Time Frequency Analysis - Winter 2012
 Exercise Set 1

1.1. Sketch the graph of the function w_{7} (the seventh Walsh function). All the Walsh functions are periodic with period (at most) 1 so it is enough to study what's happening in the unit interval $[0,1)$. The binary expansion of the number 7 is

$$
7=2^{0}+2^{1}+2^{2}=: \sum_{i=0}^{2} 2^{i} n_{i}
$$

Thus by the definition of the Walsh functions

$$
w_{7}(x)=\prod_{i=0}^{2}\left(r_{i}(x)\right)^{n_{i}}=r_{0}(x) \cdot r_{1}(x) \cdot r_{2}(x)
$$

All the horizontal segments are supposed to be either at 1 or at -1 but they're moved a bit for the sake of clarity.

1.2. Prove that:

$$
\int_{0}^{1} w_{n} w_{m}=\delta_{n m}:= \begin{cases}1, & \text { if } \quad n=m \\ 0 & \text { if } \quad m \neq n\end{cases}
$$

First of all observe that $w_{n}^{2}=\left(\prod_{i=0}^{\infty}\left(r_{i}(x)\right)^{n_{i}}\right)^{2}=\prod_{i=0}^{\infty}\left(r_{i}(x)\right)^{2 n_{i}}=1$ where remember that the previous products are actually finite for any non-negative integer n and $r_{i}^{2} \equiv 1$ for any i.

Let us now move to the interesting case $n \neq m$. Observe that for $n=1$ and $m>0$ the claim is that every Walsh function w_{m} with $m>0$ has zero-mean. Let us first prove this fact. The observation here is that every Rademacher function $r_{i}, i=0,1,2, \ldots$, is constant on dyadic intervals of length 2^{-i-1} and has zero-mean on every dyadic interval of length 2^{-i}. Now suppose that $m=\sum_{i=0}^{M} 2^{i} m_{i}$ with $m_{M}=1$ so that

$$
w_{m}(x)=\prod_{i=0}^{M-1}\left(r_{i}(x)\right)^{m_{i}} \cdot r_{M}(x)
$$

The product $\prod_{i=0}^{M-1}\left(r_{i}(x)\right)^{m_{i}}$ is a function which is constant on every dyadic interval of length 2^{-M}. On the other hand r_{M} has mean-zero on every dyadic interval of length 2^{-M} which implies that the product has mean-zero on $[0,1$) (actually on any dyadic interval of length at least 2^{-M}). Here we have used the fact that two dyadic intervals of the same length are either disjoint or they coincide.
The case of a product of two different Walsh functions w_{m}, w_{n} with $n \neq m$ is not so different. Indeed suppose that $m=\sum_{i=0}^{M} 2^{i} m_{i}$ with $m_{M}=1$ and $n=\sum_{j=1}^{N} 2^{j} n_{j}$ with $n_{N}=1$.

We can assume without loss of generality that $M>N$. Indeed if $M=N$ then denote by N_{1} the largest positive integer such that $n_{N_{1}} \neq m_{N_{1}}$. The fact that such an integer exists is immediate from the fact that $m \neq n$. We have

$$
\begin{aligned}
w_{n} \cdot w_{m} & =\prod_{i=1}^{N_{1}}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{N_{1}}\left(r_{j}\right)^{m_{j}} \prod_{i=N_{1}+1}^{N_{1}}\left(r_{i}\right)^{n_{i}} \prod_{j=N_{1}+1}^{N_{1}}\left(r_{j}\right)^{m_{j}} \\
& =\prod_{i=1}^{N_{1}}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{N_{1}}\left(r_{j}\right)^{m_{j}} .
\end{aligned}
$$

