
Time Frequency Analysis - Winter 2012

Exercise Set 3

3.1. Let P1,P1 be collections of tiles. Recall that ∪P∈P1P = ∪P∈P2P , then also
span{wP : P ∈ P1} = span{wP : P ∈ P2}. Give an example to show that it is
possible to have the second “ =′′ even if the first “ =′′ j is replaced by “ ⊆′′.
Let P be any bitile and write P = IP × ωP , IP = IPl

∪ IPr where IPl
and IPr are

the dyadic children of I and let ω
(1)
P be the dyadic parent of ωP . Set Q1 = IPl

× ω
(1)
P

and Q2 = IPr × ω
(1)
P . Now define (fo example) the collections P1

def
= {P,Q2} and

P2
def
= {Q1, Q2}. Here is a picture:

Q1 Q2

P ωP

ω
(1)
P

IPl
IPr Observe that P ∪ Q2 ( Q1 ∪ Q2. Now Exercise 1.5

implies that there exists non-zero real numbers c1, c2 such that wP = c1wQ1 + c2wQ2 .
Thus on the one hand we have span{wP : P ∈ P1} ⊆ span{wP : P ∈ P2}. On the
other hand since c1 6= 0 we can write wQ1 = c′1wP +c′2wQ2 for some non-zero constants
c′1, c

′
2. So we have that wQ1 ∈ span{wP : P ∈ P2} and obviously wQ2 ∈ span{wP :

P ∈ P2} so we also get that span{wP : P ∈ P2} ⊆ span{wP : P ∈ P1} se the two
subspaces are the same.

3.2. Let P be a finite collection of bitiles with density(P) · energy(P) = 0.
Check that then

∑
P∈P〈f, wPd

〉〈wPd
,1EPu

〉 = 0. First recall the definitions

density(P)
def
= sup

P∈P
sup
P ′≥P

|IP ′ ∩ EP ′|
|IP ′ |

, EP ′
def
= {x ∈ E : N(x) ∈ ωP ′},

energy(P)
def
= sup

T⊆P,up-tree

(
1

|IT |
∑
P∈T

|〈f, wPd
〉|2
) 1

2

.

If density(P) = 0 then taking P ′ = P in the definition we have that IP ∩ EP = ∅
for every P ∈ P. Since wPd

is supported on IP we get that 〈wPd
,1EP

〉 = 0 for every
P ∈ P and thus the sum is zero. If energy(P) = 0 then taking the tree consisting of
the single tile P in the definition we conclude that 〈f, wPd

〉 = 0 for all P ∈ P thus the
sum is again zero. Note that the tree lemma also immediately implies that the sum
is zero whenever energy(T) · density(T) = 0.

3.3. Prove the following corollary of the Density lemma and the Energy
lemma: If Pn is a finite collection of bitiles with

density(Pn) ≤ 4n|E|, energy(Pn) ≤ 2n‖f‖L2 ,
1



2

then we can decompose it as Pn = Pn−1 ∪
⋃

j Tn,j, where Pn−1 satisfies the
same bounds as Pn with n− 1 in place of n, each Tn,j is a tree with top Tn,j,
and the top time intervals satisfy

∑
j |ITn,j

| ≤ C4−n. If density(Pn) ≤ 4n−1|E|
and energy(Pn) ≤ 2n−1‖f‖L2 then we do nothing and just set Pn−1

def
= Pn. There are

no trees in this case but we can always consider the empty set as a tree.

Initialize Q := Pn, Tn := {∅}.
IF

energy(Q) ≥ 2n−1‖f‖L2

THEN
apply the energy lemma to Q to write

Q = Qo ∪
⋃
j

T∗n,j,

where

energy(Qo) ≤
1

2
energy(Q) ≤ 2n−1‖f‖L2 ,

and ∑
j

|IT ∗n,j
| ≤ energy(Q)−2‖f‖2L2 ≤ 4 · 4−n.

SET Q := Qo and Tn = {T∗n,j}j and observe that the density did not increase:

density(Q) ≤ 4n|E|.
ELSE
IF

energy(Q) ≤ 2n−1‖f‖L2

THEN do nothing.
ENDIF

IF
density(Q) ≥ 4n−1|E|

THEN
apply the density lemma to Q to write

Q = Q1 ∪
⋃
j

T̃n,j,

where

density(Q1) ≤
1

4
energy(Q) ≤ 4n−1|E|,

and ∑
j

|IT̃n,j
| ≤ density(Q)−1|E| ≤ 4 · 4−n.
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SET Q := Q1 and Tn := Tn ∪ {T̃n,j}j and observe that the energy did not
increase:

energy(Q) ≤ 2n−1‖f‖L2 .

