Time Frequency Analysis - Winter 2012
 Exercise Set 6

6.1. Prove the following estimate:

$$
I:=\sum_{k=0}^{\infty} \int_{I_{T}^{c}}\left(1+2^{k} \frac{\operatorname{dist}\left(x, I_{T}\right)}{\left|I_{T}\right|}\right)^{-9} d x \lesssim\left|I_{T}\right|,
$$

which was needed to complete the proof on the lectures: One way to do this is:

$$
\begin{aligned}
I & =\sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \int_{\ell\left|I_{T}\right| \leq \operatorname{dist}\left(x, I_{T}\right)<(\ell+1)\left|I_{T}\right|}\left(1+2^{k} \frac{\operatorname{dist}\left(x, I_{T}\right)}{\left|I_{T}\right|}\right)^{-9} d x \\
& \lesssim \sum_{\ell=0}^{\infty} \sum_{k=0}^{\infty} \int_{\ell\left|I_{T}\right| \leq \operatorname{dist}\left(x, I_{T}\right)<(\ell+1)\left|I_{T}\right|}\left(1+2^{k} \ell\right)^{-9} d x \\
& =\left|I_{T}\right| \sum_{l=0}^{\infty} \sum_{k=0}^{\infty}\left(1+2^{k} \ell\right)^{-9} \lesssim\left|I_{T}\right| .
\end{aligned}
$$

6.2. Prove the other estimate needed in the lectures:

$$
\left|\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\right| \lesssim\left(\frac{\left|I_{P}\right|}{\left|I_{P^{\prime}}\right|}\right)^{1 / 2}\left\|v_{I_{P}} \mathbf{1}_{I_{P^{\prime}}}\right\|_{1}
$$

where $v_{I}(x)=\frac{1}{|I|}\left(1+\frac{|x-c(I)|}{|I|}\right)^{-10}$ and $\left|I_{P^{\prime}}\right| \leq\left|I_{P}\right|$. Assume for example that $c\left(I_{P^{\prime}}\right) \leq$ $c\left(I_{P}\right)$ and denote by c the center of the segment $\left(c\left(I_{P^{\prime}}\right), c\left(I_{P}\right)\right)$. We estimate

$$
\begin{aligned}
\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle \leq & \left|I_{P^{\prime}}\right|^{-1 / 2}\left|I_{P}\right|^{-1 / 2} \int_{-\infty}^{c}\left(1+\frac{\left|x-c\left(I_{P}\right)\right|}{\left|I_{P}\right|}\right)^{-11} d x \\
& +\left|I_{P^{\prime}}\right|^{-1 / 2}\left|I_{P}\right|^{-1 / 2} \int_{c}^{+\infty}\left(1+\frac{\left|x-c\left(I_{P^{\prime}}\right)\right|}{\left|I_{P^{\prime}}\right|}\right)^{-11} d x \\
\simeq & \left|I_{P^{\prime}}\right|^{1 / 2}\left|I_{P}\right|^{-1 / 2}\left(1+\frac{\left|c-c\left(I_{P}\right)\right|}{\left|I_{P}\right|}\right)^{-10}+\left|I_{P}\right|^{1 / 2}\left|I_{P^{\prime}}\right|^{-1 / 2}\left(1+\frac{\left|c-c\left(I_{P^{\prime}}\right)\right|}{\left|I_{P^{\prime}}\right|}\right)^{-10}
\end{aligned}
$$

Now observe that $\left|c-c\left(I_{P}\right)\right|=\left|c-c\left(I_{P^{\prime}}\right)\right|=\left|c\left(I_{P}\right)-c\left(I_{P^{\prime}}\right)\right| / 2$. Thus the estimate above is of the form

$$
a^{\frac{1}{2}} b^{-\frac{1}{2}}(1+\delta / b)^{-10}+b^{\frac{1}{2}} a^{-\frac{1}{2}}(1+\delta / a)^{-10} \leq 2 a^{\frac{1}{2}} b^{-\frac{1}{2}}(1+\delta / b)^{-10}
$$

whenever $a \leq b$. We get

$$
\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle \lesssim\left|I_{P^{\prime}}\right|^{1 / 2}\left|I_{P}\right|^{-1 / 2}\left(1+\frac{\left|c\left(I_{P^{\prime}}\right)-c\left(I_{P}\right)\right|}{2\left|I_{P}\right|}\right)^{-10} .
$$

