Time Frequency Analysis - Winter 2012

Exercise Set 5

5.1. Investigate the commutation relations between S_{ξ} and $T_{y}, M_{\eta}, D \lambda^{2}$: Find a ξ^{\prime} (possibly different in the different identities below) so that

$$
S_{\xi} T_{y}=T_{y} S_{\xi^{\prime}}, \quad S_{\xi} M_{\eta}=M_{\eta} S_{\xi^{\prime}}, \quad S_{\xi} D_{\lambda}^{2}=D_{\lambda}^{2} S_{\xi^{\prime}}
$$

Finally, find a value of $\eta=\eta(\xi, \lambda)$ such that $S_{\xi} D_{\lambda}^{2} M_{\eta}=D_{\lambda}^{2} M_{\eta} S_{\xi}$. We begin by recalling the definition of the operator S_{ξ} :

$$
S_{\xi} f(x)=\int_{-\infty}^{\xi} \hat{f}(\eta) e^{2 \pi i x \eta} d \eta
$$

We now have

$$
\begin{aligned}
S_{\xi} T_{y} f(x) & =\int_{-\infty}^{\xi} \widehat{T_{y} f}(\eta) e^{2 \pi i \eta x} d \eta=\int_{-\infty}^{\xi} M_{-y} \hat{f}(\eta) e^{2 \pi i x \eta} d \eta \\
& =\int_{-\infty}^{\xi} \hat{f}(\eta) e^{2 \pi i \eta(x-y)} d \eta=S_{\xi} f(x-y)=T_{y} S_{\xi} f(x) . \\
S_{\xi} M_{\eta} f(x) & =\int_{-\infty}^{\xi} \widehat{M_{\eta} f}(s) e^{2 \pi i s x} d s=\int_{-\infty}^{\xi} T_{\eta} \hat{f}(s) e^{2 \pi i s x} d s \\
& =\int_{-\infty}^{\xi} \hat{f}(s-\eta) e^{2 \pi i s x} d s=\int_{-\infty}^{\xi-\eta} \hat{f}(s) e^{2 \pi i(\eta+s) x} d s \\
& =M_{\eta} S_{\xi-\eta} f(x) . \\
S_{\xi} D_{\lambda}^{2} f & =\int_{-\infty}^{\xi} \widehat{D_{\lambda}^{2}} f(\eta) e^{2 \pi i \eta x} d \eta=\int_{-\infty}^{\xi} D_{\lambda^{-1}}^{2} \hat{f}(\eta) e^{2 \pi i \eta x} d x \\
& =\int_{-\infty}^{\xi} \lambda^{\frac{1}{2}} \hat{f}(\lambda \eta) e^{2 \pi i \eta x} d \eta=\lambda^{\frac{1}{2}} \int_{-\infty}^{\lambda \xi} \hat{f}(\eta) e^{2 \pi i x \eta / \lambda} \frac{d \eta}{\lambda} \\
& =\lambda^{-\frac{1}{2}} \int_{-\infty}^{\lambda \xi} \hat{f}(\eta) e^{2 \pi i \eta \frac{x}{\lambda}} d \eta=D_{\lambda}^{2} S_{\lambda \xi} f(x) .
\end{aligned}
$$

Using the previous identities we can write

$$
S_{\xi} D_{\lambda}^{2} M_{\eta} f(x)=D_{\lambda}^{2} S_{\lambda \xi} M_{\eta} f(x)=D_{\lambda}^{2} M_{\eta} S_{\lambda \xi-\eta} f(x)
$$

so we get the desired identity with $\eta=\lambda \xi-\xi=\eta(\xi, \lambda)$.
5.2. We have used several times the identity $\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$, where $\langle f, g\rangle=$ $\int_{\mathbb{R}} f \bar{g}$ is the L^{2} inner product. Prove this identity in the following two ways: (a) Write the identity $\|h\|_{L^{2}}=\|\hat{h}\|_{L^{2}}$ for $h=f+u g$, where $u \in\{1,-1, i,-i\}$.
(b) In the identity $\int_{\mathbb{R}} f \hat{h}=\int_{\mathbb{R}} \hat{f} h$ substitute $f=\overline{\hat{f}}$, and manipulate the right
hand side. (a) We have

