
Time Frequency Analysis - Winter 2012

Exercise Set 4

4.1. Prove the following relations for the modulation, translation and di-

lation operators Myf(x)
def
= e2πixyf(y), Tyf(x) = f(x− y), Dp

λf(x) = λ−
1
pf(x/λ),

where y ∈ R and λ > 0:

M̂yf = Tyf̂ , T̂yf = M−yf̂ , D̂p
λf = Dp′

1
λ

f̂ .

Here p′ is the dual exponent of p: 1
p

+ 1
p′

= 1. We have

M̂yf(ξ) =

∫
R
e−2πixξe2πixyf(x)dx =

∫
R
e−2πi(ξ−y)xf(x)dx = f̂(ξ − y) = Tyf̂(ξ),

T̂yf(ξ) =

∫
R
e−2πixξf(x− y)dy =

∫
R
e−2πi(x+y)ξf(x)dx = e−2πiyξf̂(ξ) = M−yf̂(ξ),

D̂p
λf(ξ) =

1

λ
1
p

∫
R
e−2πixξf(x/λ)dx =

1

λ
1
p

∫
R
e2πi(λx)ξf(x)λdx = λ1−

1
p f̂(λξ) = Dp′

λ−1 f̂(ξ).

4.2. Find the Fourier transforms of xαf(x) and ∂βxf(x) in terms of f̂ , and
show that the Fourier transform maps the Schwartz space

S(R) = {f ∈ C∞(R) : ∀α, β ∈ N, sup
x∈R
|xα∂βxf(x)| <∞}

into itself, i.e. if f ∈ S(R) then also f̂ ∈ S(R). We first perform the calculation
for α = 1 since it’s more transparent. Noting that xe−2πixξ = (− 1

2πi
d
dξ

)e−2πixξ we have

x̂f(ξ) =

∫
R
e−2πixξxf(x)dx =

∫
R

(
− 1

2πi

d

dξ

)
e−2πixξf(x)dx

=
(
− 1

2πi

d

dξ

)
f̂(ξ),

where some justification is needed for the last equality but everything works fine for
‘nice’ functions. One can perform the same calculation for general α noting that
xαe−2πixξ = (− 1

2πi
d
dξ

)αe−2πixξ or by iterating the previous result. Thus

F((−2πix)αf)(ξ) = ∂αξ f̂(ξ).

The other calculation is similar. We write

F(∂xf)(ξ) =

∫
R
e−2πixξ∂xf(x)dx =

∫
R

[
∂x(e

−2πixξf(x))− ∂xe−2πixξf(x)

]
dx.

Assuming that f vanishes in some appropriate sense at infinity we get

F(∂xf)(ξ) = −
∫
R
(−2πiξ)e−2πixξf(x)dx = (2πiξ)f̂(ξ).
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The calculation for general α is similar only one has to integrate by parts α times
instead of just one. Also note that in general we will need that the derivatives of f
up to order α− 1 also vanish at infinity. We get in general

F(∂βxf)(ξ) = (2πiξ)β f̂(ξ).

Thus the Fourier transform turns multiplication by the free variable to differentiation
and vice versa, it transforms differentiation to multiplication by the corresponding
monomial.

Now let f ∈ S(R) and α, β ∈ N. First observe that the functions ∂αxx
βf , xα∂βxf

are also Scwhartz functions (the Schwartz class is ‘closed’ under the operations ∂x,
multiplication by x). Thus for any α, β ∈ N we have by the previous calculations that

|∂αξ ξβ f̂(ξ)| 'α,β |F(xα∂βxf)(ξ)| ≤ ‖xα∂βxf‖L1(R) <∞,

where we used the general estimate supξ∈R |f̂(ξ)| ≤ ‖f‖L1(R).