Now one of the two products has at most $N_{1}-1$ factors since $n_{N_{1}} \not{ }_{N_{1}}$. Thus it suffices to show that the function

$$
\prod_{i=1}^{N}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{M}\left(r_{j}\right)^{m_{j}}, \quad M>N
$$

has mean-zero. We have

$$
w_{n} \cdot w_{m}=\prod_{i=1}^{N}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{M}\left(r_{j}\right)^{m_{j}}=\prod_{i=1}^{N}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{N}\left(r_{j}\right)^{m_{j}} \prod_{j=N+1}^{M}\left(r_{j}\right)^{m_{j}}
$$

The function $\prod_{i=1}^{N}\left(r_{i}\right)^{n_{i}} \prod_{j=1}^{N}\left(r_{j}\right)^{m_{j}}$ is constant on dyadic intervals of length $\leq 2^{-N-1}$. On the other hand the product $\prod_{j=N+1}^{M}$ has mean zero on every dyadic interval of length at least $2^{-M} \leq 2^{-N-1}$. The product thus has mean-zero.
1.3. Prove that two tiles P, P^{\prime} are comparable if and only if $P \cap P^{\prime} \neq \emptyset$. Suppose that P, P^{\prime} are comparable, say $P \leq P^{\prime}$, which means by definition that $I_{P} \subset I_{P^{\prime}}$ and $\omega_{P^{\prime}} \subset \omega_{P}$. Thus the rectangle $\emptyset \neq I_{P} \cap I_{P^{\prime}} \times \omega_{P} \cap \omega_{P^{\prime}} \subset P \cap P^{\prime}$. To
prove the other direction, assume that $P \cap P^{\prime} \neq \emptyset$ so $I_{P} \cap I_{P^{\prime}} \neq \emptyset$ and $\omega_{P} \cap \omega_{P^{\prime}} \neq \emptyset$. We conclude that we must have $I_{P} \subset I_{P^{\prime}}$ or $I_{P^{\prime}} \subset I_{P}$ and $\omega_{P} \subset \omega_{P^{\prime}}$ or $\omega_{P^{\prime}} \subset \omega_{P}$ since all intervals are dyadic and they intersect. Let us fix the case $I_{P} \subset I_{P^{\prime}}$ (the other case can be treated in a similar way). Since P, P^{\prime} are tiles and $\left|I_{P}\right| \leq\left|I_{P^{\prime}}\right|$ the only possibility is that we have $\left|\omega_{P^{\prime}}\right| \leq\left|\omega_{P}\right|$ thus $\omega_{P^{\prime}} \subset \omega_{P}$. This means that $P \leq P^{\prime}$.
1.4. Let \mathbb{T} be an up-tree of bitiles. If $P, P^{\prime} \in \mathbb{T}$ are two different bitiles, show that $P_{d} \cap P_{d}^{\prime}=\emptyset$. Since $P, P^{\prime} \in \mathbb{T}$ there exists a bitile T (the top of the tree $\mathbb{T})$ such that $I_{P}, I_{P^{\prime}} \subset I_{T}$ and $\omega_{T} \subset \omega_{P_{u}}, \omega_{P_{u}^{\prime}}$. Thus $\omega_{P_{u}} \cap \omega_{P_{u}^{\prime}} \supset \omega_{T} \neq \emptyset$. Since $\omega_{P_{u}}$ and $\omega_{P_{u}^{\prime}}$ are dyadic and they intersect, one must contain the other. Suppose that $\omega_{P_{u}} \subset \omega_{P_{u}^{\prime}}$. Then there are two cases:
In the first, $\left|\omega_{P_{u}}\right|=\left|\omega_{P_{u}^{\prime}}\right|$ and since $\omega_{P_{u}} \subset \omega_{P_{u}^{\prime}}$ the two intervals coincide. This means however that ω_{P} and $\omega_{P^{\prime}}$ also coincide and since P, P^{\prime} are bitiles we get that $\left|I_{P}\right|=\left|I_{P^{\prime}}\right|$. If the intervals $I_{P}, I_{P^{\prime}}$ intersect then they must coincide since they have the same length. But then the tiles P, P^{\prime} would also coincide which is not the case. Thus $I_{P} \cap I_{P^{\prime}}=\emptyset$ which means that $P \cap P^{\prime}=\emptyset$ and a fortiori $P_{d} \cap P_{d}^{\prime}=\emptyset$.
In the second case we have $\left|\omega_{P_{u}}\right|<\left|\omega_{P_{u}^{\prime}}\right|$ which implies that $\left|\omega_{P_{u}}\right| \leq \frac{1}{2}\left|\omega_{P_{u}^{\prime}}\right|$ since the intervals are dyadic. This shows that the whole interval $\omega_{P} \subset \omega_{P_{u}^{\prime}}$ so that $P \cap P_{d}^{\prime}=\emptyset$. We thus have $P_{d} \cap P_{d}^{\prime}=\emptyset$.
1.5. Let $P=I \times \omega$ and $P_{i}=I^{(1)} \times \omega_{i}$ for $i=0,1$, where $I^{(1)}$ is the parent of I and ω_{0}, ω_{1} are the children of ω. Prove that $\omega_{P} \in \operatorname{span}\left\{\omega_{P_{0}}, \omega_{P_{1}}\right\}$. Let $\omega=|I|^{-1}[n, n+1)$ so that the children have the form:

