Time Frequency Analysis - Winter 2012

EXERCISE SET 4

4.1. Prove the following relations for the modulation, translation and di-

lation operators M, f(x) Lf e2mizy ¢ (), T,f(x) = f(z—y), DYf(x) = )\_%f(x//\),

where y € R and \ > 0:
Myf=T,f, T,f=M.,f Dif=DiF.

Here p’ is the dual exponent of p: % + z% = 1. We have

M,f(€) = / e~ 22T (1) = / e 2 E f()dr = f(€ —y) = T, f(€),
T,f(€) = /R e 2 f(z — y)dy = / e 2 f () dy = e FVEf(€) = M_, f(€),

R

DIf(E) = & / e 27 (i [ \)dx = % / T f () = A F(AE) = DY F(©).

AP

4.2. Find the Fourier transforms of 2°f(z) and 07 f(x) in terms of f, and
show that the Fourier transform maps the Schwartz space

S(R) = {f € C*(R) : Yo, 8 € N,sup |s°07 f ()| < o0}
zeR

into itself, i.e. if f € S(R) then also f € S(R). We first perform the calculation

for a = 1 since it’s more transparent. Noting that xe™ 27 = (—ﬁj‘é)e”’m£ we have
—~ ) 1 ~
zf(€) = /Re_gm”‘fxf(:p)d:p = /R (- %dig)e_%mff(x)dx
1 d. .,
= (=552 1©:

where some justification is needed for the last equality but everything works fine for
‘nice’ functions. One can perform the same calculation for general a noting that
ae P = (—5o4L)%e ™ or by iterating the previous result. Thus

F((=2miz)* f)(§) = I¢ [(£)-

The other calculation is similar. We write

FO.N©O = [ e oy = [

R R

{ax(e-mﬁf(x)) — Ope 2™ f (1) | da.
Assuming that f vanishes in some appropriate sense at infinity we get

F(O.0)(€) = - [ (~2mi€)e ™ f(a)do = (2mi) i€).

R
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The calculation for general « is similar only one has to integrate by parts « times
instead of just one. Also note that in general we will need that the derivatives of f
up to order o — 1 also vanish at infinity. We get in general

FOLF)(€) = (2mi)? f(£).

Thus the Fourier transform turns multiplication by the free variable to differentiation
and vice versa, it transforms differentiation to multiplication by the corresponding
monomial.

Now let f € S(R) and a,3 € N. First observe that the functions 9%z° f, x*9% f
are also Scwhartz functions (the Schwartz class is ‘closed’ under the operations 0,
multiplication by x). Thus for any «, 5 € N we have by the previous calculations that

108€° F(E)] a5 I F (20 N)(E)] < 1207 fllrz) < oo,

where we used the general estimate supgcg 1f(6)] < I fllr(m)

4.3. Let ¢ be a ‘nice’ function. Prove that for all x € R and ¢ > 0,
Do * f(x)| < CoMf(2),

where C, is some constant depending only on ¢ and M is the Hardy-
Littlewood maximal function
|/ (y)|dy.
II | /

Formulate more precisely the assumption that ¢ is ‘nice’ so that this es-
timate works. It clearly suffices to assume that f > 0. An easy estimate can be
obtained if ¢ is bounded and has compact support contained say in some ball B(0, R).
We have

Do * f( /cby/e z—y dy—/¢ (x — ey)d
< 9l /| ety =gl [ g
y|I<

ly|<eR

def

= lollgegy | S0y <2Rolldf @) CM )

Note that in this case ¢ € L}(R) and [|¢||; < 2R||¢[|s. With a little more care one
can just assume that ¢ € L'(R) plus some additional technical hypotheses. Let ¢ be
a simple function of finite measure suport, ¢ = Zszl cxly, where I, = (—ay, by) with
Ck, Gy, b, > 0. Then

D! f(a ch/fx—eydy— > [, S =wdy



where if I, = (a, b) then el = (ea, eb) Thus
o el

D!« ;1:

Tr— Elk

NOWOEIk:>$€x—e[kforallksothat

D;* f(x <ZCkIIkIMf) ol M f ().

