
Time Frequency Analysis - Winter 2012

Exercise Set 5

5.1. Investigate the commutation relations between Sξ and Ty, Mη, Dλ
2:

Find a ξ′ (possibly different in the different identities below) so that

SξTy = TySξ′ , SξMη = MηSξ′ , SξD
2
λ = D2

λSξ′ .

Finally, find a value of η = η(ξ, λ) such that SξD
2
λMη = D2

λMηSξ. We begin by
recalling the definition of the operator Sξ:

Sξf(x) =

∫ ξ

−∞
f̂(η)e2πixηdη.

We now have

SξTyf(x) =

∫ ξ

−∞
T̂yf(η)e2πiηxdη =

∫ ξ

−∞
M−yf̂(η)e2πixηdη

=

∫ ξ

−∞
f̂(η)e2πiη(x−y)dη = Sξf(x− y) = TySξf(x).

SξMηf(x) =

∫ ξ

−∞
M̂ηf(s)e2πisxds =

∫ ξ

−∞
Tηf̂(s)e2πisxds

=

∫ ξ

−∞
f̂(s− η)e2πisxds =

∫ ξ−η

−∞
f̂(s)e2πi(η+s)xds

= MηSξ−ηf(x).

SξD
2
λf =

∫ ξ

−∞
D̂2
λf(η)e2πiηxdη =

∫ ξ

−∞
D2
λ−1 f̂(η)e2πiηxdx

=

∫ ξ

−∞
λ

1
2 f̂(λη)e2πiηxdη = λ

1
2

∫ λξ

−∞
f̂(η)e2πixη/λ

dη

λ

= λ−
1
2

∫ λξ

−∞
f̂(η)e2πiη

x
λdη = D2

λSλξf(x).

Using the previous identities we can write

SξD
2
λMηf(x) = D2

λSλξMηf(x) = D2
λMηSλξ−ηf(x),

so we get the desired identity with η = λξ − ξ = η(ξ, λ).

5.2. We have used several times the identity 〈f, g〉 = 〈f̂ , ĝ〉, where 〈f, g〉 =∫
R fḡ is the L2 inner product. Prove this identity in the following two ways:

(a) Write the identity ‖h‖L2 = ‖ĥ‖L2 for h = f + ug, where u ∈ {1,−1, i,−i}.
(b) In the identity

∫
R fĥ =

∫
R f̂h substitute f =

¯̂
f , and manipulate the right

1



2

hand side. (a) We have

‖f + ug‖22 =

∫
R
(f + ug)(f + ug) =

∫
R
(|f |2 + |u|2|g|2 + fūḡ + ugf̄)∫

R
|f |2 +

∫
R
|g|2 + ū

∫
R
fḡ + u

∫
R
gf̄ .

Using the same expansion for f̂ + ug and Plancherel’s theorem ‖f+ug‖22 = ‖f̂ + ug‖22
we get

ū

∫
R
fḡ + u

∫
R
f̄ g = ū

∫
R
f̂ ¯̂g + u

∫
R

¯̂
fĝ

For u = 1 we get ∫
R
fḡ +

∫
f̄ g =

∫
f̂ ¯̂g +

∫
R

¯̂
fĝ,

while for u = i

−i
∫
R
fḡ + i

∫
f̄ g = −i

∫
f̂ ¯̂g + i

∫
R

¯̂
fĝ.

Multiplying the second identity by i and adding them together gives the claim.

(b) We have already proved that ∫
R
fĥ =

∫
R
f̂h.

Applying this identity to
¯̂
f in place of f we get

〈ĥ, f̂〉 =

∫
R
ĥ

¯̂
f =

∫
R

ˆ̂̄
fh =

∫
R

ˆ̄̌
fh =

∫
R
hf̄ = 〈h, f〉.

5.3. Let T be an up-tree of tiles. Show that it can be divided into 20 sub-
collections Ti so that if P, P ′ ∈ Ti for the same i, then φP , φP ′ are orthogonal
to each other. Let P = IP × ωP be a tile. Remember that

φP (x)
def
= Mc(ωd)Tc(I)D

2
|I|φ,

and that supp φ̂ ⊂ [− 1
20
, 1
20

]. For fixed k ∈ Z consider all the tiles in T such that

|ωP | = 2k so that |IP | = 2−k. The centers of the time intervals of any two tiles P, P ′ ∈
T satisfy c(IP ) − c(IP ′)/|I| ∈ Z. Call two tiles in T equivalent if |ωP | = |ωP ′ | = 2k

and c(IP ) − c(IP ′) ≡ 0 mod 20. Call T(1)
k ,T(2)

k , . . . ,T(20), the different equivalent

classes. Finally consider the subcollections Tj
def
= ∪k∈ZT(j)

k for j = 1, 2, . . . , 20. The
enumeration of the equivalence classes is irrelevant so it can be arbitrary. Now let
P ∈ Tj, P ′ ∈ Tj′ for some j, j′. If P, P ′ correspond to the same k then they satisfy
|ωP | = |ωP ′ | = 2k. In this case the centers of the time intervals satisfy c(IP ) −
c(IP ′) = 20n2−k. By the calculation in the proof of Proposition 5.2 in the notes
we get 〈φP , φP ′〉 = 0. In the complementary case we have |ωP | 6= |ω′P | so suppose
|ωP | < |ωP ′ |. Since both tiles were part of an up-tree, the upper frequency intervals
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intersect so we must have ωPu ( ωP ′u so in fact the whole frequency interval satisfies
ωP ⊂ ωP ′u . However the frequency support of each φP is contained in ωPd :

supp(φ̂P ) ⊂ c(ωd) + |ωP |[−
1

20
,

1

20
] ⊂ ωPd .

