆ ωP ′d , then IP ′ ∩ ITj = ∅. (7.7)

Proof. Let P, P ′ be two such tiles. Then c(ωTj ) ∈ ωTj ⊆ ωP ⊆ ωP ′d , and hence c(ωTj ) < supωP ′d =
c(ωP ′). On the other hand, since P ′ ∈ Tj′,u, we have ωTj′,u ⊆ ωP ′u , and thus c(ωTj′ ) = inf ωTj′,u ≥
inf ωP ′u = c(ωP ′). Altogether, c(ωTj ) < c(ωP ′) ≤ c(ωTj′ ), and hence Tj was chosen before Tj′ in
the construction.

Suppose contrary to the claim that IP ′ ∩ ITj 6= ∅. But we also have ωP ′ ⊇ ωP ⊆ ωTj , hence
|ωP ′ | ≥ |ωTj |, thus |IP ′ | ≤ |ITj |, and therefore IP ′ ⊆ ITj . But this means that P ′ ≤ ITj ×ωTj , and
hence P ′ would have been included in the maximal tree Tj , and removed before the construction
of Tj′ . This contradiction proves the claim that IP ′ ∩ ITj 6= ∅. �

Lemma 7.3. Property (7.7) implies that all down-halves Pd of all

P ∈
⋃

T∈T

T =: P

are pairwise disjoint.

Proof. Let P ∈ T, P ′ ∈ T′ be two different tiles in P. If ωPd ∩ ωP ′d = ∅, then Pd ∩ P ′d = ∅. So
assume that ωPd ∩ωP ′d 6= ∅, and then for example ωPd ⊆ ωP ′d . If ωPd = ωP ′d two tiles, then IP and
IP ′ are either equal (which cannot be in our case, since this would imply that P = P ′) or disjoint
(in which case P ∩ P ′ = ∅). We are left with the case that ωPd ( ωP ′d , and then ωP ( ωP ′d . But
this implies that IP ′ ∩ IT = ∅ by (7.7), hence IP ′ ∩ IP = ∅ and thus P ∩ P ′ = ∅ also in this final
case. �

Lemma 7.4. Suppose that T satisfies (7.7), and fix a P ∈ T ∈ T . Then among the tiles P ′ ∈ P
with ωP ′d ⊇ ωP , the time intervals IP ′ are pairwise disjoint and contained in IcT.

Proof. Let P ′, P ′′ be two such tiles. So in particular ωP ′d ∩ ωP ′′d ⊇ ωP 6= ∅. Since P ′d ∩ P ′′d = ∅, it
must be that IP ′ ∩ IP ′′ = ∅. The fact that IP ′ ⊆ IcT is immediate from (7.7) �

Proposition 7.3. Let T be a disjoint collection of trees with the property (7.7). Then(∑
P∈P
|〈f, φP 〉|2

)1/2

. ‖f‖L2 +
(

sup
P∈P

|〈f, φP 〉|
|IP |1/2

[ ∑
T∈T

|IT|
]1/2)1/3

‖f‖2/3L2 ,

where

P :=
⋃

T∈T

T.

Note that

sup
P∈P

|〈f, φP 〉|
|IP |1/2

≤ energy(P),

so that Proposition 7.3 proves the estimate (7.6) required to complete the proof of the Energy
lemma.

Proof. We start with the estimate

S2 :=
∑
P∈P
|〈f, φP 〉|2 =

〈∑
P∈P
〈f, φP 〉φP , f

〉
≤
∥∥∥∑
P∈P
〈f, φP 〉φP

∥∥∥
L2(R;H)

‖f‖L2(R;H).
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Here ∥∥∥∑
P∈P
〈f, φP 〉φP

∥∥∥2

L2(R;H)
=

∑
P,P ′∈P

〈f, φP 〉〈φP , φP ′〉〈φP ′ , f〉

=
( ∑
P,P ′∈P
ωP=ωP ′

+2
∑

P,P ′∈P
ωP⊆ωP ′

d

)
〈f, φP 〉〈φP , φP ′〉〈φP ′ , f〉

=: S1 + 2S2,

where the middle line follows from the fact that supp φ̂P ⊆ ωPd , so that 〈φP , φP ′〉 6= 0 only if
ωPd ∩ ωPd 6= ∅, which means that these intervals either coincide, or one is strictly contained in
the other.

