Time Frequency Analysis - Winter 2012

EXERCISE SET 5

5.1. Investigate the commutation relations between S; and T,, M,, D\*
Find a ¢ (possibly different in the different identities below) so that

SgTy = TySg, SSMU = MWSE'7 S&Di - D/Z\Sg.
Finally, find a value of n = (¢, \) such that S¢DiM, = DiM,Se. We begin by
recalling the definition of the operator Sg:
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Using the previous identities we can write

SeDIM, f(x) = D3S\e M, f(x) = DIM,Sxe—p f (),
so we get the desired identity with n = A{ — & = n(§, A).

5.2. We have used several times the identity (f,g) = (f, g), where (f,g) =
Jz f3 is the L? inner product. Prove this identity in the following two ways:

(a) Write the identity ||h||L2 = ||A|| 2 for h = f + ug, where u € {1, —1,4, —i}.
(b) In the identity fR fh fR fh substltute f= f, and manipulate the right
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hand side. (a) We have
I+ ugll2 = / (f +ug)(F T ug) = / (£ + [uPlgf? + fug + ugl)

Jie s [1o+a [ gavu [ of

Using the same expansion for f + ug and Plancherel’s theorem || f +ug||? = Hf + ugl|3

we get
uAfg+u4fg=u4f§+u4fﬁ
Am+/ﬁ:/ﬁ+4%7
—z‘/ngﬂ'/fg——é/fgw/ng.

Multiplying the second identity by ¢ and adding them together gives the claim.
(b) We have already proved that

/Rfﬁ:/th.

Applying this identity to f in place of f we get

(h, f) = /hf /fh /fh / — (h, ).

5.3. Let T be an up-tree of tiles. Show that it can be divided into 20 sub-
collections T; so that if P, P’ € T, for the same ¢, then ¢p, »p are orthogonal
to each other. Let P = Ip X wp be a tile. Remember that

For u =1 we get

while for v =1

def

gbp(ft) = MC( \I|¢7

and that Suppng - [_2%7 2—10] For fixed k£ € 7Z consider all the tiles in T such that
lwp| = 2% so that |Ip| = 27*. The centers of the time intervals of any two tiles P, P’ €
T satisfy c(Ip) — c(Ip)/|I| € Z. Call two tiles in T equivalent if |wp| = |wp/| = 2F
and c(Ip) — ¢(Ip) = 0 mod 20. Call T T . . T the different equivalent

classes. Finally consider the subcollections T} o UkGZT,(CJ) for j =1,2,...,20. The
enumeration of the equivalence classes is irrelevant so it can be arbitrary. Now let
P e T;,P' € Tj for some j,j'. If P, P’ correspond to the same k then they satisfy
lwp| = |wp/| = 2%. In this case the centers of the time intervals satisfy c(Ip) —
c(Ipr) = 20n27%. By the calculation in the proof of Proposition 5.2 in the notes
we get (¢op,pp) = 0. In the complementary case we have |wp| # |wp| so suppose
lwp| < |wpr|. Since both tiles were part of an up-tree, the upper frequency intervals
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intersect so we must have wp, C wp; so in fact the whole frequency interval satisfies

=

wp C wpr. However the frequency support of each ¢p is contained in wp,:

" 1 1
Supp(¢p) C C(wd) + ’WPH_%, 2—0] C wp,.

Thus in this case as well we have (¢pp, pp/) = <¢/51\3, qg;/) =0.

5.4. Prove the following fact that was implicitly used in transforming the
probabilistic expectation E into the Lebesgue integral over [0, 1]: For num-
bers 0 <a <b <1, we have

P(i2jﬂj €la,b) =b—a,

where (; are independent random variables with P(8; = 0) = P(§; = 1) =
1/2. First of all observe that the probability that > >, 2773; attains any single value
is zero. Indeed, for any given a € [0,1) we either have that the value a is never
attained, thus the probability is zero, or there is a deterministic sequence {€;}32; C
{0,1}% | depending on a, such that

Z2‘jﬁj =a& fBj=¢ forall j.

J=1

Thus
[e's) N
D 278 =a} (B =€}
P j=1

for all positive integers N. We conclude that in any case

[e'e) N
P() 2798 =a) <[[P(Bi=¢) = N
j=1 j=1

by the independence of the 3;’s. Since this holds for arbitrary any we get P ( Zj; 2793, =
a) = 0.
Consider the case where [a,b) = [0,1/2). Then we have

0< ZQ_jﬂj <1/2« B =0,
=1

so in this case the claim is immediate. Now let [a,b) be any dyadic interval of the
form 27%[4, 7 + 1). We have

i 277 < i 27 <27,

j=k+1 j=k+1
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and Z?Zl 2793; is some number of the form (2% with ¢ < 2¥ — 1 where the exact
value of ¢ depends only on the values of 1, ..., 8r. Independently of what this exact

value is, there exists some sequence of numbers €1, ..., ¢, € {0, 1} such that
P(Y 276 €2 Hj.j + 1) (ﬂ{ﬂg —6}) =2 = b,
j=1

by the independence of the 8;’s. Finally any interval [a, b) can be written as a (possibly
infinite) disjoint union of dyadic intervals except maybe the endpoints, that is

(a,b) =UrX_ 1A

where the A;’s are dyadic and disjoint. Indeed one considers the maximal dyadic
intervals in (a, b) so they are disjoint by construction. Now since (a, b) is open any
point = € (a, b) is contained in some dyadic interval and thus in some maximal dyadic
interval. The claim follows easily since

P(Zwﬂj € [a,0)) = P(Zz—jﬁj € (a,b)) = P(Zz—ﬂﬂj € UnAy)
= ZP(ZZ‘jﬁj €AL) =) |A,
= |[a,b)| =b—a.

5.5. Given a function ¥ and an interval J, denote wJ = T \JI¢ Let I be
a fixed standard dyadic interval. Prove that

E¢rip(z) = (¥ * 1p1))1i(z),

where E is the expectation over the random choice of the shift parameter
B € {0,1}%. First of all let us look at 17,4 for a fixed 3. We have

1 T

As in the proof of Theorem 6.1 in the notes we write for |I| = 27%:

¢I+B( ) T(I+B Duﬂ/’ c(I+ﬂ

cI+B)—cl)= > B27 =D B27 =D B2
s=1

2-i<27k j>k+1

= ‘[’ Z ﬁj+k2757
j=1
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and the binary series above is uniformly distributed in the interval [0,1) as j;’s are
chosen randomly in {0, 1}% by exercise 5.4. Thus

1 (Y o —e(I) —ull x—c(l)
Bres =11 13 / U 1] Jdu méw T
= Dy Ly (x — e(I) = Tony Di) + Lo,1)(2)
= (¥ Lp))1(x).
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