Time Frequency Analysis - Winter 2012

Exercise Set 4

4.1. Prove the following relations for the modulation, translation and dilation operators $M_{y} f(x) \stackrel{\text { def }}{=} e^{2 \pi i x y} f(y), T_{y} f(x)=f(x-y), D_{\lambda}^{p} f(x)=\lambda^{-\frac{1}{p}} f(x / \lambda)$, where $y \in \mathbb{R}$ and $\lambda>0$:

$$
\widehat{M_{y} f}=T_{y} \hat{f}, \quad \widehat{T_{y} f}=M_{-y} \hat{f}, \quad \widehat{D_{\lambda}^{p} f}=D_{\frac{1}{\lambda}}^{p^{\prime}} \hat{f}
$$

Here p^{\prime} is the dual exponent of $p: \frac{1}{p}+\frac{1}{p^{\prime}}=1$. We have

$$
\begin{aligned}
& \widehat{M_{y} f}(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} e^{2 \pi i x y} f(x) d x=\int_{\mathbb{R}} e^{-2 \pi i(\xi-y) x} f(x) d x=\hat{f}(\xi-y)=T_{y} \hat{f}(\xi), \\
& \widehat{T_{y} f}(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} f(x-y) d y=\int_{\mathbb{R}} e^{-2 \pi i(x+y) \xi} f(x) d x=e^{-2 \pi i y \xi} \hat{f}(\xi)=M_{-y} \hat{f}(\xi), \\
& \widehat{D_{\lambda}^{p}} f(\xi)=\frac{1}{\lambda^{\frac{1}{p}}} \int_{\mathbb{R}} e^{-2 \pi i x \xi} f(x / \lambda) d x=\frac{1}{\lambda^{\frac{1}{p}}} \int_{\mathbb{R}} e^{2 \pi i(\lambda x) \xi} f(x) \lambda d x=\lambda^{1-\frac{1}{p}} \hat{f}(\lambda \xi)=D_{\lambda^{-1}}^{p^{\prime}} \hat{f}(\xi) .
\end{aligned}
$$

4.2. Find the Fourier transforms of $x^{\alpha} f(x)$ and $\partial_{x}^{\beta} f(x)$ in terms of \hat{f}, and show that the Fourier transform maps the Schwartz space

$$
\mathcal{S}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): \forall \alpha, \beta \in \mathbb{N}, \sup _{x \in \mathbb{R}}\left|x^{\alpha} \partial_{x}^{\beta} f(x)\right|<\infty\right\}
$$

into itself, i.e. if $f \in \mathcal{S}(\mathbb{R})$ then also $\hat{f} \in \mathcal{S}(\mathbb{R})$. We first perform the calculation for $\alpha=1$ since it's more transparent. Noting that $x e^{-2 \pi i x \xi}=\left(-\frac{1}{2 \pi i} \frac{d}{d \xi}\right) e^{-2 \pi i x \xi}$ we have

$$
\begin{aligned}
\widehat{x f}(\xi) & =\int_{\mathbb{R}} e^{-2 \pi i x \xi} x f(x) d x=\int_{\mathbb{R}}\left(-\frac{1}{2 \pi i} \frac{d}{d \xi}\right) e^{-2 \pi i x \xi} f(x) d x \\
& =\left(-\frac{1}{2 \pi i} \frac{d}{d \xi}\right) \hat{f}(\xi)
\end{aligned}
$$

where some justification is needed for the last equality but everything works fine for 'nice' functions. One can perform the same calculation for general α noting that $x^{\alpha} e^{-2 \pi i x \xi}=\left(-\frac{1}{2 \pi i} \frac{d}{d \xi}\right)^{\alpha} e^{-2 \pi i x \xi}$ or by iterating the previous result. Thus

$$
\mathcal{F}\left((-2 \pi i x)^{\alpha} f\right)(\xi)=\partial_{\xi}^{\alpha} \hat{f}(\xi)
$$