4.3. Let φ be a ‘nice’ function. Prove that for all x ∈ R and ε > 0,

|D1
εφ ∗ f(x)| ≤ CφMf(x),

where Cφ is some constant depending only on φ and M is the Hardy-
Littlewood maximal function

Mf(x) = sup
I

1I(x)

|I|

∫
I

|f(y)|dy.

Formulate more precisely the assumption that φ is ‘nice’ so that this es-
timate works. It clearly suffices to assume that f ≥ 0. An easy estimate can be
obtained if φ is bounded and has compact support contained say in some ball B(0, R).
We have

|D1
εφ ∗ f(x)| = 1

ε

∫
R
φ(y/ε)f(x− y)dy =

∫
R
φ(y)f(x− εy)dy

≤ ‖φ‖∞
∫
|y|<R

f(x− εy)dy = ‖φ‖∞
1

ε

∫
|y|<εR

f(x− y)dy

= ‖φ‖∞
2R

2εR

∫
|y|<εR

f(x− y)dy ≤ 2R‖φ‖∞Mf(x)
def
= CφMf(x).

Note that in this case φ ∈ L1(R) and ‖φ‖1 ≤ 2R‖φ‖∞. With a little more care one
can just assume that φ ∈ L1(R) plus some additional technical hypotheses. Let φ be

a simple function of finite measure suport, φ =
∑K

k=1 ck1Ik where Ik = (−ak, bk) with
ck, ak, bk > 0. Then

D1
ε ∗ f(x) =

∑
k

ck

∫
Ik

f(x− εy)dy =
1

ε

∑
k

ck

∫
εIk

f(x− y)dy
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where if Ik = (a, b) then εIk = (εa, εb). Thus

D1
ε ∗ f(x) =

∑
k

ck
|Ik|
ε|Ik|

∫
x−εIk

f(y)dy

Now 0 ∈ Ik ⇒ x ∈ x− εIk for all k so that

D1
ε ∗ f(x) ≤

∑
k

ck|Ik|Mf(x) = ‖φ‖L1Mf(x).

The functions φ of the form considered approximate positive L1 functions such that
0 ∈ supp(φ) so the result extends to all these functions φ. There is no claim that this
is the most general set of hypotheses.

4.4. Write down the proof of the Heisenberg uncertainty principle for gen-
eral xo and ξo. Investigate which functions give equality. Assume f ∈ S(R).
We have

(ξ − ξo)f̂(ξ) = (ξ − ξo)
∫
R
f(x)e−i2πixξdx = (ξ − ξ0)

∫
R
f(x)e−i2πix(ξ−ξo)e−i2πxξodx

=

∫
R
M−ξof(x)(− ∂x

2πi
)e−i2πix(ξ−ξo)dx

=
1

2πi

∫
R
∂xM−ξof(x)e−i2πix(ξ−ξo)dx

= TξoF(
∂x
2πi

M−ξof)(ξ)

= TξoF(M−ξo(
∂x
2πi
− ξo)f).

Thus(∫
R
(x− xo)2|f(x)|2dx

) 1
2
(∫

R
(ξ − ξo)2|f̂(ξ)|2dξ

) 1
2

= ‖(x− xo)f(x)‖2‖(
∂x
2πi
− ξo)f‖2.

Consider Pxof(x) = (x− xo)f(x) the position operator and the momentum operator
Qξof(x) = 1

2πi
(∂x − 2πiξo)f(x). The commutator is

[Pxo , Qξo ] =
1

2πi

[
(x− xo)(∂x − 2πiξo)f − (∂x − 2πiξo)(x− xo)f

]
=

1

2πi

[
(x− xo)∂xf − (x− xo)∂xf − f ]

=
i

2π
f.

Since modulation does not change the L2-norm we get

1

2π
‖f‖22 = |〈f, [Pxo , Qξo ]f〉| = |〈f, PxoQξof〉 − 〈f,QξoPxof〉|

= |〈Pxof,Qξof〉 − 〈Qξof, Pxof〉| = |〈Pxof,Qξof〉 − Pxof,Qξof〉|
= |2i Im〈Pxof,Qξof〉| ≤ 2‖Pxof‖2‖Qξof‖2,
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which is the uncertainty principle.