To proceed further, we need the following estimate, which is left as an exercise:

|〈φP , φP ′〉| .
( |IP |
|IP ′ |

)1/2

‖vIP 1IP ′‖1, |IP ′ | ≤ |IP |, (7.8)

where vI(x) :=
1
|I|

(
1 +
|x− c(I)|
|I|

)−10

.

In S1, we can use (7.8) with either order of IP and IP ′ , to get

S1 ≤
∑

P,P ′∈P
ωP=ωP ′

1
2

(|〈f, φP 〉|2 + |〈f, φP ′〉|2) min{‖vIP 1IP ′‖1, ‖vIP ′1IP ‖1}

≤
∑
P∈P
|〈f, φP 〉|2

∑
P ′=I′×ω′∈P
ω′=ωP

‖vIP 1I′‖1 ≤
∑
P∈P
|〈f, φP 〉|2

∑
I′∈D
|I′|=|IP |

‖vIP 1I′‖1

=
∑
P∈P
|〈f, φP 〉|2‖vIP ‖1 .

∑
P∈P
|〈f, φP 〉|2 = S2.

We used the fact that the intervals I ′ ∈ D with |I ′| = |IP | form a partition of R.
We turn our attention to S2:

S2 .
∑
P∈P
|〈f, φP 〉|

∑
P ′∈P

ωP ′
d
⊃ωP

( |IP |
|IP ′ |

)1/2

‖vIP 1IP ′‖1|〈φP ′ , f〉|

≤
(

sup
P ′∈P

|〈φP ′ , f〉|
|IP ′ |1/2

)∑
P∈P
|〈f, φP 〉||IP |1/2

∑
P ′∈P

ωP ′
d
⊃ωP

‖vIP 1IP ′‖1

≤
(

sup
P ′∈P

|〈φP ′ , f〉|
|IP ′ |1/2

)∑
P∈P
|〈f, φP 〉||IP |1/2‖vIP 1IcT(P )

‖1.

In the last line, we denoted by T(P ) the the unique tree with P ∈ T(P ) ∈ T , and used Lemma 7.4
which guarantees that the intervals IP ′ appearing in the inner sum on the penultimate line are
pairwise disjoint and contained in IcT(P ).

We use Cauchy–Schwarz to get∑
P∈P
|〈f, φP 〉||IP |1/2‖vIP 1IcT(P )

‖1

≤
(∑
P∈P
|〈f, φP 〉|2

)1/2(∑
P∈P
|IP |‖vIP 1IcT(P )

‖21
)1/2

. S
(∑
P∈P
|IP |‖vIP 1IcT(P )

‖1
)1/2

,

where we estimated ‖vIP 1IcT(P )
‖1 ≤ ‖vIP ‖1 . 1.
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Finally, we write∑
P∈P
|IP |‖vIP 1IcT(P )

‖1 =
∑
T∈T

∑
P∈T
|IP |‖vIP 1IcT‖1

≤
∑
T∈T

∑
P=I×ω≤IT×ωT

|I|‖vI1IcT‖1 ≤
∑
T∈T

∑
I∈D
I⊆IT

|I|‖vI1IcT‖1,

where the last step follows from the fact that the summand depends only on the time interval I,
and that the frequency interval ω of P = I × ω is uniquely determined by I, since |ω| = 1/|I| and
ω ⊇ ωT.

We still need to estimate∑
I∈D
I⊆IT

|I|‖vI1IcT‖1 =
∞∑
k=0

∑
I⊆IT

|I|=2−k|IT|

|I|
ˆ
IcT

1
|I|

(
1 +
|x− c(I)|
|I|

)−10

dx

=
∞∑
k=0

ˆ
IcT

∑
I⊆IT

|I|=2−k|IT|

(
1 +
|x− c(I)|
|I|

)−10

dx.

For a fixed x ∈ IcT, the smallest possible value of |x− c(I)| is at least dist(x, IT) (since c(I) ∈ IT),
and other possible values increase in integer multiples of |I| = 2−k|IT|. Thus∑

I⊆IT
|I|=2−k|IT|

(
1 +
|x− c(I)|
|I|

)−10

.
∞∑
n=0

(
1 +
|dist(x, IT)|

2−k|IT|
+ n

)−10

.
(

1 +
|dist(x, IT)|

2−k|IT|

)−9

,

for example estimating the sum by an integral in the last step. Hence we have proved the first
step below, and the second is left as an exercise:∑

I∈D
I⊆IT

|I|‖vI1IcT‖1 .
∞∑
k=0

ˆ
IcT

(
1 + 2k

|dist(x, IT)|
|IT|

)−9

dx. . |IT|,

Then, combining all the estimates, we have shown that

S2 ≤
√
S1 + 2S2‖f‖2 .