$$
\omega_{0}=|2 I|^{-1}[2 n, 2 n+1) \quad \text { and } \quad \omega_{1}=|2 I|^{-1}[2 n+1,2 n+2) .
$$

Thus

$$
\begin{aligned}
w_{P} & =w_{I_{\mathrm{P}} \times \omega}=|I|^{-\frac{1}{2}} 1_{I} w_{n}\left(\frac{\cdot}{|I|}\right), \\
w_{I^{(1)} \times \omega_{i}} & =\left|I^{(1)}\right|^{-\frac{1}{2}} 1_{I^{(1)}} w_{2 n+i}\left(\frac{\cdot}{\left|I^{(1)}\right|}\right)=\frac{1}{\sqrt{2}} \frac{1}{|I|^{\frac{1}{2}}} 1_{I^{(1)}} w_{2 n+i}\left(\frac{\cdot}{2|I|}\right)
\end{aligned}
$$

Now writing $n=\sum_{j=0}^{\infty} 2^{j} n_{j}$ we have $2 n=\sum_{j=1}^{\infty} 2^{j} n_{j-1}$ while of course $i=i 2^{0}$ which means that n and i have 'disjoint' binary expansions. By Lemma 1.1 of the notes we have that $w_{2 n+i}=w_{2 n} w_{i}$ and by Lemma 1.3 of the notes $w_{2 n}=w_{n}(2 \cdot)$ so that

$$
w_{2 n+i}\left(\frac{\cdot}{2|I|}\right)=w_{n}\left(\frac{\cdot}{|I|}\right) w_{i}\left(\frac{\cdot}{2|I|}\right) .
$$

Write $I^{(1)}=I \cup I^{\prime}$ where I^{\prime} is the dyadic sibling of I. We have that $w_{i}(x)=(-1)^{i(s+1)}$ on I for some $s \in\{0,1\}$ (in the picture we have that $w_{i}(x)=(-1)^{i}$ but observe that I could be the left child of $I^{(1)}$ in which case the signs would be reversed) and also $w_{i}(x)=(-1)^{i(s+1)+1}$ on I^{\prime}. Thus

$$
\begin{aligned}
& w_{P_{0}}=\frac{1}{\sqrt{2}} \frac{1}{|I|^{\frac{1}{2}}} 1_{I^{\prime}} w_{n}\left(\frac{\cdot}{|I|}\right)+\frac{1}{\sqrt{2}} \frac{1}{|I|^{\frac{1}{2}}} 1_{I} w_{n}\left(\frac{\cdot}{|I|}\right) \\
& w_{P_{1}}=\frac{1}{\sqrt{2}} \frac{1}{|I|^{\frac{1}{2}}} 1_{I^{\prime}} w_{n}\left(\frac{\cdot}{|I|}\right)(-1)^{s}+\frac{1}{\sqrt{2}} \frac{1}{|I|^{\frac{1}{2}}} 1_{I} w_{n}\left(\frac{\cdot}{|I|}\right)(-1)^{s+1}
\end{aligned}
$$