Thus in this case as well we have 〈φP , φP ′〉 = 〈φ̂P , φ̂P ′〉 = 0.

5.4. Prove the following fact that was implicitly used in transforming the
probabilistic expectation E into the Lebesgue integral over [0, 1]: For num-
bers 0 ≤ a ≤ b ≤ 1, we have

P
( ∞∑
j=1

2−jβj ∈ [a, b)
)

= b− a,

where βj are independent random variables with P(βj = 0) = P(βj = 1) =
1/2. First of all observe that the probability that

∑∞
j=1 2−jβj attains any single value

is zero. Indeed, for any given a ∈ [0, 1) we either have that the value a is never
attained, thus the probability is zero, or there is a deterministic sequence {εj}∞j=1 ⊂
{0, 1}Z , depending on a, such that

∞∑
j=1

2−jβj = a⇔ βj = εj for all j.

Thus

{
∞∑
j=1

2−jβj = a} ⊆
N⋂
j=1

{βj = εj}

for all positive integers N . We conclude that in any case

P
( ∞∑
j=1

2−jβj = a
)
≤

N∏
j=1

P
(
βj = εj

)
=

1

2N
,

by the independence of the βj’s. Since this holds for arbitrary any we get P
(∑∞

j=1 2−jβj =

a
)

= 0.

Consider the case where [a, b) = [0, 1/2). Then we have

0 ≤
∞∑
j=1

2−jβj ≤ 1/2⇔ β1 = 0,

so in this case the claim is immediate. Now let [a, b) be any dyadic interval of the
form 2−k[j, j + 1). We have

∞∑
j=k+1

2−jβj ≤
∞∑

j=k+1

2−j ≤ 2−k,
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and
∑k

j=1 2−jβj is some number of the form `2−k with ` ≤ 2k − 1 where the exact
value of ` depends only on the values of β1, . . . , βk. Independently of what this exact
value is, there exists some sequence of numbers ε1, . . . , εk ∈ {0, 1} such that

P
( ∞∑
j=1

2−jβj ∈ 2−k[j, j + 1)
)

= P

( k⋂
j=1

{βj = εj}
)

= 2−k = |[a, b)|,

by the independence of the βj’s. Finally any interval [a, b) can be written as a (possibly
infinite) disjoint union of dyadic intervals except maybe the endpoints, that is

(a, b) = ∪∞m=1∆m

where the ∆j’s are dyadic and disjoint. Indeed one considers the maximal dyadic
intervals in (a, b) so they are disjoint by construction. Now since (a, b) is open any
point x ∈ (a, b) is contained in some dyadic interval and thus in some maximal dyadic
interval. The claim follows easily since

P
( ∞∑
j=1

2−jβj ∈ [a, b)
)

= P
( ∞∑
j=1

2−jβj ∈ (a, b)
)

= P
( ∞∑
j=1

2−jβj ∈ ∪m∆m

)
=
∑
m

P
( ∞∑
j=1

2−jβj ∈ ∆m

)
=
∑
m

|∆m|

= |[a, b)| = b− a.

5.5. Given a function ψ and an interval J, denote ψJ
def
= Tc(J)D

2
|J |ψ. Let I be

a fixed standard dyadic interval. Prove that

EψI+β(x) = (ψ ∗ 1[0,1))1I(x),

where E is the expectation over the random choice of the shift parameter
β ∈ {0, 1}Z. First of all let us look at ψI+β for a fixed β. We have

ψI+β(x) = Tc(I+β)D
2
|I|ψ = Tc(I+β)

1

|I| 12
ψ(

x

|I|
)

As in the proof of Theorem 6.1 in the notes we write for |I| = 2−k:

c(I + β)− c(I) =
∑

2−j<2−k

βj2
−j =

∑
j≥k+1

βj2
−j =

∞∑
s=1

βs+k2
−(s+k)

= |I|
∞∑
j=1

βj+k2
−s,
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and the binary series above is uniformly distributed in the interval [0, 1) as βj’s are
chosen randomly in {0, 1}Z by exercise 5.4. Thus

EψI+β =
1

|I| 12

∫ 1

0

ψ
(x− c(I)− u|I|

|I|
)
du =

1

|I| 12
ψ ∗ 1[0,1)(

x− c(I)

|I|
)

= D2
|I|ψ ∗ 1[0,1)(x− c(I)) = Tc(I)D

2
|I|ψ ∗ 1[0,1)(x)

= (ψ ∗ 1[0,1))I(x).
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