√
S2 +AS‖f‖2,

where
A :=

(
sup
P ′∈P

|〈φP ′ , f〉|
|IP ′ |1/2

)( ∑
T∈T

|IT|
)1/2

‖f‖2.

If S2 ≥ AS, we get S2 . S‖f‖2, and hence S . ‖f‖2. If S2 < AS, then S2 . A1/2S1/2‖f‖2, thus
S3/2 . A1/2‖f‖2, and hence S . A1/3‖f‖2/32 . So in any case we deduce that

S . ‖f‖2 +A1/3‖f‖2/32 ,

which is the asserted bound. �

7.3. Trees.

Proposition 7.4 (Tree lemma). Let T be a finite tree of tiles. Then∣∣∣∑
P∈T
〈f, φP 〉〈φP , 1EPuu 〉

∣∣∣ . density(T) energy(T)|IT|.

Let T denote a top of T. Let J be the collection of maximal dyadic intervals J with the property
that 2J 6⊇ IP for any P ∈ T. We use this collection to reorganize the integrals 〈φP , 1EPuu 〉 =´
φP 1EPuu . Note that the support of the Fourier wave-packets φP is all R (in contrast to the

Walsh wave-packets wP with suppwP = IP ⊆ IT , and therefore we need to choose J slightly
differently now.

Lemma 7.5. J is a partition of R.
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Proof. Exercise. �

Lemma 7.6. Every J ∈J satisfies either J ⊆ 5IT , or |J | ≥ 2|IT | and 1
2 |J | ≤ dist(J, IT ) ≤ 2|J |.

Proof. Suppose first that J ⊆ 5IT and |J | > |IT |. Note that there are exactly three dyadic
intervals J with this property: I(1)

T , I(2)
T , and I(2)

T \ I
(1)
T . But in each case it is easy to check that

2J ⊇ IT ⊇ IP for every P ∈ T, and therefore such J cannot be in J . Thus all J ∈ J with
J ⊆ 5IT satisfy |J | ≤ |IT |.

Suppose then that J 6⊆ 5IT and |J | ≤ |IT |. Thus J is disjoint from 5IT , so that dist(J, IT ) ≥
2|IT | ≥ 2|J |. But then 2J (1) ⊂ 5J is still disjoint from IT , so cannot contain any IP . Thus J
is not a maximal interval with this property, and hence J /∈ J . Thus all J ∈ J with J 6⊆ 5IT
satisfy |J | ≥ 2|IT |.

Let then J ∈J satisfy |J | ≥ 2|IT |. Let J ′ ⊂ 2J be a dyadic interval with |J ′| = 1
2 |J | ≥ |IT |.

If J ′ ∩ IT 6= ∅, then J ′ ⊇ IT , and therefore 2J ⊃ IP for all P , which is a contradiction. Thus
every such J ′ is disjoint from IT , and hence 2J ∩ IT = ∅. Hence dist(J, IT ) ≥ 1

2 |J |. On the other
hand, by maximality, we have that 2J (1) ⊇ IP for some IP . Since the biggest distance from J to
a point in 2J (1) \ J is 2|J |, we find that dist(J, IT ) ≤ 2|J |. �

By Lemma 7.5, we analyse the quantity in the Tree lemma as follows∣∣∣∑
P∈T
〈f, φP 〉〈φP , 1EPuu 〉

∣∣∣ =
∣∣∣ˆ

R

∑
P∈T
〈f, φP 〉φP 1EPuu dx

∣∣∣
≤
∥∥∥∑
P∈T
〈f, φP 〉φP 1EPuu

∥∥∥
L1(R)

=
∑
J∈J

∥∥∥∑
P∈T
〈f, φP 〉φP 1EPuu

∥∥∥
L1(J)

≤
∑
J∈J

( ∑
P∈T
|IP |≤|J|

|〈f, φP 〉|‖φP 1EPuu‖L1(J) +
∥∥∥ ∑

P∈T
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
L1(J)

)
.

