Time Frequency Analysis - Winter 2012 Exercise Set 5

5.1. Investigate the commutation relations between S_{ξ} and T_y , M_{η} , $D\lambda^2$: Find a ξ' (possibly different in the different identities below) so that

$$S_{\xi}T_y = T_y S_{\xi'}, \quad S_{\xi}M_{\eta} = M_{\eta}S_{\xi'}, \quad S_{\xi}D_{\lambda}^2 = D_{\lambda}^2 S_{\xi'}.$$

Finally, find a value of $\eta = \eta(\xi, \lambda)$ such that $S_{\xi}D_{\lambda}^2M_{\eta} = D_{\lambda}^2M_{\eta}S_{\xi}$. We begin by recalling the definition of the operator S_{ξ} :

$$S_{\xi}f(x) = \int_{-\infty}^{\xi} \hat{f}(\eta)e^{2\pi i x \eta} d\eta$$

We now have

$$\begin{split} S_{\xi}T_{y}f(x) &= \int_{-\infty}^{\xi} \widehat{T_{y}f}(\eta)e^{2\pi i\eta x}d\eta = \int_{-\infty}^{\xi} M_{-y}\widehat{f}(\eta)e^{2\pi ix\eta}d\eta \\ &= \int_{-\infty}^{\xi} \widehat{f}(\eta)e^{2\pi i\eta(x-y)}d\eta = S_{\xi}f(x-y) = T_{y}S_{\xi}f(x). \\ S_{\xi}M_{\eta}f(x) &= \int_{-\infty}^{\xi} \widehat{M_{\eta}f}(s)e^{2\pi isx}ds = \int_{-\infty}^{\xi} T_{\eta}\widehat{f}(s)e^{2\pi isx}ds \\ &= \int_{-\infty}^{\xi} \widehat{f}(s-\eta)e^{2\pi isx}ds = \int_{-\infty}^{\xi-\eta} \widehat{f}(s)e^{2\pi i(\eta+s)x}ds \\ &= M_{\eta}S_{\xi-\eta}f(x). \\ S_{\xi}D_{\lambda}^{2}f &= \int_{-\infty}^{\xi} \widehat{D_{\lambda}^{2}f}(\eta)e^{2\pi i\eta x}d\eta = \int_{-\infty}^{\xi} D_{\lambda^{-1}}^{2}\widehat{f}(\eta)e^{2\pi i\eta x}dx \\ &= \int_{-\infty}^{\xi} \lambda^{\frac{1}{2}}\widehat{f}(\lambda\eta)e^{2\pi i\eta x}d\eta = \lambda^{\frac{1}{2}}\int_{-\infty}^{\lambda\xi} \widehat{f}(\eta)e^{2\pi ix\eta/\lambda}\frac{d\eta}{\lambda} \\ &= \lambda^{-\frac{1}{2}}\int_{-\infty}^{\lambda\xi} \widehat{f}(\eta)e^{2\pi i\eta\frac{x}{\lambda}}d\eta = D_{\lambda}^{2}S_{\lambda\xi}f(x). \end{split}$$

Using the previous identities we can write

$$S_{\xi}D_{\lambda}^2M_{\eta}f(x) = D_{\lambda}^2S_{\lambda\xi}M_{\eta}f(x) = D_{\lambda}^2M_{\eta}S_{\lambda\xi-\eta}f(x).$$

so we get the desired identity with $\eta = \lambda \xi - \xi = \eta(\xi, \lambda)$.

5.2. We have used several times the identity $\langle f,g\rangle = \langle \hat{f},\hat{g}\rangle$, where $\langle f,g\rangle = \int_{\mathbb{R}} f\bar{g}$ is the L^2 inner product. Prove this identity in the following two ways: (a) Write the identity $\|h\|_{L^2} = \|\hat{h}\|_{L^2}$ for h = f + ug, where $u \in \{1, -1, i, -i\}$. (b) In the identity $\int_{\mathbb{R}} f\hat{h} = \int_{\mathbb{R}} \hat{f}h$ substitute $f = \bar{f}$, and manipulate the right hand side. (a) We have

$$\begin{split} \|f + ug\|_2^2 &= \int_{\mathbb{R}} (f + ug)\overline{(f + ug)} = \int_{\mathbb{R}} (|f|^2 + |u|^2|g|^2 + f\bar{u}\bar{g} + ug\bar{f}) \\ &\int_{\mathbb{R}} |f|^2 + \int_{\mathbb{R}} |g|^2 + \bar{u}\int_{\mathbb{R}} f\bar{g} + u\int_{\mathbb{R}} g\bar{f}. \end{split}$$

Using the same expansion for f + ug and Plancherel's theorem $||f + ug||_2^2 = ||f + ug||_2^2$ we get

$$\bar{u}\int_{\mathbb{R}} f\bar{g} + u\int_{\mathbb{R}} \bar{f}g = \bar{u}\int_{\mathbb{R}} \hat{f}\bar{\hat{g}} + u\int_{\mathbb{R}} \bar{\hat{f}g}$$

For u = 1 we get

$$\int_{\mathbb{R}} f\bar{g} + \int \bar{f}g = \int \hat{f}\bar{\hat{g}} + \int_{\mathbb{R}} \bar{\hat{f}}\hat{g},$$

while for u = i

$$-i\int_{\mathbb{R}} f\bar{g} + i\int \bar{f}g = -i\int \hat{f}\bar{\hat{g}} + i\int_{\mathbb{R}} \bar{f}\hat{g}.$$

Multiplying the second identity by i and adding them together gives the claim.

