
Time Frequency Analysis - Winter 2012

Exercise Set 2

2.1. Prove that bitiles satisfy P ≤ P ′ if and only if Pu ≤ P ′u or Pd ≤ P ′d. Check
also that ≤ (for either tiles or bitiles) is a partial order, i.e.: P ≤ P ′ ≤ P
if and only if P = P ′, and P ≤ P ′ ≤ P ′′ implies P ≤ P ′′. Suppose first that
P ≤ P ′ thus IP ⊂ IP ′ and ωP ′ ⊂ ωP . If |ωP | = |ωP ′| we necessarily have that P = P ′

in which case we have that Pu ≤ P ′u and Pd ≤ P ′d. If |ωP ′| < |ωP | then we either
have that ωP ′u ⊂ ωP ′ ⊂ ωPu or that ωP ′d

⊂ ωP ′ ⊂ ωPd
. In the first case we get that

Pu ≤ P ′u and in the second that Pd ≤ P ′d. For the opposite implication if Pz ≤ P ′z
where z ∈ {u, d}. Then IP ⊂ IP ′ and ωP ′z ⊂ ωPz . If |ωP ′z | < |ωPz | then we necessarily
have that |ωP ′z | ≤

1
2
|ωPz | which implies that ωP ′ ⊂ ωPz ⊂ ωP . If |ωP ′z | = |ωPz | then we

must have that Pz = P ′z and thus P = P ′. In either case we get that P ≤ P ′.

To prove that ≤ is a partial order first suppose that P ≤ P ′ ≤ P . Then IP ⊂ IP ′ ⊂
IP ⇒ IP = IP ′ and also ωP ′ ⊂ ωP ⊂ ωP ′ ⇒ ωP = ωP ′ . Thus P = P ′. The opposite
implication here is obvious.

If P ≤ P ′ ≤ P ′′ then IP ⊂ IP ′ ⊂ IP ′′ and ωP ′′ ⊂ ωP ′ ⊂ ωP which shows that P ≤ P ′′.

2.2. Prove that a non-empty tree T which has a top T ∈ T has a minimal
top with respect to the partial order ≤ of bitiles. We need to show that if T
is a non-empty tree with a top T1 ∈ T then there exists a minimal top T such that
T ≤ T ′ for all other tops T ′.

The following example is instructive. If T is a very simple tree consisting of exactly
one bitile P then P itself is a top of T. However it is pretty easy to construct other

examples of tops as follows. If P = IP × ωP , consider the parent I
(1)
P of IP and the

children ωP0 and ωP1 of P . Then the bitiles Ti = I
(1)
P ×ωPi

are both tops of T and are
disjoint so it is not possible to compare them. However in this case it is obvious that
P itself is a minimal top since P ≤ T0, T1. On the other hand if T is a top which is
part of the tree and T ′ is a top which as we just saw cannot be part of the tree then
since T ∈ T and T ′ is a top we have that T ≤ T ′ so that T is minimal. Here the
assumption that T has a top which is part of the tree greatly simplified the argument.

T0

T1

I
(1)
P

ωP0

ωP1 P

The general case of a tree T with a top T ∈ T is roughly the same as the special case
of the picture above. Observe that a top of a tree which is itself part of the tree must
necessarily be unique. Indeed, if T, T ′ ∈ T and they are both tops then we must have
T ≤ T ′ ≤ T so that T = T ′. Also, for every other top T ′ of T (which cannot be part
of the tree as we just saw) we have that P ≤ T ′ for every P ∈ T thus T ≤ T ′ since
T ∈ T so that T is minimal.
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The claim is wrong in general, that is, a tree T that does not have a top T ∈ T does
not necessarily have a minimal top. To see this suppose that a tree T has a top T /∈ T
and that no bitile in T is a top of T. We have that ωT ⊆ ∩P∈TωP . Now we claim that
there is a tile Pmin ∈ T such that ωPmin = ∩P∈TωP . Indeed, define Pmin to be the
tile with minimum |ωP |. This is easily seen to be unique and obviously it contains
∩P∈TωP . Now if P ′ ∈ T is any other tile we have that Pmin ∩ P ′ 6= ∅ so one contains
the other. Since ωPmin has minimum length we must have that ωPmin ⊂ ωP ′ so that
ωPmin ⊂ ∩P∈TωP .