Part |IP | ≤ |J |. A typical coefficient here can be bounded as follows:

|〈f, φP 〉|‖φP 1EPuu ‖L1(J) =
|〈f, φP 〉|
|IP |1/2

∥∥∥ φP
|IP |1/2

1EPuu
∥∥∥
L1(J)

|IP |

. energy(T)
ˆ
J∩EPuu

1
|IP |

(
1 +
|x− c(IP )|
|IP |

)−20

dx|IP |

. energy(T)
(

1 +
dist(J, IP )
|IP |

)−10
ˆ
EPuu

1
|IP |

(
1 +
|x− c(IP )|
|IP |

)−10

dx|IP |

. energy(T)
(

1 +
dist(J, IP )
|IP |

)−10

density(T)|IP |.

We then turn to the sum ∑
P∈T
|IP |≤|J|

=
∑

k:2k≤|J|

∑
P∈T
|IP |=2k

of these coefficients. Note first that all IP in the sum must be disjoint from J : if IP ∩ J 6= ∅ and
|IP | ≤ |J |, then IP ⊆ J ⊂ 2J , a contradiction. So all relevant IP are either on the left or right of
J . The distance dist(J, IP ) attains some minimal value (possible for two different intervals IP on
opposite sides of J), and all other values (again, each one attained for at most two different IP )
are equal to this smallest value plus n|IP | for some n ∈ N. Moreover, the smallest value can be
estimated from below by dist(J, IP )/|IP | ≥ dist(J, IT )/|IT |, and hence∑

P∈T
|IP |=2k

(
1 +

dist(J, IP )
|IP |

)−10

≤ 2
∞∑
n=0

(
1 +

dist(J, IT )
|IT |

+ n
)−10

.
(

1 +
dist(J, IT )
|IT |

)−9

.
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Since
∑
k:2k≤|J| 2

k = 2 · |J |, we have∑
P∈T
|IP |≤|J|

|〈f, φP 〉|‖φP 1EPuu ‖L1(J) . energy(T) density(T)|J |
(

1 +
dist(J, IT )
|IT |

)−9

,

and it remains to sum this over J ∈J . We have∑
J∈J

|J |
(

1 +
dist(J, IT )
|IT |

)−9

≤
∑
J∈J
J⊆5IT

|J |+
∑
J∈J
J 6⊆5IT

|J |
(

1 +
dist(J, IT )
|IT |

)−9

,

where the first sem is immediately dominated by 5|IT |, since the intervals J are pairwise disjoint.
For the second sum, we use Lemma 7.6. If z ∈ J is arbitrary, we have dist(J, IT ) ≤ dist(z, IT ) ≤

dist(J, IT ) + |J |. By Lemma 7.6, dist(IT , J) h |J |, so in fact dist(z, IT ) h |J | h dist(J, IT ) for all
z ∈ J . Thus

|J |
(

1 +
dist(J, IT )
|IT |

)−9

.
ˆ
J

dx · inf
z∈J

(
1 +

dist(z, IT )
|IT |

)−9

≤
ˆ
J

(
1 +

dist(x, IT )
|IT |

)−9

dx.

Finally, if x ∈ J ∈ J and J 6⊆ 5IT , Lemma 7.6 further implies that dist(x, IT ) ≥ dist(J, IT ) ≥
1
2 |J | ≥ |IT |. Thus∑

J∈J
J 6⊆5IT

|J |
(

1 +
dist(J, IT )
|IT |

)−9

.
ˆ

(3IT )c

(
1 +

dist(x, IT )
|IT |

)−9

dx

≤ 2
ˆ ∞
|IT |

(
1 +

y

|IT |

)−9

dy = 2|IT |
ˆ ∞

1

(1 + u)−9 du . |IT |.

This completes the estimate∑
J∈J

∑
P∈T
|IP |≤|J|

|〈f, φP 〉|‖φP 1EPuu ‖L1(J) . density(T) energy(T)|IT |.

Part |IP | > |J |. Here we should investigate the functions

FJ := 1J
∑
P∈T
|IP |>|J|

〈f, φP 〉φP 1EPuu .

Observe first that

suppFJ ⊆ J ∩
⋃
P∈T
|IP |>|J|

EPuu ⊆ J ∩
⋃
P∈T
|IP |>|J|

EPu =: GJ .

Lemma 7.7.
|GJ | . density(T)|J |.

Proof. Assume that the union in the definition of GJ is nonempty, for otherwise the claim is
trivial.

The idea is to construct a particular tile P̂ so that P̂ ≥ P̃ for some P̃ ∈ T and EPu ⊆ EP̂ for
all P in the union defining GJ . Then we would have GJ ⊆ J ∩ EP̂ .