Also observe that for $x \in I_{P^{\prime}}$ we have

$$
\begin{aligned}
1+\frac{\left|c\left(I_{P^{\prime}}\right)-c\left(I_{P}\right)\right|}{2\left|I_{P}\right|} & \geq 1+\frac{\left|\left|x-c\left(I_{P}\right)\right|-\left|x-c\left(I_{P^{\prime}}\right)\right|\right|}{2\left|I_{P}\right|} \geq 1+\frac{\left|\left|x-c\left(I_{P}\right)\right|-\left|I_{P^{\prime}}\right|\right|}{2\left|I_{P}\right|} \\
& \geq 1+\frac{\left|x-c\left(I_{P}\right)\right|}{2\left|I_{P}\right|}-\frac{\left|I_{P^{\prime}}\right|}{2\left|I_{P}\right|} \geq 1+\frac{\left|x-c\left(I_{P}\right)\right|}{2\left|I_{P}\right|}-\frac{1}{2} \\
& \geq 1+\frac{\left|x-c\left(I_{P}\right)\right|}{\left|I_{P}\right|} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\right| & \lesssim\left|I_{P^{\prime}}\right|^{1 / 2}\left|I_{P}\right|^{-1 / 2}\left|I_{P^{\prime}}\right|^{-1} \int_{I_{P^{\prime}}}\left(1+\frac{\left|c\left(I_{P^{\prime}}\right)-c\left(I_{P}\right)\right|}{2\left|I_{P}\right|}\right)^{-10} d x \\
& \lesssim\left|I_{P^{\prime}}\right|^{-1 / 2}\left|I_{P}\right|^{-1 / 2} \int_{I_{P^{\prime}}}\left(1+\frac{\left|x-c\left(I_{P}\right)\right|}{\left|I_{P}\right|}\right)^{-10} d x \\
& =\left|I_{P^{\prime}}\right|^{-1 / 2}\left|I_{P}\right|^{-1 / 2}\left|I_{P}\right|\left\|\mathbf{1}_{I_{P^{\prime}}} v_{I_{P}}\right\|_{L^{1}}=\left|I_{P^{\prime}}\right|^{-1 / 2}\left|I_{P}\right|^{1 / 2}\left\|\mathbf{1}_{I_{P^{\prime}}} v_{I_{P}}\right\|_{L^{1}} .
\end{aligned}
$$

6.3. In the lectures we considered a collection \mathcal{T} of trees with the following property:
$(*) \quad$ If $\quad P \in \mathbb{T} \in \mathcal{T} \quad$ and $\quad P^{\prime} \in \mathbb{T}^{\prime} \in \mathcal{T} \quad$ satisfy $\quad \omega_{P} \subseteq \omega_{P_{d}^{\prime}}, \quad$ then $\quad I_{P^{\prime}} \cap I_{T}=\emptyset$.
Prove that under this assumption, every tree $\mathbb{T} \in \mathcal{T}$ can be divided into up-trees \mathbb{T}_{j}, whose top time-intervals $I_{T_{j}}$ are pairwise disjoint. Let $\mathbb{T} \in \mathcal{T}$ and \mathbf{T}_{j} be the maximal tiles in \mathbb{T}. We define the subtrees \mathbb{T}_{j} of of \mathbb{T} as

$$
\mathbb{T}_{j} \stackrel{\text { def }}{=}\left\{P \in \mathbb{T}: P \leq \mathbf{T}_{j}\right\}
$$