The other calculation is similar. We write

$$
\mathcal{F}\left(\partial_{x} f\right)(\xi)=\int_{\mathbb{R}} e^{-2 \pi i x \xi} \partial_{x} f(x) d x=\int_{\mathbb{R}}\left[\partial_{x}\left(e^{-2 \pi i x \xi} f(x)\right)-\partial_{x} e^{-2 \pi i x \xi} f(x)\right] d x
$$

Assuming that f vanishes in some appropriate sense at infinity we get

$$
\mathcal{F}\left(\partial_{x} f\right)(\xi)=-\int_{\mathbb{R}}(-2 \pi i \xi) e^{-2 \pi i x \xi} f(x) d x=(2 \pi i \xi) \hat{f}(\xi)
$$

The calculation for general α is similar only one has to integrate by parts α times instead of just one. Also note that in general we will need that the derivatives of f up to order $\alpha-1$ also vanish at infinity. We get in general

$$
\mathcal{F}\left(\partial_{x}^{\beta} f\right)(\xi)=(2 \pi i \xi)^{\beta} \hat{f}(\xi)
$$

Thus the Fourier transform turns multiplication by the free variable to differentiation and vice versa, it transforms differentiation to multiplication by the corresponding monomial.
Now let $f \in \mathcal{S}(\mathbb{R})$ and $\alpha, \beta \in \mathbb{N}$. First observe that the functions $\partial_{x}^{\alpha} x^{\beta} f, x^{\alpha} \partial_{x}^{\beta} f$ are also Scwhartz functions (the Schwartz class is 'closed' under the operations ∂_{x}, multiplication by x). Thus for any $\alpha, \beta \in \mathbb{N}$ we have by the previous calculations that

$$
\left|\partial_{\xi}^{\alpha} \xi^{\beta} \hat{f}(\xi)\right| \simeq_{\alpha, \beta}\left|\mathcal{F}\left(x^{\alpha} \partial_{x}^{\beta} f\right)(\xi)\right| \leq\left\|x^{\alpha} \partial_{x}^{\beta} f\right\|_{L^{1}(\mathbb{R})}<\infty
$$

where we used the general estimate $\sup _{\xi \in \mathbb{R}}|\hat{f}(\xi)| \leq\|f\|_{L^{1}(\mathbb{R})}$.

4.3. Let ϕ be a 'nice' function. Prove that for all $x \in \mathbb{R}$ and $\epsilon>0$,

$$
\left|D_{\epsilon}^{1} \phi * f(x)\right| \leq C_{\phi} M f(x)
$$

where C_{ϕ} is some constant depending only on ϕ and M is the HardyLittlewood maximal function

$$
M f(x)=\sup _{I} \frac{\mathbf{1}_{I}(x)}{|I|} \int_{I}|f(y)| d y
$$

Formulate more precisely the assumption that ϕ is 'nice' so that this estimate works. It clearly suffices to assume that $f \geq 0$. An easy estimate can be obtained if ϕ is bounded and has compact support contained say in some ball $B(0, R)$. We have

$$
\begin{aligned}
\left|D_{\epsilon}^{1} \phi * f(x)\right| & =\frac{1}{\epsilon} \int_{\mathbb{R}} \phi(y / \epsilon) f(x-y) d y=\int_{\mathbb{R}} \phi(y) f(x-\epsilon y) d y \\
& \leq\|\phi\|_{\infty} \int_{|y|<R} f(x-\epsilon y) d y=\|\phi\|_{\infty} \frac{1}{\epsilon} \int_{|y|<\epsilon R} f(x-y) d y \\
& =\|\phi\|_{\infty} \frac{2 R}{2 \epsilon R} \int_{|y|<\epsilon R} f(x-y) d y \leq 2 R\|\phi\|_{\infty} M f(x) \stackrel{\text { def }}{=} C_{\phi} M f(x)
\end{aligned}
$$

