Time Frequency Analysis - Winter 2012

Exercise Set 2

2.1. Prove that bitiles satisfy $P \leq P^{\prime}$ if and only if $P_{u} \leq P_{u}^{\prime}$ or $P_{d} \leq P_{d}^{\prime}$. Check also that \leq (for either tiles or bitiles) is a partial order, i.e.: $P \leq P^{\prime} \leq P$ if and only if $P=P^{\prime}$, and $P \leq P^{\prime} \leq P^{\prime \prime}$ implies $P \leq P^{\prime \prime}$. Suppose first that $P \leq P^{\prime}$ thus $I_{P} \subset I_{P^{\prime}}$ and $\omega_{P^{\prime}} \subset \omega_{P}$. If $\left|\omega_{P}\right|=\left|\omega_{P^{\prime}}\right|$ we necessarily have that $P=P^{\prime}$ in which case we have that $P_{u} \leq P_{u}^{\prime}$ and $P_{d} \leq P_{d}^{\prime}$. If $\left|\omega_{P^{\prime}}\right|<\left|\omega_{P}\right|$ then we either have that $\omega_{P_{u}^{\prime}} \subset \omega_{P^{\prime}} \subset \omega_{P_{u}}$ or that $\omega_{P_{d}^{\prime}} \subset \omega_{P^{\prime}} \subset \omega_{P_{d}}$. In the first case we get that $P_{u} \leq P_{u}^{\prime}$ and in the second that $P_{d} \leq P_{d}^{\prime}$. For the opposite implication if $P_{z} \leq P_{z}^{\prime}$ where $z \in\{u, d\}$. Then $I_{P} \subset I_{P^{\prime}}$ and $\omega_{P_{z}^{\prime}} \subset \omega_{P_{z}}$. If $\left|\omega_{P_{z}}\right|<\left|\omega_{P_{z}}\right|$ then we necessarily have that $\left|\omega_{P_{z}}\right| \leq \frac{1}{2}\left|\omega_{P_{z}}\right|$ which implies that $\omega_{P^{\prime}} \subset \omega_{P_{z}} \subset \omega_{P}$. If $\left|\omega_{P_{z}^{\prime}}\right|=\left|\omega_{P_{z}}\right|$ then we must have that $P_{z}=P_{z}^{\prime}$ and thus $P=P^{\prime}$. In either case we get that $P \leq P^{\prime}$.
To prove that \leq is a partial order first suppose that $P \leq P^{\prime} \leq P$. Then $I_{P} \subset I_{P^{\prime}} \subset$ $I_{P} \Rightarrow I_{P}=I_{P^{\prime}}$ and also $\omega_{P^{\prime}} \subset \omega_{P} \subset \omega_{P^{\prime}} \Rightarrow \omega_{P}=\omega_{P^{\prime}}$. Thus $P=P^{\prime}$. The opposite implication here is obvious.
If $P \leq P^{\prime} \leq P^{\prime \prime}$ then $I_{P} \subset I_{P^{\prime}} \subset I_{P^{\prime \prime}}$ and $\omega_{P^{\prime \prime}} \subset \omega_{P^{\prime}} \subset \omega_{P}$ which shows that $P \leq P^{\prime \prime}$.
2.2. Prove that a non-empty tree \mathbb{T} which has a top $T \in \mathbb{T}$ has a minimal top with respect to the partial order \leq of bitiles. We need to show that if \mathbb{T} is a non-empty tree with a top $T_{1} \in \mathbb{T}$ then there exists a minimal top T such that $T \leq T^{\prime}$ for all other tops T^{\prime}.
The following example is instructive. If \mathbb{T} is a very simple tree consisting of exactly one bitile P then P itself is a top of \mathbb{T}. However it is pretty easy to construct other examples of tops as follows. If $P=I_{P} \times \omega_{P}$, consider the parent $I_{P}^{(1)}$ of I_{P} and the children $\omega_{P_{0}}$ and $\omega_{P_{1}}$ of P. Then the bitiles $T_{i}=I_{P}^{(1)} \times \omega_{P_{i}}$ are both tops of \mathbb{T} and are disjoint so it is not possible to compare them. However in this case it is obvious that P itself is a minimal top since $P \leq T_{0}, T_{1}$. On the other hand if T is a top which is part of the tree and T^{\prime} is a top which as we just saw cannot be part of the tree then since $T \in \mathbb{T}$ and T^{\prime} is a top we have that $T \leq T^{\prime}$ so that T is minimal. Here the assumption that \mathbb{T} has a top which is part of the tree greatly simplified the argument.