It is immediate that the $\mathbb{T}_{j}{ }^{\prime}$ s are trees with top \mathbf{T}_{j}. Also we have that $\cup_{j} \mathbb{T}_{j}=\mathbb{T}$. Indeed the inclusion $\cup_{j} \mathbb{T}_{j} \subseteq \mathbb{T}$ is obvious and on the other hand any tile $P \in \mathbb{T}$ must be \leq than some maximal tile \mathbf{T}_{j}, otherwise it is itself maximal and thus included in \mathbb{T}_{j}. Now for any tile $P \in \mathbb{T}_{j}$ with $P \neq \mathbf{T}_{j}$ we have that $\omega_{\mathbf{T}_{j}} \subsetneq \omega_{P}$. We conclude that either $\omega_{\mathbf{T}_{j}} \subsetneq \omega_{P_{d}}$ or $\omega_{\mathbf{T}_{j}} \subsetneq \omega_{P_{u}}$. If the first alternative is true then (*) implies that $I_{\mathbf{T}_{j}} \cap I_{P}=\emptyset$ which is clearly impossible since $I_{P} \subseteq I_{\mathbf{T}_{j}}$. Thus $\omega_{\mathbf{T}_{j, u}} \subseteq \omega_{\mathbf{T}_{j}} \subseteq \omega_{P_{u}}$ for all $P \in \mathbb{T}_{j}$ with $P \neq \mathbf{T}_{j}$ and clearly the same is true for $P=\mathbf{T}_{j}$ so every \mathbb{T}_{j} is an up-tree. Finally, let $j \neq k$ and consider the tops $I_{\mathbf{T}_{j}}$ and $I_{\mathbf{T}_{k}}$. If $I_{\mathbf{T}_{j}} \cap I_{\mathbf{T}_{k}} \neq \emptyset$, then since both $\mathbf{T}_{j}, \mathbf{T}_{k} \in \mathbb{T}$ we would conclude that the frequency intervals also intersect and thus the tiles $\mathbf{T}_{j}, \mathbf{T}_{k} \in \mathbb{T}$ intersect which means they are comparable. However, this contradicts the fact that they were maximal with respect to ' \leq '.
6.4. Let

$$
S:=\left(\sum_{P \in \mathbb{P}}\left|\left\langle f, \phi_{P}\right\rangle\right|^{2}\right)^{\frac{1}{2}}, \quad S_{2}:=\sum_{P, P^{\prime} \in \mathbb{P}, \omega_{P} \subseteq \omega_{P_{d}^{\prime}}}\left\langle f, \phi_{P}\right\rangle\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\left\langle\phi_{P^{\prime}}, f\right\rangle,
$$

where $\mathbb{P}=\cup_{j} \mathbb{T}_{j}$ is a union of trees. Prove that $S_{2} \lesssim A^{2}$ where

$$
A:=\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\left(\sum_{j}\left|I_{T_{j}}\right|\right)^{\frac{1}{2}} .
$$

Using this bound and the bound $S^{2} \lesssim \sqrt{S^{2}+S_{2}}\|f\|_{2}$ from the notes, derive a bound for S. Combine these estimates to give an alternative proof of the energy estimate $\sum_{j}\left|I_{T_{j}}\right| \lesssim \mathcal{E}^{-2}\|f\|_{2}^{2}$. We have

$$
\begin{aligned}
S_{2} & \leq\left(\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\right)^{2} \sum_{\substack{P, P^{\prime} \in \mathbb{P} \\
\omega_{P} \subseteq \omega_{P_{d}^{\prime}}}}\left|I_{P}\right|^{\frac{1}{2}}\left|I_{P^{\prime}}\right|^{\frac{1}{2}}\left|\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\right| \\
& \lesssim\left(\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\right)^{2} \sum_{P \in \mathbb{P}}\left|I_{P}\right| \sum_{\substack{P^{\prime} \in \mathbb{P} \\
\omega_{P} \subseteq \omega_{P_{d}^{\prime}}}}\left\|v_{I_{P}} \mathbf{1}_{I_{P^{\prime}}}\right\|_{1} \\
& \lesssim\left(\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\right)^{2} \sum_{P \in \mathbb{P}}\left|I_{P}\right|\left\|v_{I_{P}} \mathbf{1}_{\mathbb{T}(P) c}\right\|_{1},
\end{aligned}
$$