The functions ¢ of the form COIlSldel"ed approximate positive L! functions such that
0 € supp(¢) so the result extends to all these functions ¢. There is no claim that this
is the most general set of hypotheses.

4.4. Write down the proof of the Heisenberg uncertainty principle for gen-
eral z, and &,. Investigate which functions give equality. Assume f € S(R).
We have

(5 - £0>JE(€> = (5 - §o> /]I%f(I)e_izm'm&dI = (g — 50) /]R f(g;)e—iQWifE(f—Eo)e—i%rz&odx

air —i2mix(E—
- / M, () p)emm 6y

—127r7$x(§—§0)

T 2mi / M-, d
s

- Tgo‘F(M_éo(% - gO)f)

Thus

([ apisara) ([ - &)%f(@\?dé)é = @~ 2) F@Nal (2 ~ &) F

Consider on f(z) = (x — x,) f(x) the position operator and the momentum operator
Qe, [ () = 5=(0, — 2mi&,) f(x). The commutator is

[Prm Qﬁo] = % [(I - xO)(am - 27Ti50>f - (a'v - 27Ti50)(x - I0>ﬂ
1
= 2_7” [(.I - xo)axf - (Z’ - xo)axf - f]
— 5.

Since modulation does not change the L?*-norm we get

1
gllfllg = [(fs [P, Qe )N = I, Pr,Qe, f) = {f, Qe P, f)]

= [(Pro [, Qe /) = Qe f Pe, )] = [(Pro f, Qeo /) — Pr f, Qe /)]
= [2iIm(P,, f, Qe, [)] < 2[| P, fl2l| Qe, /1|2,
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which is the uncertainty principle.

We have used the inequality | Im(iz)| < |z| which becomes an equality if | Re(z)| = |z]
that is when 2z € R. We have also used the Cauchy-Schwarz inequality for two
functions in L? which becomes an equality exactly when one function is a multiple
of the other (the functions are ‘co-linear’). Recalling the functions we used Cauchy-
Scharz for we conclude that we must have

Prof =@, f & (2 = 1) () = A5 (0, — 2mi,)  (2)
A

& (r—x,+N,) f(x) = %axf(x)
Here A\ must be purely imaginary A = i3 for § € R. We get
2m

2m(x — o +108,) f(x) = BOf(x) = Of [ = E(ﬂf — Zo) + 2mif3E,

We conclude that
F(x) = ce2h @) g2mBeox

Observe that we must have § < 0 in order to get a Schwartz function so it

4.5. Prove the existence of a symmetric non-negative ¢y € C*> which is
strictly positive on (—1,1), zero outside, and satisfies

> oz +k)=1.

keZ
Show that for such ¢, the function ¢ def V¢o is also C*°, and therefore
satisfies the properties required for the basic wave packet. Let

def def

61@) F Lot Bale) Y (@) — ).

In order to check that ¢, is C'* it suffices to do so at 0 (everywhere else it is obvious).
First check that it is continuous at zero, then

lim —gb(a:) 0 m &

z—0t T z—0t X T—+00

You can use induction on k to show that ¢; is C* for every k. One way to do that
is to show that for every k € N and = > we have ¢§’“) (x) = Pk(%)e_% where Py is a
polynomial of degree 2k. Then you can show that lim,_,q+ ¢§’“> (x) = 0 by essentially
using the fact that e™¥ decays faster than any polynomial power as x — +o00. So ¢
and thus ¢9 are C*°-functions. Also since ¢;(z) = 0 for x < 0 (together with all its
derivatives) we conclude that ¢, is supported on (0,1/3).

Now we define

by(z) / " ey, da(x) - g1 — ).



Since ¢3 vanishes outside (0,1/3) we have

da() = / " paly)dy

is supported on (0,00). Since ¢y vanishes for x > 1/3 we conclude that ¢s(x) is
constant for z > 1/3:

/03 bo(2)dz = 65(1/3), 7> 1/3.

Thus ¢3 is a smooth "pulse’, identically zero for x < 0, identically ¢3(1/3) for z > 1/3
and C* in the transition interval (0,1/3).