(b) We have already proved that

$$\int_{\mathbb{R}} f\hat{h} = \int_{\mathbb{R}} \hat{f}h.$$

Applying this identity to \hat{f} in place of f we get

$$\langle \hat{h}, \hat{f} \rangle = \int_{\mathbb{R}} \hat{h}\bar{f} = \int_{\mathbb{R}} \hat{\bar{f}}h = \int_{\mathbb{R}} \hat{\bar{f}}h = \int_{\mathbb{R}} \hat{\bar{f}}h = \int_{\mathbb{R}} h\bar{f} = \langle h, f \rangle.$$

5.3. Let \mathbb{T} be an up-tree of tiles. Show that it can be divided into 20 subcollections \mathbb{T}_i so that if $P, P' \in \mathbb{T}_i$ for the same *i*, then $\phi_P, \phi_{P'}$ are orthogonal to each other. Let $P = I_P \times \omega_P$ be a tile. Remember that

$$\phi_P(x) \stackrel{\text{def}}{=} M_{c(\omega_d)} T_{c(I)} D^2_{|I|} \phi,$$

and that $\operatorname{supp} \hat{\phi} \subset [-\frac{1}{20}, \frac{1}{20}]$. For fixed $k \in \mathbb{Z}$ consider all the tiles in \mathbb{T} such that $|\omega_P| = 2^k$ so that $|I_P| = 2^{-k}$. The centers of the time intervals of any two tiles $P, P' \in \mathbb{T}$ satisfy $c(I_P) - c(I_{P'})/|I| \in \mathbb{Z}$. Call two tiles in \mathbb{T} equivalent if $|\omega_P| = |\omega_{P'}| = 2^k$ and $c(I_P) - c(I_{P'}) \equiv 0 \mod 20$. Call $\mathbb{T}_k^{(1)}, \mathbb{T}_k^{(2)}, \ldots, \mathbb{T}^{(20)}$, the different equivalent classes. Finally consider the subcollections $\mathbb{T}_j \stackrel{\text{def}}{=} \bigcup_{k \in \mathbb{Z}} \mathbb{T}_k^{(j)}$ for $j = 1, 2, \ldots, 20$. The enumeration of the equivalence classes is irrelevant so it can be arbitrary. Now let $P \in \mathbb{T}_j, P' \in \mathbb{T}_{j'}$ for some j, j'. If P, P' correspond to the same k then they satisfy $|\omega_P| = |\omega_{P'}| = 2^k$. In this case the centers of the time intervals satisfy $c(I_P) - c(I_{P'}) = 20n2^{-k}$. By the calculation in the proof of Proposition 5.2 in the notes we get $\langle \phi_P, \phi_{P'} \rangle = 0$. In the complementary case we have $|\omega_P| \neq |\omega'_P|$ so suppose $|\omega_P| < |\omega_{P'}|$. Since both tiles were part of an up-tree, the upper frequency intervals

intersect so we must have $\omega_{P_u} \subsetneq \omega_{P'_u}$ so in fact the whole frequency interval satisfies $\omega_P \subset \omega_{P'_u}$. However the frequency support of each ϕ_P is contained in ω_{P_d} :

$$\operatorname{supp}(\widehat{\phi}_P) \subset c(\omega_d) + |\omega_P|[-\frac{1}{20}, \frac{1}{20}] \subset \omega_{P_d}.$$
well we have $\langle \phi_P, \phi_P \rangle = \langle \widehat{\phi_P}, \widehat{\phi_P} \rangle = 0$

Thus in this case as well we have $\langle \phi_P, \phi_{P'} \rangle = \langle \phi_P, \phi_{P'} \rangle = 0.$

5.4. Prove the following fact that was implicitly used in transforming the probabilistic expectation E into the Lebesgue integral over [0, 1]: For numbers $0 \le a \le b \le 1$, we have

$$\mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in [a,b)\Big) = b - a,$$

where β_j are independent random variables with $\mathbf{P}(\beta_j = 0) = \mathbf{P}(\beta_j = 1) = 1/2$. First of all observe that the probability that $\sum_{j=1}^{\infty} 2^{-j} \beta_j$ attains any single value is zero. Indeed, for any given $a \in [0, 1)$ we either have that the value a is never attained, thus the probability is zero, or there is a deterministic sequence $\{\epsilon_j\}_{j=1}^{\infty} \subset \{0, 1\}^{\mathbb{Z}}$, depending on a, such that

$$\sum_{j=1}^{\infty} 2^{-j} \beta_j = a \Leftrightarrow \beta_j = \epsilon_j \quad \text{for all} \quad j.$$

