Time Frequency Analysis - Winter 2012 EXERCISE SET 6

6.1. Prove the following estimate:

$$I := \sum_{k=0}^{\infty} \int_{I_T^c} \left(1 + 2^k \frac{\operatorname{dist}(x, I_T)}{|I_T|} \right)^{-9} dx \lesssim |I_T|,$$

which was needed to complete the proof on the lectures: One way to do this is:

$$I = \sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \int_{\ell |I_T| \le \operatorname{dist}(x, I_T) < (\ell+1)|I_T|} \left(1 + 2^k \frac{\operatorname{dist}(x, I_T)}{|I_T|} \right)^{-9} dx$$

$$\lesssim \sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \int_{\ell |I_T| \le \operatorname{dist}(x, I_T) < (\ell+1)|I_T|} (1 + 2^k \ell)^{-9} dx$$

$$= |I_T| \sum_{l=0}^{\infty} \sum_{k=0}^{\infty} (1 + 2^k \ell)^{-9} \lesssim |I_T|.$$

6.2. Prove the other estimate needed in the lectures:

$$|\langle \phi_P, \phi_{P'} \rangle| \lesssim \left(\frac{|I_P|}{|I_{P'}|}\right)^{1/2} \|v_{I_P} \mathbf{1}_{I_{P'}}\|_1,$$

where $v_I(x) = \frac{1}{|I|} \left(1 + \frac{|x-c(I)|}{|I|}\right)^{-10}$ and $|I_{P'}| \leq |I_P|$. Assume for example that $c(I_{P'}) \leq c(I_P)$ and denote by c the center of the segment $(c(I_{P'}), c(I_P))$. We estimate

$$\begin{aligned} \langle \phi_P, \phi_{P'} \rangle &\leq |I_{P'}|^{-1/2} |I_P|^{-1/2} \int_{-\infty}^{c} \left(1 + \frac{|x - c(I_P)|}{|I_P|} \right)^{-1/2} dx \\ &+ |I_{P'}|^{-1/2} |I_P|^{-1/2} \int_{c}^{+\infty} \left(1 + \frac{|x - c(I_{P'})|}{|I_{P'}|} \right)^{-1/2} dx \\ &\simeq |I_{P'}|^{1/2} |I_P|^{-1/2} \left(1 + \frac{|c - c(I_P)|}{|I_P|} \right)^{-10} + |I_P|^{1/2} |I_{P'}|^{-1/2} \left(1 + \frac{|c - c(I_{P'})|}{|I_{P'}|} \right)^{-10} \end{aligned}$$

Now observe that $|c - c(I_P)| = |c - c(I_{P'})| = |c(I_P) - c(I_{P'})|/2$. Thus the estimate above is of the form

$$a^{\frac{1}{2}}b^{-\frac{1}{2}}(1+\delta/b)^{-10} + b^{\frac{1}{2}}a^{-\frac{1}{2}}(1+\delta/a)^{-10} \le 2a^{\frac{1}{2}}b^{-\frac{1}{2}}(1+\delta/b)^{-10}$$

whenever $a \leq b$. We get

$$\langle \phi_P, \phi_{P'} \rangle \lesssim |I_{P'}|^{1/2} |I_P|^{-1/2} \left(1 + \frac{|c(I_{P'}) - c(I_P)|}{2|I_P|} \right)^{-10}.$$

Also observe that for $x \in I_{P'}$ we have

$$1 + \frac{|c(I_{P'}) - c(I_P)|}{2|I_P|} \ge 1 + \frac{||x - c(I_P)| - |x - c(I_{P'})||}{2|I_P|} \ge 1 + \frac{||x - c(I_P)| - |I_{P'}||}{2|I_P|} \\ \ge 1 + \frac{|x - c(I_P)|}{2|I_P|} - \frac{|I_{P'}|}{2|I_P|} \ge 1 + \frac{|x - c(I_P)|}{2|I_P|} - \frac{1}{2} \\ \gtrsim 1 + \frac{|x - c(I_P)|}{|I_P|}.$$

Thus

$$\begin{aligned} |\langle \phi_P, \phi_{P'} \rangle| &\lesssim |I_{P'}|^{1/2} |I_P|^{-1/2} |I_{P'}|^{-1} \int_{I_{P'}} \left(1 + \frac{|c(I_{P'}) - c(I_P)|}{2|I_P|} \right)^{-10} dx \\ &\lesssim |I_{P'}|^{-1/2} |I_P|^{-1/2} \int_{I_{P'}} \left(1 + \frac{|x - c(I_P)|}{|I_P|} \right)^{-10} dx \\ &= |I_{P'}|^{-1/2} |I_P|^{-1/2} |I_P| \| \mathbf{1}_{I_{P'}} v_{I_P} \|_{L^1} = |I_{P'}|^{-1/2} |I_P|^{1/2} \| \mathbf{1}_{I_{P'}} v_{I_P} \|_{L^1} \end{aligned}$$