Note that in this case $\phi \in L^{1}(\mathbb{R})$ and $\|\phi\|_{1} \leq 2 R\|\phi\|_{\infty}$. With a little more care one can just assume that $\phi \in L^{1}(\mathbb{R})$ plus some additional technical hypotheses. Let ϕ be a simple function of finite measure suport, $\phi=\sum_{k=1}^{K} c_{k} \mathbf{1}_{I_{k}}$ where $I_{k}=\left(-a_{k}, b_{k}\right)$ with $c_{k}, a_{k}, b_{k}>0$. Then

$$
D_{\epsilon}^{1} * f(x)=\sum_{k} c_{k} \int_{I_{k}} f(x-\epsilon y) d y=\frac{1}{\epsilon} \sum_{k} c_{k} \int_{\epsilon I_{k}} f(x-y) d y
$$

where if $I_{k}=(a, b)$ then $\epsilon I_{k}=(\epsilon a, \epsilon b)$. Thus

$$
D_{\epsilon}^{1} * f(x)=\sum_{k} c_{k} \frac{\left|I_{k}\right|}{\epsilon\left|I_{k}\right|} \int_{x-\epsilon I_{k}} f(y) d y
$$

Now $0 \in I_{k} \Rightarrow x \in x-\epsilon I_{k}$ for all k so that

$$
D_{\epsilon}^{1} * f(x) \leq \sum_{k} c_{k}\left|I_{k}\right| M f(x)=\|\phi\|_{L^{1}} M f(x)
$$

The functions ϕ of the form considered approximate positive L^{1} functions such that $0 \in \operatorname{supp}(\phi)$ so the result extends to all these functions ϕ. There is no claim that this is the most general set of hypotheses.
4.4. Write down the proof of the Heisenberg uncertainty principle for general x_{o} and ξ_{o}. Investigate which functions give equality. Assume $f \in \mathcal{S}(\mathbb{R})$. We have

$$
\begin{aligned}
\left(\xi-\xi_{o}\right) \hat{f}(\xi) & =\left(\xi-\xi_{o}\right) \int_{\mathbb{R}} f(x) e^{-i 2 \pi i x \xi} d x=\left(\xi-\xi_{0}\right) \int_{\mathbb{R}} f(x) e^{-i 2 \pi i x\left(\xi-\xi_{o}\right)} e^{-i 2 \pi x \xi_{o}} d x \\
& =\int_{\mathbb{R}} M_{-\xi_{o}} f(x)\left(-\frac{\partial_{x}}{2 \pi i}\right) e^{-i 2 \pi i x\left(\xi-\xi_{o}\right)} d x \\
& =\frac{1}{2 \pi i} \int_{\mathbb{R}} \partial_{x} M_{-\xi_{o}} f(x) e^{-i 2 \pi i x\left(\xi-\xi_{o}\right)} d x \\
& =T_{\xi_{o}} \mathcal{F}\left(\frac{\partial_{x}}{2 \pi i} M_{-\xi_{o}} f\right)(\xi) \\
& =T_{\xi_{o}} \mathcal{F}\left(M_{-\xi_{o}}\left(\frac{\partial_{x}}{2 \pi i}-\xi_{o}\right) f\right) .
\end{aligned}
$$

Thus
$\left(\int_{\mathbb{R}}\left(x-x_{o}\right)^{2}|f(x)|^{2} d x\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}}\left(\xi-\xi_{o}\right)^{2}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}=\left\|\left(x-x_{o}\right) f(x)\right\|_{2}\left\|\left(\frac{\partial_{x}}{2 \pi i}-\xi_{o}\right) f\right\|_{2}$.
Consider $P_{x_{o}} f(x)=\left(x-x_{o}\right) f(x)$ the position operator and the momentum operator $Q_{\xi_{o}} f(x)=\frac{1}{2 \pi i}\left(\partial_{x}-2 \pi i \xi_{o}\right) f(x)$. The commutator is

$$
\begin{aligned}
{\left[P_{x_{o}}, Q_{\xi_{o}}\right] } & =\frac{1}{2 \pi i}\left[\left(x-x_{o}\right)\left(\partial_{x}-2 \pi i \xi_{o}\right) f-\left(\partial_{x}-2 \pi i \xi_{o}\right)\left(x-x_{o}\right) f\right] \\
& =\frac{1}{2 \pi i}\left[\left(x-x_{o}\right) \partial_{x} f-\left(x-x_{o}\right) \partial_{x} f-f\right] \\
& =\frac{i}{2 \pi} f
\end{aligned}
$$