We have used the inequality | Im(iz)| ≤ |z| which becomes an equality if |Re(z)| = |z|
that is when z ∈ R. We have also used the Cauchy-Schwarz inequality for two
functions in L2 which becomes an equality exactly when one function is a multiple
of the other (the functions are ‘co-linear’). Recalling the functions we used Cauchy-
Scharz for we conclude that we must have

Pxof = λQξof ⇔ (x− xo)f(x) = λ
1

2πi
(∂x − 2πiξo)f(x)

⇔ (x− xo + λξo)f(x) =
λ

2πi
∂xf(x)

Here λ must be purely imaginary λ = iβ for β ∈ R. We get

2π(x− xo + iβξo)f(x) = β∂xf(x)⇒ ∂f/f =
2π

β
(x− xo) + 2πiβξo

We conclude that

f(x) = ce
2π
2β

(x−xo)2e2πβξox.

Observe that we must have β < 0 in order to get a Schwartz function so it

4.5. Prove the existence of a symmetric non-negative φ0 ∈ C∞ which is
strictly positive on (−1, 1), zero outside, and satisfies∑

k∈Z

φ0(x+ k) ≡ 1.

Show that for such φ0 the function φ
def
=
√
φ0 is also C∞, and therefore

satisfies the properties required for the basic wave packet. Let

φ1(x)
def
= 1(0,∞)e

− 1
x , φ2(x)

def
= φ1(x)φ1(

1

3
− x).

In order to check that φ1 is C∞ it suffices to do so at 0 (everywhere else it is obvious).
First check that it is continuous at zero, then

lim
x→0+

φ(x)− 0

x
= lim

x→0+

e−
1
x

x
= lim

x→+∞
ye−y = 0.

You can use induction on k to show that φ1 is Ck for every k. One way to do that

is to show that for every k ∈ N and x > we have φ
(k)
1 (x) = Pk(

1
x
)e−

1
x where Pk is a

polynomial of degree 2k. Then you can show that limx→0+ φ
(k)
1 (x) = 0 by essentially

using the fact that e−y decays faster than any polynomial power as x→ +∞. So φ1

and thus φ2 are C∞-functions. Also since φ1(x) ≡ 0 for x ≤ 0 (together with all its
derivatives) we conclude that φ2 is supported on (0, 1/3).

Now we define

φ3(x)
def
=

∫ x

−∞
φ2(y)dy, φ4(x)

def
= c− φ3(1− x).
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Since φ3 vanishes outside (0, 1/3) we have

φ3(x) =

∫ x

0

φ2(y)dy

is supported on (0,∞). Since φ2 vanishes for x ≥ 1/3 we conclude that φ3(x) is
constant for x ≥ 1/3: ∫ 1

3

0

φ2(x)dx = φ3(1/3), x ≥ 1/3.

Thus φ3 is a smooth ’pulse’, identically zero for x ≤ 0, identically φ3(1/3) for x ≥ 1/3
and C∞ in the transition interval (0, 1/3).

Let us now study the function φ4(x) = c − φ3(1 − x). For 1 − x < 0 ⇔ x > 1 we
have that φ3(1 − x) = 0 thus φ4(x) = c for x > 1. For 1 − x > 1/3 ⇔ x < 2/3 we
have that φ3(1− x) = φ3(1/3) thus φ4(x) = c− φ3(1/3) is constant as well. Thus φ4

is also a smooth pulse, identically equal to c− φ3(1/3) for x ≤ 2/3, identically equal
to c for x ≥ 1 and smooth in the transition integral (2/3, 1).