$$
\begin{aligned}
\|f+u g\|_{2}^{2} & =\int_{\mathbb{R}}(f+u g) \overline{(f+u g)}=\int_{\mathbb{R}}\left(|f|^{2}+|u|^{2}|g|^{2}+f \bar{u} \bar{g}+u g \bar{f}\right) \\
& \int_{\mathbb{R}}|f|^{2}+\int_{\mathbb{R}}|g|^{2}+\bar{u} \int_{\mathbb{R}} f \bar{g}+u \int_{\mathbb{R}} g \bar{f} .
\end{aligned}
$$

Using the same expansion for $\widehat{f+u g}$ and Plancherel's theorem $\|f+u g\|_{2}^{2}=\|\widehat{f+u g}\|_{2}^{2}$ we get

$$
\bar{u} \int_{\mathbb{R}} f \bar{g}+u \int_{\mathbb{R}} \bar{f} g=\bar{u} \int_{\mathbb{R}} \hat{f} \hat{\hat{g}}+u \int_{\mathbb{R}} \overline{\hat{f}} \hat{g}
$$

For $u=1$ we get

$$
\int_{\mathbb{R}} f \bar{g}+\int \bar{f} g=\int \hat{f} \hat{\hat{g}}+\int_{\mathbb{R}} \overline{\hat{f}} \hat{g},
$$

while for $u=i$

$$
-i \int_{\mathbb{R}} f \bar{g}+i \int \bar{f} g=-i \int \hat{f} \overline{\hat{g}}+i \int_{\mathbb{R}} \overline{\hat{f}} \hat{g}
$$

Multiplying the second identity by i and adding them together gives the claim.
(b) We have already proved that

$$
\int_{\mathbb{R}} f \hat{h}=\int_{\mathbb{R}} \hat{f} h .
$$

Applying this identity to $\overline{\hat{f}}$ in place of f we get

$$
\langle\hat{h}, \hat{f}\rangle=\int_{\mathbb{R}} \hat{h} \hat{\hat{f}}=\int_{\mathbb{R}} \hat{\hat{\hat{f}}} h=\int_{\mathbb{R}} \hat{\overline{\hat{f}}} h=\int_{\mathbb{R}} h \bar{f}=\langle h, f\rangle
$$

5.3. Let \mathbb{T} be an up-tree of tiles. Show that it can be divided into 20 subcollections \mathbb{T}_{i} so that if $P, P^{\prime} \in \mathbb{T}_{i}$ for the same i, then $\phi_{P}, \phi_{P^{\prime}}$ are orthogonal to each other. Let $P=I_{P} \times \omega_{P}$ be a tile. Remember that

$$
\phi_{P}(x) \stackrel{\text { def }}{=} M_{c\left(\omega_{d}\right)} T_{c(I)} D_{|I|}^{2} \phi
$$