Since modulation does not change the L^{2}-norm we get

$$
\begin{aligned}
\frac{1}{2 \pi}\|f\|_{2}^{2} & =\left|\left\langle f,\left[P_{x_{o}}, Q_{\xi_{o}}\right] f\right\rangle\right|=\left|\left\langle f, P_{x_{o}} Q_{\xi_{o}} f\right\rangle-\left\langle f, Q_{\xi_{o}} P_{x_{o}} f\right\rangle\right| \\
& =\left|\left\langle P_{x_{o}} f, Q_{\xi_{o}} f\right\rangle-\left\langle Q_{\xi_{o}} f, P_{x_{o}} f\right\rangle\right|=\left|\left\langle P_{x_{o}} f, Q_{\xi_{o}} f\right\rangle-\overline{\left.P_{x_{o}} f, Q_{\xi_{o}} f\right\rangle}\right| \\
& =\left|2 i \operatorname{Im}\left\langle P_{x_{o}} f, Q_{\xi_{o}} f\right\rangle\right| \leq 2\left\|P_{x_{o}} f\right\|_{2}\left\|Q_{\xi_{o}} f\right\|_{2},
\end{aligned}
$$

which is the uncertainty principle.
We have used the inequality $|\operatorname{Im}(i z)| \leq|z|$ which becomes an equality if $|\operatorname{Re}(z)|=|z|$ that is when $z \in \mathbb{R}$. We have also used the Cauchy-Schwarz inequality for two functions in L^{2} which becomes an equality exactly when one function is a multiple of the other (the functions are 'co-linear'). Recalling the functions we used CauchyScharz for we conclude that we must have

$$
\begin{aligned}
P_{x_{o}} f & =\lambda Q_{\xi_{o}} f \Leftrightarrow\left(x-x_{o}\right) f(x)=\lambda \frac{1}{2 \pi i}\left(\partial_{x}-2 \pi i \xi_{o}\right) f(x) \\
& \Leftrightarrow\left(x-x_{o}+\lambda \xi_{o}\right) f(x)=\frac{\lambda}{2 \pi i} \partial_{x} f(x)
\end{aligned}
$$

Here λ must be purely imaginary $\lambda=i \beta$ for $\beta \in \mathbb{R}$. We get

$$
2 \pi\left(x-x_{o}+i \beta \xi_{o}\right) f(x)=\beta \partial_{x} f(x) \Rightarrow \partial f / f=\frac{2 \pi}{\beta}\left(x-x_{o}\right)+2 \pi i \beta \xi_{o}
$$

We conclude that

$$
f(x)=c e^{\frac{2 \pi}{2 \beta}\left(x-x_{o}\right)^{2}} e^{2 \pi \beta \xi_{o} x} .
$$

Observe that we must have $\beta<0$ in order to get a Schwartz function so it
4.5. Prove the existence of a symmetric non-negative $\phi_{0} \in C^{\infty}$ which is strictly positive on $(-1,1)$, zero outside, and satisfies

$$
\sum_{k \in \mathbb{Z}} \phi_{0}(x+k) \equiv 1
$$

Show that for such ϕ_{0} the function $\phi \stackrel{\text { def }}{=} \sqrt{\phi_{0}}$ is also C^{∞}, and therefore satisfies the properties required for the basic wave packet. Let

$$
\phi_{1}(x) \stackrel{\text { def }}{=} \mathbf{1}_{(0, \infty)} e^{-\frac{1}{x}}, \quad \phi_{2}(x) \stackrel{\text { def }}{=} \phi_{1}(x) \phi_{1}\left(\frac{1}{3}-x\right)
$$

In order to check that ϕ_{1} is C^{∞} it suffices to do so at 0 (everywhere else it is obvious). First check that it is continuous at zero, then

$$
\lim _{x \rightarrow 0^{+}} \frac{\phi(x)-0}{x}=\lim _{x \rightarrow 0^{+}} \frac{e^{-\frac{1}{x}}}{x}=\lim _{x \rightarrow+\infty} y e^{-y}=0
$$