The general case of a tree \mathbb{T} with a top $T \in \mathbb{T}$ is roughly the same as the special case of the picture above. Observe that a top of a tree which is itself part of the tree must necessarily be unique. Indeed, if $T, T^{\prime} \in \mathbb{T}$ and they are both tops then we must have $T \leq T^{\prime} \leq T$ so that $T=T^{\prime}$. Also, for every other top T^{\prime} of \mathbb{T} (which cannot be part of the tree as we just saw) we have that $P \leq T^{\prime}$ for every $P \in \mathbb{T}$ thus $T \leq T^{\prime}$ since $T \in \mathbb{T}$ so that T is minimal.

The claim is wrong in general, that is, a tree \mathbb{T} that does not have a top $T \in \mathbb{T}$ does not necessarily have a minimal top. To see this suppose that a tree \mathbb{T} has a top $T \notin \mathbb{T}$ and that no bitile in \mathbb{T} is a top of \mathbb{T}. We have that $\omega_{T} \subseteq \cap_{P \in \mathbb{T}} \omega_{P}$. Now we claim that there is a tile $P^{\min } \in \mathbb{T}$ such that $\omega_{P \text { min }}=\cap_{P \in \mathbb{T}} \omega_{P}$. Indeed, define $P^{\text {min }}$ to be the tile with minimum $\left|\omega_{P}\right|$. This is easily seen to be unique and obviously it contains $\cap_{P \in \mathbb{T}} \omega_{P}$. Now if $P^{\prime} \in \mathbb{T}$ is any other tile we have that $P^{\min } \cap P^{\prime} \neq \emptyset$ so one contains the other. Since $\omega_{P_{\text {min }}}$ has minimum length we must have that $\omega_{P_{\text {min }}} \subset \omega_{P^{\prime}}$ so that $\omega_{P \text { min }} \subset \cap_{P \in \mathbb{T}} \omega_{P}$.
Now let T be any top of \mathbb{T}. If we had that $\left|\omega_{T}\right|=\left|\omega_{P_{\text {min }}}\right|$ then this would mean that $I_{P \text { min }}=I_{T}$ since $I_{P \text { min }} \subset I_{T}$ and both have the same length in this case. Thus $T=P^{\text {min }}$ which is a contradiction since we suppose that \mathbb{T} does not have a top belonging to the tree. Thus we necessarily have that either $\omega_{T} \subset \omega_{P_{u}^{\text {min }}}$ or that $\omega_{T} \subset \omega_{P_{d} \min }$. In either case we conclude that ω_{T} has a dyadic sibling contained in $\omega_{P^{\text {min }}}$. Now it is not hard see that the bitile $T^{\prime} \stackrel{\text { def }}{=} I_{T} \times \omega_{T}^{\prime}$ is also a top of \mathbb{T}. Indeed, we have that

$$
I_{P} \subset I_{T}=I_{P \min } \text { and } \omega_{T}^{\prime} \subset \omega_{P_{\min }} \subset \omega_{P} \text { for all } P \in \mathbb{T}
$$

However the tops T, T^{\prime} are disjoint so they cannot be comparable.
This general argument is a bit complicated. It's much simpler to construct a particular example. Suppose that \mathbb{T} consists of just two disjoint bitiles, $P_{1}=[0,1) \times[0,4)$ and $P_{2}=[1,2) \times[0,4)$. Then every top T must have time interval containing the interval $[0,2)$. Thus the only candidates for tops that are minimal are the bitiles $T=[0,2) \times[2,4)$ and $T^{\prime}=[0,2) \times[0,2)$. However these tiles are not comparable since they are disjoint.

