
Time Frequency Analysis - Winter 2012

Exercise Set 6

6.1. Prove the following estimate:

I :=
∞∑
k=0

∫
IcT

(
1 + 2k dist(x, IT )

|IT |

)−9
dx . |IT |,

which was needed to complete the proof on the lectures: One way to do this
is:

I =
∞∑
`=0

∞∑
k=0

∫
`|IT |≤dist(x,IT )<(`+1)|IT |

(
1 + 2k dist(x, IT )

|IT |

)−9
dx

.
∞∑
`=0

∞∑
k=0

∫
`|IT |≤dist(x,IT )<(`+1)|IT |

(1 + 2k`)−9dx

= |IT |
∞∑
l=0

∞∑
k=0

(1 + 2k`)−9 . |IT |.

6.2. Prove the other estimate needed in the lectures:

|〈φP , φP ′〉| .
(
|IP |
|IP ′ |

)1/2

‖vIP 1IP ′‖1,

where vI(x) = 1
|I|

(
1+ |x−c(I)||I|

)−10
and |IP ′ | ≤ |IP |. Assume for example that c(IP ′) ≤

c(IP ) and denote by c the center of the segment (c(IP ′), c(IP )). We estimate

〈φP , φP ′〉 ≤ |IP ′ |−1/2|IP |−1/2
∫ c

−∞

(
1 +
|x− c(IP )|
|IP |

)−11
dx

+ |IP ′ |−1/2|IP |−1/2
∫ +∞

c

(
1 +
|x− c(IP ′)|
|IP ′|

)−11
dx

' |IP ′ |1/2|IP |−1/2
(

1 +
|c− c(IP )|
|IP |

)−10
+ |IP |1/2|IP ′ |−1/2

(
1 +
|c− c(IP ′)|
|IP ′|

)−10
Now observe that |c − c(IP )| = |c − c(IP ′)| = |c(IP ) − c(IP ′)|/2. Thus the estimate
above is of the form

a
1
2 b−

1
2 (1 + δ/b)−10 + b

1
2a−

1
2 (1 + δ/a)−10 ≤ 2a

1
2 b−

1
2 (1 + δ/b)−10

whenever a ≤ b. We get

〈φP , φP ′〉 . |IP ′ |1/2|IP |−1/2
(

1 +
|c(IP ′)− c(IP )|

2|IP |

)−10
.

1



2

Also observe that for x ∈ IP ′ we have

1 +
|c(IP ′)− c(IP )|

2|IP |
≥ 1 +

∣∣|x− c(IP )| − |x− c(IP ′)|
∣∣

2|IP |
≥ 1 +

∣∣|x− c(IP )| − |IP ′ |
∣∣

2|IP |

≥ 1 +
|x− c(IP )|

2|IP |
− |IP

′|
2|IP |

≥ 1 +
|x− c(IP )|

2|IP |
− 1

2

& 1 +
|x− c(IP )|
|IP |

.

Thus

|〈φP , φP ′〉| . |IP ′|1/2|IP |−1/2|IP ′|−1
∫
IP ′

(
1 +
|c(IP ′)− c(IP )|

2|IP |

)−10
dx

. |IP ′|−1/2|IP |−1/2
∫
IP ′

(
1 +
|x− c(IP )|
|IP |

)−10
dx

= |IP ′|−1/2|IP |−1/2|IP |‖1IP ′vIP ‖L1 = |IP ′|−1/2|IP |1/2‖1IP ′vIP ‖L1 .

6.3. In the lectures we considered a collection T of trees with the following
property:

(∗) If P ∈ T ∈ T and P ′ ∈ T′ ∈ T satisfy ωP ⊆ ωP ′
d
, then IP ′∩IT = ∅.

Prove that under this assumption, every tree T ∈ T can be divided into
up-trees Tj , whose top time-intervals ITj

are pairwise disjoint. Let T ∈ T
and Tj be the maximal tiles in T. We define the subtrees Tj of of T as

Tj
def
= {P ∈ T : P ≤ Tj}.

It is immediate that the Tj’s are trees with top Tj. Also we have that ∪jTj = T.
Indeed the inclusion ∪jTj ⊆ T is obvious and on the other hand any tile P ∈ T must
be ≤ than some maximal tile Tj, otherwise it is itself maximal and thus included in
Tj. Now for any tile P ∈ Tj with P 6= Tj we have that ωTj

( ωP . We conclude that
either ωTj

( ωPd
or ωTj

( ωPu . If the first alternative is true then (∗) implies that
ITj
∩ IP = ∅ which is clearly impossible since IP ⊆ ITj

. Thus ωTj,u
⊆ ωTj

⊆ ωPu for
all P ∈ Tj with P 6= Tj and clearly the same is true for P = Tj so every Tj is an
up-tree. Finally, let j 6= k and consider the tops ITj

and ITk
. If ITj

∩ ITk
6= ∅, then

since both Tj,Tk ∈ T we would conclude that the frequency intervals also intersect
and thus the tiles Tj,Tk ∈ T intersect which means they are comparable. However,
this contradicts the fact that they were maximal with respect to ’≤’.