For details, let Ĵ := J (1) be the dyadic parent of J . Thus |Ĵ | ≤ |IP | for all P in the union, and
hence |Ĵ | ≤ |IT |. By maximality of J , we know that 2Ĵ contains some IP̃ . Notice that the biggest
dyadic interval contained in 2Ĵ is Ĵ itself, so that |IP̃ | ≤ |Ĵ |.

We define a tile P̂ = IP̂ × ωP̂ as follows: IP̂ is the unique dyadic interval with |IP̂ | = |Ĵ | so
that IP̂ ⊇ IP̃ , and ωP̂ is the unique dyadic interval of length |ωP̂ | = 1/|Ĵ | so that ωP̂ ⊇ ωT .
Since we have IP̃ ⊆ IT and ωP̃ ⊇ ωT , it follows by comparing the sizes that IP̃ ⊆ IP̂ ⊆ IT and
ωP̃ ⊇ ωP̂ ⊇ ωT . Thus P̃ ≤ P̂ ≤ T .
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We make an observation about the location of the interval IP̂ . Recall that IP̂ ∩ 2Ĵ ⊇ IP̃ 6= ∅,
and |IP̂ | = |Ĵ |. So IP̂ is either Ĵ or one of its dyadic neighbours of the same length. Since J is a
dyadic child of Ĵ , this in turn implies that

vIP̂ (x) =
1
|IP̂ |

(
1 +
|x− c(IP̂ )|
|IP̂ |

)−10

&
1J(x)
|J |

.

We can complete the argument: Let P be one of the tiles with P ∈ T and |IP | > |J |, thus
|IP | ≥ |Ĵ |. Then ωP ⊇ ωT and |ωP | ≤ 1/|Ĵ |. But also ωP̂ ⊇ ωT , and |ωP̂ | = 1/|Ĵ |. This implies
that ωP ⊆ ωP̂ , and hence EP = E ∩ {x : N(x) ∈ ωP } ⊆ E ∩ {x : N(x) ∈ ωP̂ } = EP̂ . Therefore
GJ ⊆ J ∩ EP̂ , and then

|GJ | ≤ |J ∩ EP̂ | = |J |
ˆ
EP̂

1J
|J |
. |J |

ˆ
EP̂

vIP̂ ≤ |J |density(T),

since P̂ ≥ P̃ ∈ T is one of the tiles appearing in the supremum in the definition of density. �

After this, the strategy will be to estimate

‖FJ‖L1(J) ≤ |GJ | · ‖FJ‖∞ . density(T)|J | · ‖FJ‖∞,

and we should find for FJ a bound that involves the energy of the tree T.

Splitting the tree T. Recall that

P ≤ T ⇔
(
Pu ≤ Tu or Pd ≤ Td

)
and applying this to the up-parts Pu in place of P ,

Pu ≤ Tu ⇔
(
Puu ≤ Tuu or Pud ≤ Tud

)
.

(Actually, in the Walsh context, we used these results with tiles and bitiles, but they obviously
extend to semi-tiles and quarter-tiles.) Accordingly, we can split

T = Tuu ∪ Tud ∪ Td,

where
Tuu := {P ∈ T : ωPuu ⊇ ωTuu},
Tud := {P ∈ T \ Tuu : ωPud ⊇ ωTud},
Td := {P ∈ T \ (Tuu ∪ Tud) : ωPd ⊇ ωTd}.

The disjoint parts Td and Tud.

Lemma 7.8. For tiles P, P ′ ∈ Td, if ωP 6= ωP ′ , then ωPu ∩ ωP ′u = ∅. Similarly, for P, P ′ ∈ Tud,
if ωP 6= ωP ′ , then ωPuu ∩ ωP ′uu = ∅

Proof. Consider the first case. We have ωPd ∩ωP ′d ⊇ ωTd 6= ∅; therefore e.g. ωP ′d ⊆ ωPd , and since
the tiles are unequal, in fact ωP ′ ⊆ ωPd . But then ωP ′u ∩ ωωPu ⊆ ωP ′ ∩ ωPu = ∅.

The second case may be proven similarly, or as a an application of the first case to the semi-tiles
Pu, P

′
u ∈ (Tu)d with ωPu 6= ωP ′u , hence ω(Pu)u ∩ ω(P ′u)u = ∅. �

Lemma 7.9. We have ∥∥∥ ∑
P∈Td
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
∞
. energy(T),

as well as the similar estimate with Tud in place of Td.