Finally let \mathbb{T} be a tree and consider the top with minimal $\left|I_{T}\right|$ (maybe it is not unique). Then for any other top T^{\prime} we have that $I_{T} \cap I_{T}^{\prime} \neq \emptyset$ so on contains the other. Since $\left|I_{T}\right| \leq\left|I_{T^{\prime}}\right|$ we must have that $I_{T} \subseteq I_{T^{\prime}}$ so that T has minimal time interval with respect to " \subseteq ".
2.3. Recall that $S_{N} f=\sum_{P \in \mathbb{P}}\left\langle f, w_{P_{d}}\right\rangle w_{P_{d}}$, where $\mathbb{P}=\left\{P\right.$ bitile: $I_{P} \subseteq[0,1), \omega_{P_{u}} \ni$ $N\}$. Prove that \mathbb{P} is an up-tree and find its minimal top. Let $I \stackrel{\text { def }}{=}[0,1)$ and consider the dyadic intervals $\omega_{j} \stackrel{\text { def }}{=}[4 j, 4 j+4)$ for $j=1,2, \ldots$. Now observe that the ω_{j} 's are disjoint and thus there is a unique $\omega_{J} \ni N$. Then the rectangle $P_{J} \stackrel{\text { def }}{=}[0,1) \times \omega_{J}$ is a bitile and in fact we have that $\omega_{J} \in \mathbb{P}$. Now suppose that $P \in \mathbb{P}$ and $P \neq P_{J}$. We must have that I_{P} is properly contained in $[0,1)$ so that
$\left|\omega_{P}\right|>4=\left|\omega_{P_{J}}\right|$. Since $N \in \omega_{P} \cap \omega_{P_{J}}$ we conclude that $\omega_{P_{J}} \subset \omega_{P}$. Thus $P \leq P_{J}$. So P_{J} is a top of \mathbb{P} and since $P_{J} \in \mathbb{P}, P_{J}$ is the minimal top of \mathbb{P}.
2.4. Let $g \in L_{\text {loc }}^{1}$ and $p \in(1, \infty)$. Show the $" \Rightarrow$ " direction of the equivalence

$$
\|g\|_{L^{p, \infty}} \lesssim A \Leftrightarrow\left|\int_{E} g\right| \lesssim A|E|^{\frac{1}{p^{\prime}}},
$$

for for all bounded sets E. Only one of the implications holds for $p=1$. Investigate which one? Suppose that $\|g\|_{L^{p, \infty}} \lesssim A$. We have

$$
\begin{aligned}
\int_{E}|g(x)| d x & =p \int_{0}^{\infty}|\{x \in E:|g(x)|>\lambda\}| d \lambda \\
& \lesssim \int_{0}^{b}|E| d \lambda+A^{p} \int_{b}^{\infty} \frac{1}{\lambda^{p}} d \lambda
\end{aligned}
$$

for any constant $b>0$. Observe that the second term above is finite if and only if $p>1$. Thus

$$
\int_{E}|g(x)| d x \leq b|E|+A^{p} \frac{b^{-p+1}}{p-1}
$$

Optimizing in $b\left(\right.$ take $\left.b=A(p-1)^{-\frac{1}{p}}|E|^{-\frac{1}{p}}\right)$ we get

$$
\int_{E}|g(x)| d x \leq \frac{A}{(p-1)^{\frac{1}{p}}}|E|^{\frac{1}{p^{\prime}}} .
$$