6.3. In the lectures we considered a collection \mathcal{T} of trees with the following property:

$$(*) \quad \text{If} \quad P \in \mathbb{T} \in \mathcal{T} \quad \text{and} \quad P' \in \mathbb{T}' \in \mathcal{T} \quad \text{satisfy} \quad \omega_P \subseteq \omega_{P'_d}, \quad \text{then} \quad I_{P'} \cap I_T = \emptyset.$$

Prove that under this assumption, every tree $\mathbb{T} \in \mathcal{T}$ can be divided into up-trees \mathbb{T}_j , whose top time-intervals I_{T_j} are pairwise disjoint. Let $\mathbb{T} \in \mathcal{T}$ and \mathbf{T}_j be the maximal tiles in \mathbb{T} . We define the subtrees \mathbb{T}_j of of \mathbb{T} as

$$\mathbb{T}_j \stackrel{\text{def}}{=} \{ P \in \mathbb{T} : P \leq \mathbf{T}_j \}.$$

It is immediate that the \mathbb{T}_j 's are trees with top \mathbf{T}_j . Also we have that $\bigcup_j \mathbb{T}_j = \mathbb{T}$. Indeed the inclusion $\bigcup_j \mathbb{T}_j \subseteq \mathbb{T}$ is obvious and on the other hand any tile $P \in \mathbb{T}$ must be \leq than some maximal tile \mathbf{T}_j , otherwise it is itself maximal and thus included in \mathbb{T}_j . Now for any tile $P \in \mathbb{T}_j$ with $P \neq \mathbf{T}_j$ we have that $\omega_{\mathbf{T}_j} \subseteq \omega_P$. We conclude that either $\omega_{\mathbf{T}_j} \subseteq \omega_{P_d}$ or $\omega_{\mathbf{T}_j} \subseteq \omega_{P_u}$. If the first alternative is true then (*) implies that $I_{\mathbf{T}_j} \cap I_P = \emptyset$ which is clearly impossible since $I_P \subseteq I_{\mathbf{T}_j}$. Thus $\omega_{\mathbf{T}_{j,u}} \subseteq \omega_{\mathbf{T}_j} \subseteq \omega_{P_u}$ for all $P \in \mathbb{T}_j$ with $P \neq \mathbf{T}_j$ and clearly the same is true for $P = \mathbf{T}_j$ so every \mathbb{T}_j is an up-tree. Finally, let $j \neq k$ and consider the tops $I_{\mathbf{T}_j}$ and $I_{\mathbf{T}_k}$. If $I_{\mathbf{T}_j} \cap I_{\mathbf{T}_k} \neq \emptyset$, then since both $\mathbf{T}_j, \mathbf{T}_k \in \mathbb{T}$ we would conclude that the frequency intervals also intersect and thus the tiles $\mathbf{T}_j, \mathbf{T}_k \in \mathbb{T}$ intersect which means they are comparable. However, this contradicts the fact that they were maximal with respect to '\leq'.

6.4. Let

$$S := \left(\sum_{P \in \mathbb{P}} |\langle f, \phi_P \rangle|^2\right)^{\frac{1}{2}}, \quad S_2 := \sum_{P, P' \in \mathbb{P}, \omega_P \subseteq \omega_{P'_d}} \langle f, \phi_P \rangle \langle \phi_P, \phi_{P'} \rangle \langle \phi_{P'}, f \rangle,$$

where $\mathbb{P} = \bigcup_j \mathbb{T}_j$ is a union of trees. Prove that $S_2 \lesssim A^2$ where

$$A := \sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_P \rangle|}{|I_P|^{\frac{1}{2}}} \Big(\sum_j |I_{T_j}|\Big)^{\frac{1}{2}}.$$