ELSE
IF

density(Q) ≤ 4n−1|E|
THEN do nothing.
ENDIF
SET Pn−1 := Q and observe

density(Pn−1) ≤ 4n−1|E|, energy(Pn−1) ≤ 2n−1‖f‖L2 ,

and∑
T∈Tn

|IT | =
∑
j

|IT ∗n,j
|+
∑
j

|IT̃n,j
| ≤ 4 · 4−n + ·4 · 4−n ≤ 8 · 4−n.

3.4. Let P be a finite collection of tiles with the property that
∑

P∈P 1P ≤ n.
Show that there exists a decomposition P =

⋃n
j=1 Pj, where each Pj is a

pairwise disjoint collection of tiles. Give an example to show that the
claim is not true if the tiles are replaced by arbitrary sets. Consider all the
tiles that have an n-intersection. Among the choose the longest ones, remove them
from P and put them in P1. Repeat the process until there are no more n-intersections.

Set P′ def
= P \ P1. By construction we have that

∑
P∈P′ 1P ≤ n − 1. Now we claim

that all the tiles in P1 are disjoint. Assume on the contrary that P, P ′ ∈ P1 and
P ∩ P ′ 6= ∅. We must have |IP | 6= |IP ′| otherwise we would have P = P ′ since they
are both dyadic and they intersect. We can thus assume that IP ′ ( IP and ωP ( ω′P .
Since |IP | > |IP ′| the tile P was chosen first. On the other hand, when the tile P ′

was chosen it had an n-intersection with some tiles Qj with |IQj
| < |IP ′|. Thus for

all the Qj we had IQj
⊂ IP ′ ⊂ IP . On the other hand we have |ωQj

| > |ωP ′| so that
all the Qj’s satisfied ωP ⊂ ωP ′ ⊂ ωQj

. We conclude that the Q′j, P
′ and P had an

(n + 1)-intersection which is a contradiction. Continuing inductively we define the
remaining collections P2, . . . ,Pn, all of the consisting of pairwise disjoint tiles.

3.5. Show that we have ‖Mf‖L2 ≤ 2‖f‖L2 for the dyadic maximal function.
Recall the definition

Mf(x)
def
= sup

J∈D

1J(x)

|J |

∫
J

|f(y)|dy.

Since M only takes into account the modulus of f it obviously suffices to consider non-
negative functions f . Assume also that f is a simple function supported on a finitely
many dyadic intervals. Then in the definition of the maximal function there are only
finitely many dyadic intervals involved and the supremum is actually a maximum.
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Thus for any x ∈ R we can define J(x) to be the maximal dyadic interval J(x) 3 x
such that

1

|J(x)|

∫
J(x)

f(y)dy = Mf(x).

The claim is that it is equivalent to consider the linear operator

M̃f(x) =
∑
J∈D

1E(J)(x)

|J |

∫
J

f(y)dy,

for some arbitrary selection of sets E(J) ⊂ J which are pairwise disjoint, that is
E(J) ∩ E(J ′) = ∅ if J 6= J ′. Indeed for any x ∈ R there is a unique E(J ′) 3 x since
the E(J)′s are disjoint so that that∑

J∈D

1E(J)(x)

|J |

∫
J

f(y)dy =
1E(J ′)

|J ′|

∫
J ′
f(y)dy ≤Mf(x).

On the other hand, set E(J) = {x ∈ R : J = J(x)} ⊂ J . It is not hard to see that
E(J) ∩ E(K) = ∅ if J 6= K. Indeed, this is clear if J ∩ K = ∅. If J ⊂ K say and
E(J) ∩ E(K) 3 y then we have that J(y) = K = J which is impossible since J(y)
was maximal with that property. Also the collection {E(J) : J ∈ D} covers R since
for every x ∈ R we have that x ∈ E(J(x)). Thus for every x ∈ R there is a unique J
such that x ∈ E(J) and

M̃f(x) ≥
1E(J)(x)

|J |

∫
J

f(y)dy ≥Mf(x).