This simple argument fails for $p=1$ (and the constant blows up) so we suspect that this is actually the direction that fails for $p=1$. Indeed let for example $g(x)=$ $x^{-1} \mathbf{1}_{[0,1)}(x)$. We have for $\lambda>0$:

$$
|\{|g|>\lambda\}|=|\{x \in[0,1):|g(x)|>\lambda\}|=\left|\left[0, \lambda^{-1}\right)\right|=\max \left(\frac{1}{\lambda}, 1\right)
$$

so that $\|g\|_{L^{1, \infty}} \lesssim 1$. Now for $E=[0,1)$ we have

$$
\int_{E}|g(x)| d x \geq \int_{1}^{\infty}|\{x \in E:|g(x)|>\lambda\}| d \lambda=\int_{1}^{\infty} \frac{d \lambda}{\lambda}=+\infty .
$$

The other direction works and the proof is the same as for $p>1$. First assume that $g \geq 0$. Take any compact $B \subset\{g(x)>\lambda\}$ with $|B|<+\infty$. We have $g / \lambda>1$ on B so:

$$
|B|=\int_{B} d x<\int_{B} \frac{g(x)}{\lambda}=\frac{1}{\lambda} \int_{B} g(x) d x \lesssim \frac{1}{\lambda} A
$$

by the hypothesis (note that $p^{\prime}=\infty$). Taking the supremum over compact $B \subset$ $\{g(x)>\lambda\}$ we get $\|g\|_{L^{1, \infty}} \lesssim A$. For general g write it as

$$
g \leq \operatorname{Re} g^{+}-\operatorname{Re} g^{-}+i \operatorname{Im} g^{+}-i \operatorname{Im} g^{-}
$$

so it is enough to prove the estimate $\left\|g_{i}\right\|_{L^{1, \infty}} \lesssim A$ for each one of the terms g_{i} appearing in the previous sum. Now observe that each one of them is non-negative and the hypothesis is satisfied for each one of them.
2.5. Let $h_{I}(x) \stackrel{\text { def }}{=}|I|^{-\frac{1}{2}}\left(\mathbf{1}_{I}(x) r_{0}(x /|I|)\right)$ denote the Haar function adopted to I. Write h_{I} in the Walsh formalism as some w_{P}. Using properties of the Walsh wave packets prove that $\left\{h_{I}: I \subseteq[0,1):|I|>2^{-k}\right\}$ is an orthonormal basis of $\left\{f \in L^{2}(0,1): \int f=0, f\right.$ is constant on $2^{-k}[j, j+1), j=0,1,2, \ldots 2^{k-1}$. We have that $r_{0}(x)=w_{2^{0}}(x)=w_{1}(x)$ thus we immediately see that

$$
h_{I}(x)=w_{I \times|I|^{-1}[1,2)}(x) .
$$

Consider now the set of tiles

$$
\mathbb{P}_{1} \stackrel{\text { def }}{=}\left\{P=I_{P} \times \omega_{P}: I_{P} \subseteq[0,1),\left|I_{P}\right|>2^{-k}, \omega_{P}=\left|I_{P}\right|^{-1}[1,2]\right\} .
$$

Let us take a look at the area this set of tiles covers in the phase plane. All the time-intervals are contained in $[0,1)$ and the interval $[0,1)$ itself is admissible in this collection. The smallest time-intervals in this collection are the dyadic intervals of length 2^{-k+1}. On the other hand all the time intervals have length $\geq 2^{-k+1}$ so the frequency intervals have length at most 2^{k-1} and at least 1 . Thus all the frequency intervals in \mathbb{P} are of the form

$$
\left.\left\{2^{l}[1,2), \quad l=0,1,2, \ldots, k-2\right\}=\left\{\left[2^{l}, 2^{l+1}\right), \quad l=0,1,2, \ldots, k-2\right)\right\} .
$$

Observe that they are disjoint and each one starts where the previous one ends. We have that

Thus the tiles in \mathbb{P}_{1} are pairwise disjoint and cover the area $[0,1) \times\left[1,2^{k-1}\right]$ in the phase plane \mathbb{R}_{+}^{2}.