and that $\operatorname{supp} \hat{\phi} \subset\left[-\frac{1}{20}, \frac{1}{20}\right]$. For fixed $k \in \mathbb{Z}$ consider all the tiles in \mathbb{T} such that $\left|\omega_{P}\right|=2^{k}$ so that $\left|I_{P}\right|=2^{-k}$. The centers of the time intervals of any two tiles $P, P^{\prime} \in$ \mathbb{T} satisfy $c\left(I_{P}\right)-c\left(I_{P^{\prime}}\right) /|I| \in \mathbb{Z}$. Call two tiles in \mathbb{T} equivalent if $\left|\omega_{P}\right|=\left|\omega_{P^{\prime}}\right|=2^{k}$ and $c\left(I_{P}\right)-c\left(I_{P^{\prime}}\right) \equiv 0 \bmod 20$. Call $\mathbb{T}_{k}^{(1)}, \mathbb{T}_{k}^{(2)}, \ldots, \mathbb{T}^{(20)}$, the different equivalent classes. Finally consider the subcollections $\mathbb{T}_{j} \stackrel{\text { def }}{=} \cup_{k \in \mathbb{Z}} \mathbb{T}_{k}^{(j)}$ for $j=1,2, \ldots, 20$. The enumeration of the equivalence classes is irrelevant so it can be arbitrary. Now let $P \in \mathbb{T}_{j}, P^{\prime} \in \mathbb{T}_{j^{\prime}}$ for some j, j^{\prime}. If P, P^{\prime} correspond to the same k then they satisfy $\left|\omega_{P}\right|=\left|\omega_{P^{\prime}}\right|=2^{k}$. In this case the centers of the time intervals satisfy $c\left(I_{P}\right)-$ $c\left(I_{P^{\prime}}\right)=20 n 2^{-k}$. By the calculation in the proof of Proposition 5.2 in the notes we get $\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle=0$. In the complementary case we have $\left|\omega_{P}\right| \neq\left|\omega_{P}^{\prime}\right|$ so suppose $\left|\omega_{P}\right|<\left|\omega_{P^{\prime}}\right|$. Since both tiles were part of an up-tree, the upper frequency intervals
intersect so we must have $\omega_{P_{u}} \subsetneq \omega_{P_{u}^{\prime}}$ so in fact the whole frequency interval satisfies $\omega_{P} \subset \omega_{P_{u}^{\prime}}$. However the frequency support of each ϕ_{P} is contained in $\omega_{P_{d}}$:

$$
\operatorname{supp}\left(\hat{\phi}_{P}\right) \subset c\left(\omega_{d}\right)+\left|\omega_{P}\right|\left[-\frac{1}{20}, \frac{1}{20}\right] \subset \omega_{P_{d}}
$$

Thus in this case as well we have $\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle=\left\langle\widehat{\phi_{P}}, \widehat{\phi_{P^{\prime}}}\right\rangle=0$.
5.4. Prove the following fact that was implicitly used in transforming the probabilistic expectation E into the Lebesgue integral over $[0,1]$: For numbers $0 \leq a \leq b \leq 1$, we have

$$
\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in[a, b)\right)=b-a
$$

where β_{j} are independent random variables with $\mathbf{P}\left(\beta_{j}=0\right)=\mathbf{P}\left(\beta_{j}=1\right)=$ $1 / 2$. First of all observe that the probability that $\sum_{j=1}^{\infty} 2^{-j} \beta_{j}$ attains any single value is zero. Indeed, for any given $a \in[0,1)$ we either have that the value a is never attained, thus the probability is zero, or there is a deterministic sequence $\left\{\epsilon_{j}\right\}_{j=1}^{\infty} \subset$ $\{0,1\}^{\mathbb{Z}}$, depending on a, such that

$$
\sum_{j=1}^{\infty} 2^{-j} \beta_{j}=a \Leftrightarrow \beta_{j}=\epsilon_{j} \quad \text { for all } \quad j .
$$

Thus

$$
\left\{\sum_{j=1}^{\infty} 2^{-j} \beta_{j}=a\right\} \subseteq \bigcap_{j=1}^{N}\left\{\beta_{j}=\epsilon_{j}\right\}
$$

for all positive integers N. We conclude that in any case

$$
\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j}=a\right) \leq \prod_{j=1}^{N} \mathbf{P}\left(\beta_{j}=\epsilon_{j}\right)=\frac{1}{2^{N}}
$$

by the independence of the β_{j} 's. Since this holds for arbitrary any we get $\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j}=\right.$ $a)=0$.
Consider the case where $[a, b)=[0,1 / 2)$. Then we have

$$
0 \leq \sum_{j=1}^{\infty} 2^{-j} \beta_{j} \leq 1 / 2 \Leftrightarrow \beta_{1}=0
$$

so in this case the claim is immediate. Now let $[a, b)$ be any dyadic interval of the form $2^{-k}[j, j+1)$. We have

$$
\sum_{j=k+1}^{\infty} 2^{-j} \beta_{j} \leq \sum_{j=k+1}^{\infty} 2^{-j} \leq 2^{-k}
$$