You can use induction on k to show that ϕ_{1} is C^{k} for every k. One way to do that is to show that for every $k \in N$ and $x>$ we have $\phi_{1}^{(k)}(x)=P_{k}\left(\frac{1}{x}\right) e^{-\frac{1}{x}}$ where P_{k} is a polynomial of degree $2 k$. Then you can show that $\lim _{x \rightarrow 0^{+}} \phi_{1}^{(k)}(x)=0$ by essentially using the fact that e^{-y} decays faster than any polynomial power as $x \rightarrow+\infty$. So ϕ_{1} and thus ϕ_{2} are C^{∞}-functions. Also since $\phi_{1}(x) \equiv 0$ for $x \leq 0$ (together with all its derivatives) we conclude that ϕ_{2} is supported on ($0,1 / 3$).
Now we define

$$
\phi_{3}(x) \stackrel{\text { def }}{=} \int_{-\infty}^{x} \phi_{2}(y) d y, \quad \phi_{4}(x) \stackrel{\text { def }}{=} c-\phi_{3}(1-x) .
$$

Since ϕ_{3} vanishes outside $(0,1 / 3)$ we have

$$
\phi_{3}(x)=\int_{0}^{x} \phi_{2}(y) d y
$$

is supported on $(0, \infty)$. Since ϕ_{2} vanishes for $x \geq 1 / 3$ we conclude that $\phi_{3}(x)$ is constant for $x \geq 1 / 3$:

$$
\int_{0}^{\frac{1}{3}} \phi_{2}(x) d x=\phi_{3}(1 / 3), \quad x \geq 1 / 3
$$

Thus ϕ_{3} is a smooth 'pulse', identically zero for $x \leq 0$, identically $\phi_{3}(1 / 3)$ for $x \geq 1 / 3$ and C^{∞} in the transition interval $(0,1 / 3)$.
Let us now study the function $\phi_{4}(x)=c-\phi_{3}(1-x)$. For $1-x<0 \Leftrightarrow x>1$ we have that $\phi_{3}(1-x)=0$ thus $\phi_{4}(x)=c$ for $x>1$. For $1-x>1 / 3 \Leftrightarrow x<2 / 3$ we have that $\phi_{3}(1-x)=\phi_{3}(1 / 3)$ thus $\phi_{4}(x)=c-\phi_{3}(1 / 3)$ is constant as well. Thus ϕ_{4} is also a smooth pulse, identically equal to $c-\phi_{3}(1 / 3)$ for $x \leq 2 / 3$, identically equal to c for $x \geq 1$ and smooth in the transition integral $(2 / 3,1)$.
We combine these two functions in the function ϕ_{5} as follows. If $x<\frac{1}{3}$ we set $\phi_{5}(x) \stackrel{\text { def }}{=} \phi_{3}(x)$. If $x>\frac{2}{3}$ we set $\phi_{5}(x) \stackrel{\text { def }}{=} \phi_{4}(x)$. In the interval $(1 / 3,2 / 3)$ both functions ϕ_{3} are defined and constant so we just make sure that these constants agree. Indeed for $x \in(1 / 3,2 / 3)$ we have $\phi_{3}(x) \equiv \phi(1 / 3)$ and $\phi_{4}(x)=c-\phi_{3}(1 / 3)$. Choose $c=2 \phi_{3}(1 / 3)$ so that these values agree. Since we 'glue' the function together in the interval where they are both constant and equal the resulting function ϕ_{5} is also smooth. The function ϕ_{5} looks like a 'double smooth pulse', identicallye equal to 0 for $x<0$, identically equal to $\phi_{3}(1 / 3)$ for $1 / 3 \leq x \leq 2 / 3$ and identically equal to $2 \phi_{3}(1 / 3)$ for $x \geq 1$, and smooth in all the transition intervals $(0,1 / 3)$ and $(2 / 3,1)$.