Now that we have a pretty good picture of the wave packets in \mathbb{P}_{1} let's move the subspace of $L^{2}(0,1)$ described as

$$
L_{k}^{2} \stackrel{\text { def }}{=}\left\{f \in L^{2}(0,1): \int f=0, f \text { is constant on } 2^{-k}[j, j+1), j=0,1,2, \ldots 2^{k}-1\right\}
$$

Clearly all these functions are linear combinations of the form

$$
\sum_{j=0}^{2^{k}-1} c_{j} \mathbf{1}_{2^{-k}[j, j+1)}
$$

subject to the condition

$$
0=\int \sum_{j=0}^{2^{k}-1} c_{j} \mathbf{1}_{2^{-k}[j, j+1)}=2^{-k} \sum_{j=0}^{2^{k}-1} c_{j}=0
$$

Denoting $I_{j} \stackrel{\text { def }}{=} 2^{-k}[j, j+1) \subset[0,1)$ for $1 \leq j \leq 2^{k}-1$ observe that we have

$$
\mathbf{1}_{2^{-k}[j, j+1)}=\left|I_{j}\right|^{\frac{1}{2}}\left|I_{j}\right|^{-\frac{1}{2}} \mathbf{1}_{I_{j}} w_{0}\left(\cdot /\left|I_{j}\right|\right)=\left|I_{j}\right|^{\frac{1}{2}} w_{P_{j}}
$$

where $P_{j} \stackrel{\text { def }}{=} 2^{-k}[j, j+1) \times 2^{k}[0,1)$. Thus L_{k}^{2} is contained in the linear span of the wave packets in the collection

$$
\mathbb{P}_{2} \stackrel{\text { def }}{=}\left\{2^{-k}[j, j+1) \times 2^{k}[0,1): j=0,1,2, \ldots, 2^{k}-1\right\}
$$

2^{k}

More concisely we can write

$$
L_{k}^{2}=\operatorname{span}\left\{w_{P}: P \in \mathbb{P}_{2}\right\} \cap\left\{f \in L^{2}: \int f=0\right\}
$$

The area in the phase plane covered by the tiles in \mathbb{P}_{2} is the square $[0,1) \times\left[0,2^{k}\right)=$ $[0,1) \times[0,1) \cup[0,1) \times\left[1,2^{k}\right)$. Write $P_{0} \stackrel{\text { def }}{=}[0,1) \times[0,1)$. By the results in the lecture notes and in particular Lemma 1.5 and Proposition 1.3 we conclude that

$$
\operatorname{span}\left\{w_{P}: P \in \mathbb{P}_{2}\right\}=\operatorname{span}\left\{w_{P}: P \in \mathbb{P}_{1} \cup P_{0}\right\}
$$

and that the set $\left\{w_{P}: P \in \mathbb{P}_{1} \cup P_{0}\right\}$ is an orthonormal basis of $\operatorname{span}\left\{w_{P}: P \in \mathbb{P}_{2}\right\}$.
Now observe that any $f \in L_{k}^{2}$ is orthogonal to $w_{P_{0}}$ since $\int f=0$ and $w_{P_{0}}$ is just $\mathbf{1}_{[0,1)}$! Since obviously $L_{k}^{2} \subseteq \operatorname{span}\left\{w_{P}: P \in \mathbb{P}_{2}\right\}$ we have for every $f \in L_{k}^{2}$ that

$$
f=\sum_{P \in \mathbb{P}_{1}}\left\langle f, w_{P}\right\rangle w_{P}+\left\langle f, w_{P_{0}}\right\rangle w_{P_{0}} .
$$

and by the zero-mean property we actually get that

$$
0=\int f=\int \sum_{P \in \mathbb{P}_{1}}\left\langle f, w_{P}\right\rangle w_{P}+\int\left\langle f, w_{P_{0}}\right\rangle w_{P_{0}}=0+\left\langle f, w_{P_{0}}\right\rangle .
$$

Thus every $f \in L_{k}^{2}$ can be written in the form $f=\sum_{P \in \mathbb{P}_{1}} c_{P} w_{P}$ and of course the set $\left\{w_{P}: P \in \mathbb{P}_{1}\right\}$ is linearly independent.