Proof. We write ∑
P∈Td
|IP |>|J|

〈f, φP 〉φP 1EPuu =
∑

k:2k>|J|

∑
P∈Td
|IP |=2k

〈f, φP 〉φP 1EPuu . (7.9)
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Note that if |IP | 6= |IP ′ |, then ωP 6= ωP ′ , and hence by Lemma 7.8, ωPuu ∩ ωP ′uu = ∅. Thus
EPuu ∩ EP ′uu = E ∩ {x : N(x) ∈ ωPuu ∩ ωP ′uu} = ∅. We conclude that the k-summands on the
right of (7.9) are disjointly supported, and hence∥∥∥ ∑

P∈Td
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
∞

=
∑

k:2k>|J|

∥∥∥ ∑
P∈Td
|IP |=2k

〈f, φP 〉φP 1EPuu
∥∥∥
∞
.

To estimate the L∞-norm for a fixed k, we have∑
P∈Td
|IP |=2k

|〈f, φP 〉φP (x)1EPuu (x)| ≤
∑

P=ωP×IP∈Td
|IP |=2k

|〈f, φP 〉|
|IP |1/2

× |IP |1/2|φP (x)|

. energy(T)
∑
I∈D
|I|=2k

(
1 +
|x− c(I)|
|I|

)−10

. energy(T)
∞∑
n=0

(1 + n)−10 . energy(T).

We used (as often before) that c(I) assumes values which are increase and decrease in integer
multiples of |I|.

The proof for Tud is almost the same, just using the other part of Lemma 7.8. �

Now we can already complete the estimate for∑
J∈J

∥∥∥ ∑
P∈Td∪Tud
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
L1(J)

.

Observe that if the inner sum is non-empty, then we have |J | < |IP | for some P ∈ T, and hence
|J | < |IP | ≤ |IT |. By Lemma 7.6, this implies that J ⊆ 5IT .

∑
J∈J

∥∥∥1J
∑

P∈Td∪Tud
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥

1

≤
∑
J∈J
J⊆5IT

|GJ | ×
∥∥∥1J

∑
P∈Td∪Tud
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
∞

.
∑
J∈J
J⊆5IT

density(T)|J | × energy(T)

. density(T) energy(T)|IT |,

since the intervals J in the sum are pairwise disjoint and contained in 5IT .

The nested part Tuu. It only remains to consider∑
P∈Tuu
|IP |>|J|

〈f, φP 〉φP (x)1EPuu (x) = 1E(x)
∑

P∈Tuu
|IP |>|J|

〈f, φP 〉φP (x)1ωPuu (N(x))

= 1E(x)
∑

P∈Tuu
|IP |>|J|

ωPuu3N(x)

〈f, φP 〉φP (x).

The condition that P ∈ Tuu means that ωPuu ⊇ ωTuu . Hence any two ωPuu appearing in the
sum intersect, and hence the larger interval contains the smaller. In particular, if ωPuu 3 N(x)
for some P in this sum, then this containment also holds for all bigger ωPuu . So the condition
ωPuu 3 N(x) can be equivalently written as |ωP | > |ωx|, where ωx is frequency interval depending
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on x. On the other hand, the condition that |IP | > |J | is equivalent to |IP | ≥ 2|J |, and then
further to |ωP | ≤ (2|J |)−1 =: |ωJ |. Thus, we have∑

P∈Tuu
|IP |>|J|

ωPuu3N(x)

〈f, φP 〉φP (x) =
∑

P∈Tuu
|ωx|<|ωP |≤|ωJ |

〈f, φP 〉φP (y)
∣∣∣
y=x

.

Lemma 7.10. For a fixed x we have the identity∑
P∈Tuu

|ωx|<|ωP |≤|ωJ |

〈f, φP 〉φP (y)

= Mc(ωTuu )

(
(D1

2|J|χ−D
1
1/|ωx|χ) ∗M−c(ωTuu )

∑
P∈Tuu

〈f, φP 〉φP
)

(y),

where χ ∈ S (R) is an auxiliary function whose Fourier transform satisfies

1[−0.8,0.8] ≤ χ̂ ≤ 1[−0.85,0.85].

Proof. We investigate the Fourier transforms. Recall that

φP = Mc(ωPd )Tc(IP )D
2
|IP |φ,

where supp φ̂ ⊆ [− 1
20 ,

1
20 ], has

supp φ̂P ⊆ c(ωPd) + [−0.05, 0.05]|ωP |.
On the other hand, we have

c(ωTuu) ∈ ωTuu ⊆ ωPuu = c(ωPd) + [0.5, 0.75]|ωP |.