Finally, we reflect the function ϕ_{5} with respect to 1 , translate to center it at 0 , and normalize to make its value equal to 1 at 0 . In formulas this means we define

$$
\begin{aligned}
\phi_{0}(x) & =\frac{1}{\left(\phi_{5}(1)\right)^{2}} \phi_{5}(x+1) \phi_{5}(2-(x+1)) \\
& =\frac{1}{\left(2 \phi_{3}(1 / 3)\right)^{2}} \phi_{5}(x+1) \phi_{5}(1-x)
\end{aligned}
$$

We need to check that this forms a partition of unity. We want to study the function

$$
\psi(x) \stackrel{\text { def }}{=} \sum_{k \in \mathbb{Z}} \phi_{0}(x+k)=\frac{1}{\left(2 \phi_{3}(1 / 3)\right)^{2}} \sum_{k \in \mathbb{Z}} \phi_{5}(x+k+1) \phi_{5}(1-k-x)
$$

Since ψ is 1-periodic so it suffices to consider everything in the interval $(0,1)$. Remember that ϕ_{0} was supported in $(-1,1)$, for $x \in(0,1)$ only the terms corresponding to $k=0$ and $k=-1$ will contribute to the sum. We can thus simplify a bit

$$
\psi(x)=\frac{1}{\left(2 \phi_{3}(x)\right)^{2}}\left(\phi_{5}(x+1) \phi_{5}(1-x)+\phi_{5}(x) \phi_{5}(2-x)\right)
$$

Now $x \in(0,1)$ implies that $x+1>1$ and $2-x>1$ so that $\phi_{5}(x+1)=\phi_{5}(2-x)=$ $2 \phi_{3}(1 / 3)$ by the construction of ϕ_{5}. We end up with

$$
\psi(x)=\frac{1}{2 \phi_{3}(1 / 3)}\left(\phi_{5}(x)+\phi_{5}(1-x)\right)
$$

For $1 / 3 \leq x \leq 2 / 3$ we have that $1-x$ is in the same interval so $\phi_{5}(x)=\phi_{5}(1-x)=$ $2 \phi(1 / 3)$ thus $\psi(x)=1$. If $x<1 / 3$ then $1-x>2 / 3$ so we have that $\psi(x)=$ $\frac{1}{2 \phi_{3}(1 / 3)}\left(\phi_{3}(x)+\phi_{4}(1-x)\right)=\frac{1}{2 \phi_{3}(1 / 3)}\left(\phi_{3}(x)+c-\phi_{3}(x)\right)=1$, remembering that $c=$ $2 \phi_{3}(1 / 3)$. The corresponding calculation is valid for $x \in(2 / 3,1)$ so we get that $\psi(x) \equiv 1$ as we wanted to show.
In general now suppose that ϕ is a C^{∞} function, strictly positive on some interval (a, b) and identically zero on $\mathbb{R} \backslash(a, b)$. For such a function we claim that $\psi \stackrel{\text { def }}{=} \sqrt{\phi}$ is also C^{∞}. This is obvious for $x \notin[a, b]$ since the function ϕ is identically zero there and also obvious for $x \in(a, b)$ thus we only need to examine what happens at an endpoint say a. Let us assume, without loss of generality, that $a=0$ so that the function ϕ is identically zero for $x<0$ and strictly positive for $x>0$. We have by Talyor's theorem and the fact that ϕ is C^{∞} that

$$
\lim _{\delta \rightarrow 0+} \phi(\delta) / \delta^{k}=0 \quad \forall k
$$

In particular $\lim _{\delta \rightarrow 0^{+}} \frac{\sqrt{\phi(\delta)}-\sqrt{\phi(0)}}{\delta}=\lim _{\delta \rightarrow 0^{+}} \sqrt{\frac{\phi(\delta)}{\delta^{2}}}=0$. Obviously we have that $\sqrt{\phi(\delta)} / \delta \equiv 0$ for $\delta<0$ so we see that ψ is differentiable at 0 . However now observe that ϕ^{\prime} is also C^{∞} so the same argument applies for ϕ^{\prime} in the place of ϕ. We can then complete the proof by induction.