Thus

$$\{\sum_{j=1}^{\infty} 2^{-j}\beta_j = a\} \subseteq \bigcap_{j=1}^{N} \{\beta_j = \epsilon_j\}$$

for all positive integers N. We conclude that in any case

$$\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j}\beta_j = a\right) \le \prod_{j=1}^{N} \mathbf{P}\left(\beta_j = \epsilon_j\right) = \frac{1}{2^N}$$

by the independence of the β_j 's. Since this holds for arbitrary any we get $\mathbf{P}\left(\sum_{j=1}^{\infty} 2^{-j}\beta_j = a\right) = 0.$

Consider the case where [a, b) = [0, 1/2). Then we have

$$0 \le \sum_{j=1}^{\infty} 2^{-j} \beta_j \le 1/2 \Leftrightarrow \beta_1 = 0,$$

so in this case the claim is immediate. Now let [a, b) be any dyadic interval of the form $2^{-k}[j, j+1)$. We have

$$\sum_{j=k+1}^{\infty} 2^{-j} \beta_j \le \sum_{j=k+1}^{\infty} 2^{-j} \le 2^{-k},$$

and $\sum_{j=1}^{k} 2^{-j} \beta_j$ is some number of the form $\ell 2^{-k}$ with $\ell \leq 2^k - 1$ where the exact value of ℓ depends only on the values of β_1, \ldots, β_k . Independently of what this exact value is, there exists some sequence of numbers $\epsilon_1, \ldots, \epsilon_k \in \{0, 1\}$ such that

$$\mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in 2^{-k}[j,j+1)\Big) = \mathbf{P}\bigg(\bigcap_{j=1}^{k} \{\beta_j = \epsilon_j\}\bigg) = 2^{-k} = |[a,b)|,$$

by the independence of the β_j 's. Finally any interval [a, b) can be written as a (possibly infinite) disjoint union of dyadic intervals except maybe the endpoints, that is

$$(a,b) = \bigcup_{m=1}^{\infty} \Delta_m$$

where the Δ_j 's are dyadic and disjoint. Indeed one considers the maximal dyadic intervals in (a, b) so they are disjoint by construction. Now since (a, b) is open any point $x \in (a, b)$ is contained in some dyadic interval and thus in some maximal dyadic interval. The claim follows easily since

$$\mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in [a,b)\Big) = \mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in (a,b)\Big) = \mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in \cup_m \Delta_m\Big)$$
$$= \sum_m \mathbf{P}\Big(\sum_{j=1}^{\infty} 2^{-j}\beta_j \in \Delta_m\Big) = \sum_m |\Delta_m|$$
$$= |[a,b)| = b - a.$$

5.5. Given a function ψ and an interval J, denote $\psi_J \stackrel{\text{def}}{=} T_{c(J)} D_{|J|}^2 \psi$. Let I be a fixed standard dyadic interval. Prove that

$$\mathbf{E}\psi_{I+\beta}(x) = (\psi * \mathbf{1}_{[0,1)})\mathbf{1}_I(x),$$

where E is the expectation over the random choice of the shift parameter $\beta \in \{0, 1\}^{\mathbb{Z}}$. First of all let us look at $\psi_{I+\beta}$ for a fixed β . We have

$$\psi_{I+\beta}(x) = T_{c(I+\beta)} D_{|I|}^2 \psi = T_{c(I+\beta)} \frac{1}{|I|^{\frac{1}{2}}} \psi(\frac{x}{|I|})$$

As in the proof of Theorem 6.1 in the notes we write for $|I| = 2^{-k}$:

$$c(I+\beta) - c(I) = \sum_{2^{-j} < 2^{-k}} \beta_j 2^{-j} = \sum_{j \ge k+1}^{\infty} \beta_j 2^{-j} = \sum_{s=1}^{\infty} \beta_{s+k} 2^{-(s+k)}$$
$$= |I| \sum_{j=1}^{\infty} \beta_{j+k} 2^{-s},$$

and the binary series above is uniformly distributed in the interval [0, 1) as β_j 's are chosen randomly in $\{0, 1\}^{\mathbb{Z}}$ by exercise 5.4. Thus

$$\begin{split} \mathbf{E}\psi_{I+\beta} &= \frac{1}{|I|^{\frac{1}{2}}} \int_{0}^{1} \psi \Big(\frac{x - c(I) - u|I|}{|I|} \Big) du = \frac{1}{|I|^{\frac{1}{2}}} \psi * \mathbf{1}_{[0,1)} \Big(\frac{x - c(I)}{|I|} \Big) \\ &= D_{|I|}^{2} \psi * \mathbf{1}_{[0,1)} (x - c(I)) = T_{c(I)} D_{|I|}^{2} \psi * \mathbf{1}_{[0,1)} (x) \\ &= (\psi * \mathbf{1}_{[0,1)})_{I} (x). \end{split}$$