Expressing the support of supp φ̂P relative to c(ωTuu), we thus have

supp φ̂P ⊆ c(ωTuu) + [−0.8,−0.45]|ωP |.
Then it follows, if χ is as defined, and Ω is a dyadic side-length, that

χ̂
(η − c(ωTuu)

Ω

)
φ̂P (η) =

{
φ̂P (η), |ωP | ≤ Ω,
0 |ωP | > Ω.

Observe that |ωP | > Ω implies that |ωP | ≥ 2Ω, and hence

supp φ̂P ⊆ c(ωTuu) + (−∞, 0.45]|ωP | ⊆ c(ωTuu) + (−∞, 0.9]Ω.

Hence ∑
P∈Tuu

|ωx|<|ωP |≤|ωJ |

〈f, φP 〉φ̂P (η) =
[
χ̂
(η − c(ωTuu)

ωJ

)
− χ̂

(η − c(ωTuu)
ωx

)] ∑
P∈Tuu

〈f, φP 〉φ̂P (η).

Moreover,

χ̂
(η − c

Ω

)
φ̂P = TcD

∞
Ω χ̂(η)φ̂P = F (McD

1
1/Ωχ)(η)FφP (η) = F (McD

1
1/Ωχ ∗ φP )(η)

and thus, identifying the functions under the equal Fourier transforms, we have∑
P∈Tuu

|ωx|<|ωP |≤|ωJ |

〈f, φP 〉φP (y) =
(
Mc(ωTuu )(D1

2|J|χ−D
1
1/|ωx|χ) ∗

∑
P∈Tuu

〈f, φP 〉φP
)

(y).

The right side may be expressed as in the statement of the lemma by the simple identity

Mcg ∗ h(x) =
ˆ

R
Mcg(x− y)h(y) dy =

ˆ
R
ei2πc(x−y)g(x− y)h(y) dy

= ei2πcx
ˆ

R
g(x− y)e−i2πcyh(y) dy = Mc(g ∗M−ch)(x). �

We combine the identity of Lemma 7.10 with the following estimate:
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Lemma 7.11. For x ∈ I (an interval), we have

|D1
|I|χ ∗ g(x)| . inf

I
Mg.

Proof. We write out

D1
|I|χ ∗ g(x) =

ˆ
R

1
|I|
χ
(x− y
|I|

)
g(y) dy =

( ˆ
I

+
∞∑
k=0

ˆ
2k+1I\2kI

) 1
|I|
χ
(x− y
|I|

)
g(y) dy.

For x, y ∈ 2I, we simply estimate |χ((x− y)/|I|)| . 1. For x ∈ I and y ∈ 2k+1I \ 2kI and k ≥ 1,
we have |x− y|/|I| & 2k, and hence |χ((x− y)/|I|)| . 2−10k. So altogether

|D1
|I|χ ∗ g(x)| . 1

|I|

ˆ
I

|g(y)|dy +
∞∑
k=0

2−10k 1
|I|

ˆ
2k+1I\2kI

|g(y)|dy

.
1
|I|

ˆ
I

|g(y)|dy +
∞∑
k=0

2−9k 1
|2k+1I|

ˆ
2k+1I

|g(y)|dy,

and each of the averages here appears when evaluating the maximal function Mg(z) at any z ∈ I;
hence

|D1
|I|χ ∗ g(x)| ≤Mg(z) +

∞∑
k=0

2−9kMg(z) .Mg(z),

and it remains to take infimum over z ∈ I. �

We apply Lemma 7.11 to the right side of the identity of Lemma 7.10 with I = 2J and
I = Jx ⊇ 2J , where |Jx| = 1/|ωx|. Note that we may assume without loss of generality that
|Jx| > 2|J |, since otherwise the summation of the left of Lemma 7.10 is empty and the result is
zero.