We combine these two functions in the function φ5 as follows. If x < 1
3

we set

φ5(x)
def
= φ3(x). If x > 2

3
we set φ5(x)

def
= φ4(x). In the interval (1/3, 2/3) both

functions φ3 are defined and constant so we just make sure that these constants
agree. Indeed for x ∈ (1/3, 2/3) we have φ3(x) ≡ φ(1/3) and φ4(x) = c − φ3(1/3).
Choose c = 2φ3(1/3) so that these values agree. Since we ‘glue’ the function together
in the interval where they are both constant and equal the resulting function φ5 is
also smooth. The function φ5 looks like a ‘double smooth pulse’, identicallye equal
to 0 for x < 0, identically equal to φ3(1/3) for 1/3 ≤ x ≤ 2/3 and identically equal
to 2φ3(1/3) for x ≥ 1, and smooth in all the transition intervals (0, 1/3) and (2/3, 1).

0 1
3

2
3

1

φ3

φ4c

c− φ3(1/3) = φ3(1/3)

Finally, we reflect the function φ5 with respect to 1, translate to center it at 0, and
normalize to make its value equal to 1 at 0. In formulas this means we define

φ0(x) =
1

(φ5(1))2
φ5(x+ 1)φ5(2− (x+ 1))

=
1

(2φ3(1/3))2
φ5(x+ 1)φ5(1− x).
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0 1
3

2
3

1

c

c− φ3(1/3) = φ3(1/3)

2

We need to check that this forms a partition of unity. We want to study the function

ψ(x)
def
=
∑
k∈Z

φ0(x+ k) =
1

(2φ3(1/3))2

∑
k∈Z

φ5(x+ k + 1)φ5(1− k − x).

Since ψ is 1-periodic so it suffices to consider everything in the interval (0, 1). Re-
member that φ0 was supported in (−1, 1), for x ∈ (0, 1) only the terms corresponding
to k = 0 and k = −1 will contribute to the sum. We can thus simplify a bit

ψ(x) =
1

(2φ3(x))2
(φ5(x+ 1)φ5(1− x) + φ5(x)φ5(2− x))

Now x ∈ (0, 1) implies that x+ 1 > 1 and 2− x > 1 so that φ5(x+ 1) = φ5(2− x) =
2φ3(1/3) by the construction of φ5. We end up with

ψ(x) =
1

2φ3(1/3)
(φ5(x) + φ5(1− x)).

For 1/3 ≤ x ≤ 2/3 we have that 1− x is in the same interval so φ5(x) = φ5(1− x) =
2φ(1/3) thus ψ(x) = 1. If x < 1/3 then 1 − x > 2/3 so we have that ψ(x) =

1
2φ3(1/3)

(φ3(x) + φ4(1 − x)) = 1
2φ3(1/3)

(φ3(x) + c − φ3(x)) = 1, remembering that c =

2φ3(1/3). The corresponding calculation is valid for x ∈ (2/3, 1) so we get that
ψ(x) ≡ 1 as we wanted to show.

In general now suppose that φ is a C∞ function, strictly positive on some interval

(a, b) and identically zero on R \ (a, b). For such a function we claim that ψ
def
=
√
φ

is also C∞. This is obvious for x /∈ [a, b] since the function φ is identically zero there
and also obvious for x ∈ (a, b) thus we only need to examine what happens at an
endpoint say a. Let us assume, without loss of generality, that a = 0 so that the
function φ is identically zero for x < 0 and strictly positive for x > 0. We have by
Talyor’s theorem and the fact that φ is C∞ that

lim
δ→0+

φ(δ)/δk = 0 ∀k.

In particular limδ→0+

√
φ(δ)−
√
φ(0)

δ
= limδ→0+

√
φ(δ)
δ2

= 0. Obviously we have that√
φ(δ)/δ ≡ 0 for δ < 0 so we see that ψ is differentiable at 0. However now observe

that φ′ is also C∞ so the same argument applies for φ′ in the place of φ. We can then
complete the proof by induction.
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