6.4. Let

S :=
(∑
P∈P

|〈f, φP 〉|2
) 1

2 , S2 :=
∑

P,P ′∈P,ωP⊆ωP ′
d

〈f, φP 〉〈φP , φP ′〉〈φP ′ , f〉,
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where P = ∪jTj is a union of trees. Prove that S2 . A2 where

A := sup
P∈P

|〈f, φP 〉|
|IP |

1
2

(∑
j

|ITj
|
) 1

2 .

Using this bound and the bound S2 .
√
S2 + S2‖f‖2 from the notes, derive

a bound for S. Combine these estimates to give an alternative proof of
the energy estimate

∑
j |ITj

| . E−2‖f‖22. We have

S2 ≤
(

sup
P∈P

|〈f, φP 〉|
|IP |

1
2

)2 ∑
P,P ′∈P
ωP⊆ωP ′

d

|IP |
1
2 |IP ′|

1
2 |〈φP , φP ′〉|

.

(
sup
P∈P

|〈f, φP 〉|
|IP |

1
2

)2∑
P∈P

|IP |
∑
P ′∈P

ωP⊆ωP ′
d

‖vIP 1IP ′‖1

.

(
sup
P∈P

|〈f, φP 〉|
|IP |

1
2

)2∑
P∈P

|IP |‖vIP 1T(P )c‖1,

as in the proof of Proposition 7.3 in the notes, where T(P ) denotes the unique tree
in P that contains P . Observe that we have used that all the intervals IP ′ appearing
in the inner sum are disjoint. Now we argue as in the proof of Proposition 7.3 to get

S2 ≤
(

sup
P∈P

|〈f, φP 〉|
|IP |

1
2

)2∑
j

∑
P∈Tj

|IP |‖vIP 1T(P )c‖1 ≤
(

sup
P∈P

|〈f, φP 〉|
|IP |

1
2

)2∑
j

|ITj
| = A2.

We now combine this bound with the estimate S2 .
√
S2 + S2‖f‖2 to get

S2 .
√
S2 + A2‖f‖2 . S‖f‖2 + A‖f‖2.

Now from the proof of the Energy Lemma we have∑
j

|ITj
| . 1

E2
S2

Now if S ≤ A this means that S2 . A‖f‖2 so∑
j

|ITj
| . E−2A‖f‖2 ≤ E−1

(∑
j

|ITj
|
) 1

2‖f‖2,

and rearranging the terms we get∑
j

|ITj
| . E−2‖f‖22,

as we wanted. If S > A we get S2 . S‖f‖2 which implies S . ‖f‖2 and we are done
by the proof of the energy lemma.
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6.5. Let P be a finite collection of tiles. Let J be the collection of all
maximal dyadic intervals J with the property that 3J (the interval with
the same center and triple the length of J) does not contain any IP with
P ∈ P. Prove that J is a partition (a pairwise disjoint cover) of R. First of
all observe that the J ∈ J are pairwise disjoint. Indeed, if two of them intersect then
one must contain the other since they are dyadic which contradicts the maximality
property. Now let x ∈ R. We need to prove that x ∈ J for some J ∈ J . Let Io
be the smallest time interval appearing in P. Consider the dyadic intervals of length
|Io|/210. Then these partition R so one of them, let us call it I, contains x. The
interval 3I of course still contains x and we have |3I| ≤ 3 · 2−10|Io| < |IP | for all
P ∈ P. Thus 3I cannot contain any IP , P ∈ P, so x is contained in some dyadic
interval I such that 3I does not contain any IP , P ∈ P. It remains to prove that any
dyadic interval J such that 3J does not contain any P for any P ∈ P is contained in
some maximal dyadic interval of the same type. Indeed, suppose that the collection
P is non-empty, otherwise there is nothing to prove and fix such a J . Let J0 := J and

define inductively Jk+1 := J
(1)
k where I(1) denotes the parent of I. It is obvious that

3Jo ⊂ 3J1 ⊂ 3J2 ⊂ · · · and that 3Jk ↑ R as k →∞. Thus there will be a k such that
3Jk does not contain any IP while 3Jk+1 does, and there is at least one IP . Then Jk
is maximal with the desired property.
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