Thus, for y = x ∈ J ⊂ 2J ⊂ Jx, we have

∣∣∣ ∑
P∈Tuu
|IP |>|J|

〈f, φP 〉φP (x)1EPuu (x)
∣∣∣ ≤ ∣∣∣ ∑

P∈Tuu
|ωx|<|ωP |≤|ωJ |

〈f, φP 〉φP (x)
∣∣∣

=
∣∣∣((D1

2|J|χ−D
1
1/|ωx|χ) ∗M−c(ωTuu )

∑
P∈Tuu

〈f, φP 〉φP
)

(x)
∣∣∣

. inf
2J
M
( ∑
P∈Tuu

〈f, φP 〉φP
)

+ inf
Jx
M
( ∑
P∈Tuu

〈f, φP 〉φP
)

. inf
J
M
( ∑
P∈Tuu

〈f, φP 〉φP
)
,

since the infimum over a bigger set is smaller.
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We can complete the proof of the remaining part of the Tree Lemma:∑
J∈J
J⊆5IT

∥∥∥1J
∑

P∈Tuu
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥

1

≤
∑
J∈J
J⊆5IT

|GJ | ×
∥∥∥1J

∑
P∈Tuu
|IP |>|J|

〈f, φP 〉φP 1EPuu
∥∥∥
∞

.
∑
J∈J
J⊆5IT

density(T)|J | × inf
J
M
( ∑
P∈Tuu

〈f, φP 〉φP
)

≤ density(T)
ˆ

5IT

M
( ∑
P∈Tuu

〈f, φP 〉φP
)

(x) dx

≤ density(T)|5IT |1/2
[ ˆ

R
M
( ∑
P∈Tuu

〈f, φP 〉φP
)

(x)2 dx
]1/2

. density(T)|IT |1/2
[ ˆ

R

( ∑
P∈Tuu

〈f, φP 〉φP
)

(x)2 dx
]1/2

.

Recall from an exercise that the functions φP , where P ∈ Tuu, split into 20 pairwise orthogonal
subcollections. This allows to continue the previous estimate with

. density(T)|IT |1/2
[ ∑
P∈Tuu

|〈f, φP 〉|2
]1/2

= density(T)
[ 1
|IT |

∑
P∈Tuu

|〈f, φP 〉|2
]1/2
|IT |

≤ density(T) energy(T)|IT |.

This is the desired bound, and completes the proof of the Tree Lemma in the Fourier model.

7.4. Carleson’s theorem: summary. With the three basic lemmas at hand, the completion
of the proof of Carleson’s theorem proceeds exactly as in the Walsh case. Let us briefly recall
the main lines. First, the original convergence question, Sξf(x) → f(x), was reduced to the
study of the corresponding maximal operator supξ∈R |Sξf(x)|, and then via linearization, the
operator SN(x)f(x). We used an averaging trick over translated and dilated dyadic systems to
replace the partial Fourier integrals Sξf(x) =

´ ξ
−∞ f̂(η)ei2πηx dη by the model operators Aξf(x) =∑

P∈P〈f, φP 〉φP (x)1ωPuu (ξ). After the linearization and a property of the weak Lp norms, the
main inequality ‖SN(·)f‖L2,∞ . ‖f‖L2 was seen to follows from |

∑
P∈P〈f, φP 〉〈φP , 1EPuu 〉| .

‖f‖2|E|1/2, where P is any finite collection of tiles. The Tree Lemma allows to control the left
side by density(T) energy(T)|IT | if P = T is a tree with top T . On the other hand, the Density
and Energy Lemmas allow to extract trees out of any finite collection P, in such a way that the
energy and the density of the remaining collection are strictly smaller than the original. As in the
Walsh case, a recursive use of these lemmas gives the decomposition

P =
⋃
n∈Z

⋃
j

Tn,j ∪ Presidual,

where
density(Tn,j) ≤ 22n|E|, energy(Tn,j) ≤ 2n‖f‖2,

∑
j

|Tn,j | . 2−2n,

and density(Presidual) = energy(Presidual) = 0. There is also the universal bound density(Tn,j) . 1.
With these estimates and the Tree Lemma, it follows that∣∣∣∑

P∈P
〈f, φP 〉〈φP , 1EPuu 〉

∣∣∣ .∑
n∈Z

min{1, 22n|E|} × 2n‖f‖2 × 2−2n.



44 TUOMAS HYTÖNEN

This series decays geometrically for both n → ∞ and n → −∞, hence converges, and a more
careful computation reveals the correct bound ‖f‖2|E|1/2. Thus the proof of Carleson’s theorem
is complete.

7.5. Bibliography. Carleson’s original paper, where he proved his celebrated theorem on Fourier
series, is [2]. Billard’s result on Walsh series appeared in the same year [1]. Another classical proof
of Carleson’s theorem is due to Fefferman [3].

However, rather than following these classical sources, the present lecture notes are essentially
an expanded version of the paper of Lacey and Thiele [4], where they give a third proof for
Carleson’s theorem. The lecturer’s ongoing collaboration with Michael Lacey on related topics
has also influenced the presentation.
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