Let us find a formula for the adjoint M∗. We have∫
Mfg =

∑
J∈D

∫
1E(J)(x)

|J |

∫
J

f(y)dy g(x)dx

=
∑
J∈D

∫ ∫
1E(J)(x)1J(y)

|J |
f(y)g(x)dxdy

=

∫
f(y)

(∑
J∈D

1J(x)

|J |

∫
E(J)

g(x)dx

)
dy,

so that

M̃∗g(x) =
∑
J∈D

1J(x)

|J |

∫
E(J)

g(y)dy.

Thus

M̃M̃∗f(x) =
∑
I∈D

∑
J∈D

1E(I)(x)
|I ∩ J |
|I| · |J |

∫
E(J)

f(y)dy.
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If I ∩ J = ∅ then the previous sum is zero. If I ⊆ J then |I ∩ J | = |I| thus∑
J

∑
I⊆J

1E(I)(x)
|I ∩ J |
|I| · |J |

∫
E(J)

f(y)dy =
∑
I

∑
I⊆J

1E(I)(x)

|J |

∫
J

f(y)dy

≤
∑
J

(
1∪I⊂JE(I)(x)

)
1

|J |

∫
J

f(y)dy

≤
∑
J

1J(x)

|J |

∫
J

f(y)dy = M̃f(x).

Similarly, if J ( I then |I ∩ J | = |J | and we get∑
I

∑
J(I

1E(I)(x)
|I ∩ J |
|I| · |J |

∫
E(J)

f(y)dy =
∑
I

1E(I)(x)
1

|I|

∫
f(y)

(∑
J(I

1E(J)(y)
)
dy

≤
∑
I

1E(I)(x)

|I|

∫
f(y)1I(y)dy = M̃∗f(x).

Summing the estimates gives M̃M̃∗f ≤ M̃f(x) + M̃∗f(x) so for every f ∈ L2 which
is a step function supported on finitely many dyadic intervals we have

‖M̃M̃∗f‖2 ≤ ‖M̃f‖2 + ‖M̃∗f‖2 ≤ 2‖M̃‖L2→L2 ,

where we used the general fact that ‖T ∗‖ = ‖T‖ whenever T : H → H is a linear
operator and H is a Hilbert space. Using the also general identity ‖TT ∗‖ = ‖T ∗T‖ =
‖T‖2 = ‖T ∗‖2 we have

‖M̃‖2L2→L2 = ‖M̃M̃∗‖L2→L2 ≤ 2‖M̃‖L2→L2 ,

which gives the claim of the exercise after dividing by ‖M̃‖L2→L2 .

Remark 1. We have used the following:

Lemma 2. Let T : H → H be a linear operator on a Hilbert space H and let
T ∗ : H → H be its adjoint. Then

‖T‖H→H = ‖T ∗‖H→H = ‖TT ∗‖
1
2
H→H .

Proof. The first identity is just duality. For any y ∈ H and x∗ ∈ H we have

|〈Ty, x∗〉| = |〈y, T ∗x∗〉| ≤ ‖y‖H‖T ∗‖H→H‖x∗‖H(1)

|〈Ty, x∗〉| = |〈y, T ∗x∗〉| ≤ ‖y‖H‖T‖H→H‖x∗‖H(2)

Taking the supremum in (1) over x∗ ∈ H with ‖x∗‖H = 1 we get

‖Ty‖X ≤ ‖T ∗‖‖y‖H
thus ‖T‖H→H ≤ ‖T ∗‖. Taking the supremum in (2) over y ∈ H with ‖y‖H = 1 we
get

‖T ∗x∗‖H ≤ ‖T‖‖x∗‖H ,
that is ‖T ∗‖H→H ≤ ‖T‖H→H .
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The two inequalities prove the first identity. For the second observe that

‖TT ∗‖H→H ≤ ‖T‖H→H‖T ∗‖H→H = ‖T ∗‖2H→H

by the first identity we already proved. To show the opposite inequality note that for
every x∗ ∈ H we have

‖T ∗x∗‖2H = 〈T ∗x∗, T ∗x∗〉 = 〈x∗, TT ∗x∗〉 ≤ ‖x∗‖X∗‖TT ∗x∗‖X
≤ ‖TT ∗‖H→H‖x∗‖2H .

Taking square roots and then supremum for ‖x∗‖H ≤ 1 proves

‖T ∗‖H→H ≤ ‖TT ∗‖
1
2
H→H .
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