Now let T be any top of T. If we had that |ωT | = |ωPmin| then this would mean
that IPmin = IT since IPmin ⊂ IT and both have the same length in this case. Thus
T = Pmin which is a contradiction since we suppose that T does not have a top
belonging to the tree. Thus we necessarily have that either ωT ⊂ ωPmin

u
or that

ωT ⊂ ωPmin
d

. In either case we conclude that ωT has a dyadic sibling contained in

ωPmin . Now it is not hard see that the bitile T ′
def
= IT ×ω′T is also a top of T. Indeed,

we have that

IP ⊂ IT = IPmin and ω′T ⊂ ωPmin
⊂ ωP for all P ∈ T.

However the tops T, T ′ are disjoint so they cannot be comparable.

This general argument is a bit complicated. It’s much simpler to construct a particular
example. Suppose that T consists of just two disjoint bitiles, P1 = [0, 1) × [0, 4)
and P2 = [1, 2) × [0, 4). Then every top T must have time interval containing the
interval [0, 2). Thus the only candidates for tops that are minimal are the bitiles
T = [0, 2) × [2, 4) and T ′ = [0, 2) × [0, 2). However these tiles are not comparable
since they are disjoint.
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A tree T without a minimal top.

Finally let T be a tree and consider the top with minimal |IT | (maybe it is not unique).
Then for any other top T ′ we have that IT ∩ I ′T 6= ∅ so on contains the other. Since
|IT | ≤ |IT ′| we must have that IT ⊆ IT ′ so that T has minimal time interval with
respect to“⊆”.

2.3. Recall that SNf =
∑

P∈P〈f, wPd
〉wPd

, where P = {P bitile: IP ⊆ [0, 1), ωPu 3
N}. Prove that P is an up-tree and find its minimal top. Let I

def
= [0, 1)

and consider the dyadic intervals ωj
def
= [4j, 4j + 4) for j = 1, 2, . . . . Now observe

that the ωj’s are disjoint and thus there is a unique ωJ 3 N . Then the rectangle

PJ
def
= [0, 1) × ωJ is a bitile and in fact we have that ωJ ∈ P. Now suppose that

P ∈ P and P 6= PJ . We must have that IP is properly contained in [0, 1) so that
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|ωP | > 4 = |ωPJ
|. Since N ∈ ωP ∩ ωPJ

we conclude that ωPJ
⊂ ωP . Thus P ≤ PJ . So

PJ is a top of P and since PJ ∈ P, PJ is the minimal top of P.

2.4. Let g ∈ L1
loc and p ∈ (1,∞). Show the ”⇒” direction of the equivalence

‖g‖Lp,∞ . A⇔
∣∣∣∣ ∫

E

g

∣∣∣∣ . A|E|
1
p′ ,

for for all bounded sets E. Only one of the implications holds for p = 1.
Investigate which one? Suppose that ‖g‖Lp,∞ . A. We have∫

E

|g(x)|dx = p

∫ ∞
0

|{x ∈ E : |g(x)| > λ}|dλ

.
∫ b

0

|E|dλ+ Ap

∫ ∞
b

1

λp
dλ

for any constant b > 0. Observe that the second term above is finite if and only if
p > 1. Thus ∫

E

|g(x)|dx ≤ b|E|+ Ap b
−p+1

p− 1

Optimizing in b (take b = A(p− 1)−
1
p |E|−

1
p ) we get∫

E

|g(x)|dx ≤ A

(p− 1)
1
p

|E|
1
p′ .

This simple argument fails for p = 1 (and the constant blows up) so we suspect that
this is actually the direction that fails for p = 1. Indeed let for example g(x) =
x−11[0,1)(x). We have for λ > 0:

|{|g| > λ}| = |{x ∈ [0, 1) : |g(x)| > λ}| = |[0, λ−1)| = max(
1

λ
, 1),

so that ‖g‖L1,∞ . 1. Now for E = [0, 1) we have∫
E

|g(x)|dx ≥
∫ ∞
1

|{x ∈ E : |g(x)| > λ}|dλ =

∫ ∞
1

dλ

λ
= +∞.

The other direction works and the proof is the same as for p > 1. First assume that
g ≥ 0. Take any compact B ⊂ {g(x) > λ} with |B| < +∞. We have g/λ > 1 on B
so:

|B| =
∫
B

dx <

∫
B

g(x)

λ
=

1

λ

∫
B

g(x)dx .
1

λ
A

by the hypothesis (note that p′ = ∞). Taking the supremum over compact B ⊂
{g(x) > λ} we get ‖g‖L1,∞ . A. For general g write it as

g ≤ Re g+ − Re g− + i Im g+ − i Im g−

so it is enough to prove the estimate ‖gi‖L1,∞ . A for each one of the terms gi
appearing in the previous sum. Now observe that each one of them is non-negative
and the hypothesis is satisfied for each one of them.
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2.5. Let hI(x)
def
= |I|− 1

2 (1I(x)r0(x/|I|)) denote the Haar function adopted to
I. Write hI in the Walsh formalism as some wP . Using properties of the
Walsh wave packets prove that {hI : I ⊆ [0, 1) : |I| > 2−k} is an orthonormal
basis of {f ∈ L2(0, 1) :

∫
f = 0, f is constant on 2−k[j, j + 1), j = 0, 1, 2, . . . 2k−1.