and $\sum_{j=1}^{k} 2^{-j} \beta_{j}$ is some number of the form $\ell 2^{-k}$ with $\ell \leq 2^{k}-1$ where the exact value of ℓ depends only on the values of $\beta_{1}, \ldots, \beta_{k}$. Independently of what this exact value is, there exists some sequence of numbers $\epsilon_{1}, \ldots, \epsilon_{k} \in\{0,1\}$ such that

$$
\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in 2^{-k}[j, j+1)\right)=\mathbf{P}\left(\bigcap_{j=1}^{k}\left\{\beta_{j}=\epsilon_{j}\right\}\right)=2^{-k}=|[a, b)|,
$$

by the independence of the β_{j} 's. Finally any interval $[a, b)$ can be written as a (possibly infinite) disjoint union of dyadic intervals except maybe the endpoints, that is

$$
(a, b)=\cup_{m=1}^{\infty} \Delta_{m}
$$

where the Δ_{j} 's are dyadic and disjoint. Indeed one considers the maximal dyadic intervals in (a, b) so they are disjoint by construction. Now since (a, b) is open any point $x \in(a, b)$ is contained in some dyadic interval and thus in some maximal dyadic interval. The claim follows easily since

$$
\begin{aligned}
\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in[a, b)\right) & =\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in(a, b)\right)=\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in \cup_{m} \Delta_{m}\right) \\
& =\sum_{m} \mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j} \beta_{j} \in \Delta_{m}\right)=\sum_{m}\left|\Delta_{m}\right| \\
& =|[a, b)|=b-a .
\end{aligned}
$$

5.5. Given a function ψ and an interval J, denote $\psi_{J} \stackrel{\text { def }}{=} T_{c(J)} D_{|J|}^{2} \psi$. Let I be a fixed standard dyadic interval. Prove that

$$
\mathbf{E} \psi_{I+\beta}(x)=\left(\psi * \mathbf{1}_{[0,1)}\right) \mathbf{1}_{I}(x)
$$

where E is the expectation over the random choice of the shift parameter $\beta \in\{0,1\}^{\mathbb{Z}}$. First of all let us look at $\psi_{I+\beta}$ for a fixed β. We have

$$
\psi_{I+\beta}(x)=T_{c(I+\beta)} D_{|I|}^{2} \psi=T_{c(I+\beta)} \frac{1}{|I|^{\frac{1}{2}}} \psi\left(\frac{x}{|I|}\right)
$$

As in the proof of Theorem 6.1 in the notes we write for $|I|=2^{-k}$:

$$
\begin{aligned}
c(I+\beta)-c(I) & =\sum_{2^{-j}<2^{-k}} \beta_{j} 2^{-j}=\sum_{j \geq k+1} \beta_{j} 2^{-j}=\sum_{s=1}^{\infty} \beta_{s+k} 2^{-(s+k)} \\
& =|I| \sum_{j=1}^{\infty} \beta_{j+k} 2^{-s}
\end{aligned}
$$

and the binary series above is uniformly distributed in the interval $[0,1)$ as β_{j} 's are chosen randomly in $\{0,1\}^{\mathbb{Z}}$ by exercise 5.4. Thus

$$
\begin{aligned}
\mathbf{E} \psi_{I+\beta} & =\frac{1}{|I|^{\frac{1}{2}}} \int_{0}^{1} \psi\left(\frac{x-c(I)-u|I|}{|I|}\right) d u=\frac{1}{|I|^{\frac{1}{2}}} \psi * \mathbf{1}_{[0,1)}\left(\frac{x-c(I)}{|I|}\right) \\
& =D_{|I|}^{2} \psi * \mathbf{1}_{[0,1)}(x-c(I))=T_{c(I)} D_{|I|}^{2} \psi * \mathbf{1}_{[0,1)}(x) \\
& =\left(\psi * \mathbf{1}_{[0,1)}\right)_{I}(x) .
\end{aligned}
$$