Let us now study the function ¢4(x) = ¢ — ¢3(l —z). For 1l —2 <0< x > 1 we
have that ¢3(1 — x) = 0 thus ¢4(x) = cforz > 1. For 1 —2 > 1/3 & x < 2/3 we
have that ¢3(1 — ) = ¢3(1/3) thus ¢4(z) = ¢ — ¢3(1/3) is constant as well. Thus ¢4
is also a smooth pulse, identically equal to ¢ — ¢3(1/3) for = < 2/3, identically equal
to ¢ for z > 1 and smooth in the transition integral (2/3,1).

We combine these two functions in the function ¢5 as follows. If x < 1 we set

3
def 2 def

¢s5(x) = ¢s(x). If v > 2 we set ¢s5(x) = ¢a(z). In the interval (1/3,2/3) both
functions ¢3 are defined and constant so we just make sure that these constants
agree. Indeed for z € (1/3,2/3) we have ¢3(z) = ¢(1/3) and ¢4(x) = ¢ — p3(1/3).
Choose ¢ = 2¢3(1/3) so that these values agree. Since we ‘glue’ the function together
in the interval where they are both constant and equal the resulting function ¢5 is
also smooth. The function ¢5 looks like a ‘double smooth pulse’, identicallye equal
to 0 for z < 0, identically equal to ¢3(1/3) for 1/3 < z < 2/3 and identically equal
to 2¢3(1/3) for x > 1, and smooth in all the transition intervals (0,1/3) and (2/3,1).

iRl @

¢ 65(1/3) = dy(1/3) |y

o1 \V)

0T T

Finally, we reflect the function ¢5 with respect to 1, translate to center it at 0, and
normalize to make its value equal to 1 at 0. In formulas this means we define

1
Po(x) = W%(l‘ +1)¢5(2 — (v + 1))
1
= ot T el o)



¢ = 65(1/3) = 65(1/3) |

0

We need to check that this forms a partition of unity. We want to study the function

7) & x k:; r+k+1 1—Fk—ux).
Y(x) %ZZ%( + k) (2¢3<1/3))2’€€ZZ¢5( +k+ 1)os( )
Since ® is 1-periodic so it suffices to consider everything in the interval (0,1). Re-
member that ¢y was supported in (—1,1), for € (0, 1) only the terms corresponding
to k =0 and k = —1 will contribute to the sum. We can thus simplify a bit

1
Y(z) = W(%(ﬂ? +1)ds(1 — 2) + ¢s5(2)d5(2 — 7))

Now z € (0,1) implies that  +1 > 1 and 2 — 2 > 1 so that ¢5(z + 1) = ¢5(2 — ) =
2¢5(1/3) by the construction of ¢5. We end up with

(z) = mm(w) T gs(1 - ).

For 1/3 < < 2/3 we have that 1 — z is in the same interval so ¢5(x) = ¢5(1 — ) =
2¢(1/3) thus ¢¥(x) = 1. If x < 1/3 then 1 — 2z > 2/3 so we have that (z) =
m(qﬁg(m) + (1 —2)) = m(qﬁg(x) + ¢ — ¢3(x)) = 1, remembering that ¢ =
2¢3(1/3). The corresponding calculation is valid for = € (2/3,1) so we get that
¥(xz) =1 as we wanted to show.

In general now suppose that ¢ is a C'™ function, strictly positive on some interval

(a,b) and identically zero on R\ (a,b). For such a function we claim that o /B
is also C'™°. This is obvious for z ¢ [a, b] since the function ¢ is identically zero there
and also obvious for x € (a,b) thus we only need to examine what happens at an
endpoint say a. Let us assume, without loss of generality, that a = 0 so that the
function ¢ is identically zero for x < 0 and strictly positive for x > 0. We have by
Talyor’s theorem and the fact that ¢ is C'*° that

lim ¢(6)/6" =0 Vk.

6—0+
In particular limgs_,o+ —vqb(‘s)g V¢(0)

V¢(0)/0 =0 for 6 < 0 so we see that v is differentiable at 0. However now observe
that ¢’ is also C* so the same argument applies for ¢’ in the place of ¢. We can then
complete the proof by induction.

= limg_,o+ @ = 0. Obviously we have that
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