We have that r0(x) = w20(x) = w1(x) thus we immediately see that

hI(x) = wI×|I|−1[1,2)(x).

Consider now the set of tiles

P1
def
= {P = IP × ωP : IP ⊆ [0, 1), |IP | > 2−k, ωP = |IP |−1[1, 2]}.

Let us take a look at the area this set of tiles covers in the phase plane. All the
time-intervals are contained in [0, 1) and the interval [0, 1) itself is admissible in this
collection. The smallest time-intervals in this collection are the dyadic intervals of
length 2−k+1. On the other hand all the time intervals have length ≥ 2−k+1 so the
frequency intervals have length at most 2k−1 and at least 1. Thus all the frequency
intervals in P are of the form

{2l[1, 2), l = 0, 1, 2, . . . , k − 2} = {[2l, 2l+1), l = 0, 1, 2, . . . , k − 2)}.
Observe that they are disjoint and each one starts where the previous one ends. We
have that

P1 = {2−l[j, j + 1)× [2l, 2l+1) : l = 0, 1, 2, . . . , k − 1, j = 0, 1, . . . , 2l − 1}.

20

21

22

23

24

2k = 25

l = 0, j = 0

l = 1, j = 0 l = 1, j = 1

l = 2, j = 0 l = 2, j = 1 l = 2, j = 2 l = 2, j = 3

l = 3

l = 4

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

1

Thus the tiles in P1 are pairwise disjoint and cover the area [0, 1) × [1, 2k−1] in the
phase plane R2

+.
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Now that we have a pretty good picture of the wave packets in P1 let’s move the
subspace of L2(0, 1) described as

L2
k

def
=
{
f ∈ L2(0, 1) :

∫
f = 0, f is constant on 2−k[j, j + 1), j = 0, 1, 2, . . . 2k − 1

}
Clearly all these functions are linear combinations of the form

2k−1∑
j=0

cj12−k[j,j+1)

subject to the condition

0 =

∫ 2k−1∑
j=0

cj12−k[j,j+1) = 2−k
2k−1∑
j=0

cj = 0.

Denoting Ij
def
= 2−k[j, j + 1) ⊂ [0, 1) for 1 ≤ j ≤ 2k − 1 observe that we have

12−k[j,j+1) = |Ij|
1
2 |Ij|−

1
2 1Ijw0(·/|Ij|) = |Ij|

1
2wPj

,

where Pj
def
= 2−k[j, j + 1) × 2k[0, 1). Thus L2

k is contained in the linear span of the
wave packets in the collection

P2
def
= {2−k[j, j + 1)× 2k[0, 1) : j = 0, 1, 2, . . . , 2k − 1}.

11110

2k

1
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More concisely we can write

L2
k = span{wP : P ∈ P2} ∩ {f ∈ L2 :

∫
f = 0}.

The area in the phase plane covered by the tiles in P2 is the square [0, 1)× [0, 2k) =

[0, 1)× [0, 1)∪ [0, 1)× [1, 2k). Write P0
def
= [0, 1)× [0, 1). By the results in the lecture

notes and in particular Lemma 1.5 and Proposition 1.3 we conclude that

span{wP : P ∈ P2} = span{wP : P ∈ P1 ∪ P0}
and that the set {wP : P ∈ P1 ∪ P0} is an orthonormal basis of span{wP : P ∈ P2}.
Now observe that any f ∈ L2

k is orthogonal to wP0 since
∫
f = 0 and wP0 is just 1[0,1)!

Since obviously L2
k ⊆ span{wP : P ∈ P2} we have for every f ∈ L2

k that

f =
∑
P∈P1

〈f, wP 〉wP + 〈f, wP0〉wP0 .

and by the zero-mean property we actually get that

0 =

∫
f =

∫ ∑
P∈P1

〈f, wP 〉wP +

∫
〈f, wP0〉wP0 = 0 + 〈f, wP0〉.

Thus every f ∈ L2
k can be written in the form f =

∑
P∈P1

cPwP and of course the set
{wP : P ∈ P1} is linearly independent.
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