as in the proof of Proposition 7.3 in the notes, where $\mathbb{T}(P)$ denotes the unique tree in \mathbb{P} that contains P. Observe that we have used that all the intervals $I_{P^{\prime}}$ appearing in the inner sum are disjoint. Now we argue as in the proof of Proposition 7.3 to get

$$
S_{2} \leq\left(\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\right)^{2} \sum_{j} \sum_{P \in \mathbb{T}_{j}}\left|I_{P}\right|\left\|v_{I_{P}} \mathbf{1}_{\mathbb{T}(P) c}\right\|_{1} \leq\left(\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{\frac{1}{2}}}\right)^{2} \sum_{j}\left|I_{T_{j}}\right|=A^{2}
$$

We now combine this bound with the estimate $S^{2} \lesssim \sqrt{S^{2}+S_{2}}\|f\|_{2}$ to get

$$
S^{2} \lesssim \sqrt{S^{2}+A^{2}}\|f\|_{2} \lesssim S\|f\|_{2}+A\|f\|_{2}
$$

Now from the proof of the Energy Lemma we have

$$
\sum_{j}\left|I_{T_{j}}\right| \lesssim \frac{1}{\mathcal{E}^{2}} S^{2}
$$

Now if $S \leq A$ this means that $S^{2} \lesssim A\|f\|_{2}$ so

$$
\sum_{j}\left|I_{T_{j}}\right| \lesssim \mathcal{E}^{-2} A\|f\|_{2} \leq \mathcal{E}^{-1}\left(\sum_{j}\left|I_{T_{j}}\right|\right)^{\frac{1}{2}}\|f\|_{2}
$$

and rearranging the terms we get

$$
\sum_{j}\left|I_{T_{j}}\right| \lesssim \mathcal{E}^{-2}\|f\|_{2}^{2},
$$

as we wanted. If $S>A$ we get $S^{2} \lesssim S\|f\|_{2}$ which implies $S \lesssim\|f\|_{2}$ and we are done by the proof of the energy lemma.
6.5. Let \mathbb{P} be a finite collection of tiles. Let \mathcal{J} be the collection of all maximal dyadic intervals J with the property that $3 J$ (the interval with the same center and triple the length of J) does not contain any I_{P} with $P \in \mathbb{P}$. Prove that \mathcal{J} is a partition (a pairwise disjoint cover) of \mathbb{R}. First of all observe that the $J \in \mathcal{J}$ are pairwise disjoint. Indeed, if two of them intersect then one must contain the other since they are dyadic which contradicts the maximality property. Now let $x \in \mathbb{R}$. We need to prove that $x \in J$ for some $J \in \mathcal{J}$. Let I_{o} be the smallest time interval appearing in \mathbb{P}. Consider the dyadic intervals of length $\left|I_{o}\right| / 2^{10}$. Then these partition \mathbb{R} so one of them, let us call it I, contains x. The interval $3 I$ of course still contains x and we have $|3 I| \leq 3 \cdot 2^{-10}\left|I_{o}\right|<\left|I_{P}\right|$ for all $P \in \mathbb{P}$. Thus $3 I$ cannot contain any $I_{P}, P \in \mathbb{P}$, so x is contained in some dyadic interval I such that $3 I$ does not contain any $I_{P}, P \in \mathbb{P}$. It remains to prove that any dyadic interval J such that $3 J$ does not contain any ${ }_{P}$ for any $P \in \mathbb{P}$ is contained in some maximal dyadic interval of the same type. Indeed, suppose that the collection \mathbb{P} is non-empty, otherwise there is nothing to prove and fix such a J. Let $J_{0}:=J$ and define inductively $J_{k+1}:=J_{k}^{(1)}$ where $I^{(1)}$ denotes the parent of I. It is obvious that $3 J_{o} \subset 3 J_{1} \subset 3 J_{2} \subset \cdots$ and that $3 J_{k} \uparrow \mathbb{R}$ as $k \rightarrow \infty$. Thus there will be a k such that $3 J_{k}$ does not contain any I_{P} while $3 J_{k+1}$ does, and there is at least one I_{P}. Then J_{k} is maximal with the desired property.