Using this bound and the bound $S^2 \lesssim \sqrt{S^2 + S_2} ||f||_2$ from the notes, derive a bound for S. Combine these estimates to give an alternative proof of the energy estimate $\sum_j |I_{T_j}| \lesssim \mathcal{E}^{-2} ||f||_2^2$. We have

$$S_{2} \leq \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{\frac{1}{2}}}\right)^{2} \sum_{\substack{P, P' \in \mathbb{P} \\ \omega_{P} \subseteq \omega_{P'_{d}} \\ \omega_{P} \subseteq \omega_{P'_{d}} \\ \lesssim \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{\frac{1}{2}}}\right)^{2} \sum_{P \in \mathbb{P}} |I_{P}| \sum_{\substack{P' \in \mathbb{P} \\ \omega_{P} \subseteq \omega_{P'_{d}} \\ \omega_{P} \subseteq \omega_{P'_{d}} \\ \lesssim \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{\frac{1}{2}}}\right)^{2} \sum_{P \in \mathbb{P}} |I_{P}| \|v_{I_{P}} \mathbf{1}_{\mathbb{T}(P)^{c}}\|_{1},$$

as in the proof of Proposition 7.3 in the notes, where $\mathbb{T}(P)$ denotes the unique tree in \mathbb{P} that contains P. Observe that we have used that all the intervals $I_{P'}$ appearing in the inner sum are disjoint. Now we argue as in the proof of Proposition 7.3 to get

$$S_{2} \leq \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{\frac{1}{2}}}\right)^{2} \sum_{j} \sum_{P \in \mathbb{T}_{j}} |I_{P}| \|v_{I_{P}} \mathbf{1}_{\mathbb{T}(P)^{c}}\|_{1} \leq \left(\sup_{P \in \mathbb{P}} \frac{|\langle f, \phi_{P} \rangle|}{|I_{P}|^{\frac{1}{2}}}\right)^{2} \sum_{j} |I_{T_{j}}| = A^{2}.$$

We now combine this bound with the estimate $S^2 \lesssim \sqrt{S^2 + S_2} ||f||_2$ to get

$$S^2 \lesssim \sqrt{S^2 + A^2} \|f\|_2 \lesssim S \|f\|_2 + A \|f\|_2.$$

Now from the proof of the Energy Lemma we have

$$\sum_{j} |I_{T_j}| \lesssim \frac{1}{\mathcal{E}^2} S^2$$

Now if $S \leq A$ this means that $S^2 \lesssim A \|f\|_2$ so

$$\sum_{j} |I_{T_{j}}| \lesssim \mathcal{E}^{-2} A ||f||_{2} \leq \mathcal{E}^{-1} \Big(\sum_{j} |I_{T_{j}}| \Big)^{\frac{1}{2}} ||f||_{2},$$

and rearranging the terms we get

$$\sum_{j} |I_{T_j}| \lesssim \mathcal{E}^{-2} ||f||_2^2,$$

as we wanted. If S > A we get $S^2 \leq S ||f||_2$ which implies $S \leq ||f||_2$ and we are done by the proof of the energy lemma.

6.5. Let \mathbb{P} be a finite collection of tiles. Let \mathcal{J} be the collection of all maximal dyadic intervals J with the property that 3J (the interval with the same center and triple the length of J) does not contain any I_P with $P \in \mathbb{P}$. Prove that \mathcal{J} is a partition (a pairwise disjoint cover) of \mathbb{R} . First of all observe that the $J \in \mathcal{J}$ are pairwise disjoint. Indeed, if two of them intersect then one must contain the other since they are dyadic which contradicts the maximality property. Now let $x \in \mathbb{R}$. We need to prove that $x \in J$ for some $J \in \mathcal{J}$. Let I_o be the smallest time interval appearing in \mathbb{P} . Consider the dyadic intervals of length $|I_o|/2^{10}$. Then these partition \mathbb{R} so one of them, let us call it I, contains x. The interval 3I of course still contains x and we have $|3I| \leq 3 \cdot 2^{-10} |I_0| < |I_P|$ for all $P \in \mathbb{P}$. Thus 3I cannot contain any $I_P, P \in \mathbb{P}$, so x is contained in some dyadic interval I such that 3I does not contain any $I_P, P \in \mathbb{P}$. It remains to prove that any dyadic interval J such that 3J does not contain any P for any $P \in \mathbb{P}$ is contained in some maximal dyadic interval of the same type. Indeed, suppose that the collection \mathbb{P} is non-empty, otherwise there is nothing to prove and fix such a J. Let $J_0 := J$ and define inductively $J_{k+1} := J_k^{(1)}$ where $I^{(1)}$ denotes the parent of I. It is obvious that $3J_o \subset 3J_1 \subset 3J_2 \subset \cdots$ and that $3J_k \uparrow \mathbb{R}$ as $k \to \infty$. Thus there will be a k such that $3J_k$ does not contain any I_P while $3J_{k+1}$ does, and there is at least one I_P . Then J_k is maximal with the desired property.