We can now write w_{P} as a linear combination of $w_{P_{0}}, w_{P_{1}}$ as follows

$$
w_{P}=\frac{1}{\sqrt{2}}\left(w_{P_{o}}-(-1)^{s} w_{P_{1}}\right) .
$$

1.6. For two tiles P, P^{\prime}, prove that $\int_{\mathbb{R}_{+}} w_{P} w_{P^{\prime}}=0$ if and only if $P \cap P^{\prime}=\emptyset$. Let $P=I_{P} \times \omega_{P}$ and $P^{\prime}=I_{P^{\prime}} \times \omega_{P^{\prime}}$. Assume first that $P \cap P^{\prime}=\emptyset$ and we want to show that $\int w_{P} w_{P^{\prime}}=0$. If $I_{P} \cap I_{P^{\prime}}=\emptyset$ then the conclusion is obvious so suppose that $I_{P} \cap I_{P^{\prime}} \neq \emptyset$ and necessarily $\omega_{P} \cap \omega_{P^{\prime}}=\emptyset$.
We need the following notation. For any tile $P=I_{P} \times \omega_{P}$ let $I_{P}^{(1)}$ be the unique parent of I_{P} and ω_{0}, ω_{1} be the children of ω_{P} like in Exercise 1.5. We define the collection $\mathcal{P}(P)=\left\{I_{P}^{(1)} \times \omega_{1}, I_{P}^{(1)} \times \omega_{2}\right\}$. Now fix an initial tile P_{0} and set $\mathbb{P}_{0}:=\left\{P_{0}\right\}$ and for any integer $k \geq 1$ let $\mathbb{P}_{k+1}\left(P_{0}\right):=\left\{\mathcal{P}(Q): Q \in \mathbb{P}_{k}\left(P_{0}\right)\right\}$. Observe that the first collection \mathbb{P}_{1} contains exactly the tiles constructed in Exercise 1.5 and at each step we repeat the construction for every tile in the previous collection. Exercise 1.5 now implies that for any $k \geq 1$ we have

$$
w_{P} \in \operatorname{span}\left\{w_{Q}: Q \in \mathbb{P}_{k}\left(P_{0}\right)\right\}
$$

Observe that for any $Q \in \mathbb{P}_{k}\left(P_{0}\right)$ and any $P \in \mathbb{P}_{k-1}\left(P_{0}\right)$ we have that $\left|\omega_{Q}\right|=\frac{1}{2}\left|\omega_{P}\right|$.
Going back to the exercise, suppose that $\left|\omega_{P}\right| \geq\left|\omega_{P^{\prime}}\right|$ (otherwise rename P and $\left.P^{\prime}\right)$. Consider the collection $\mathbb{P}_{k}(P)$ with k large enough so that $\left|\omega_{Q}\right|=\left|\omega_{P^{\prime}}\right|$ for any $Q \in \mathbb{P}_{k}(P)$. We then have $\left|I_{Q}\right|=\left|I_{P^{\prime}}\right|$ for all $Q \in \mathbb{P}_{k}(P)$ and since $\emptyset \neq I_{P} \cap$ $I_{P^{\prime}} \subset I_{Q} \cap I_{P^{\prime}}$ we must have $I_{Q} \equiv I_{P^{\prime}}$. Let $Q=I_{Q} \times \omega_{Q}$ be any tile in $\mathbb{P}_{k}(P)$ and $\omega_{Q}=\left|I_{Q}\right|^{-1}[s, s+1)=\left|I_{P^{\prime}}\right|^{-1}[s, s+1)$ and also write $\omega_{P^{\prime}}=\left|I_{P^{\prime}}\right|^{-1}[m, m+1)$. There are two possibilities. First the tile Q is 'below' P^{\prime} so that

$$
\left|I_{P^{\prime}}\right|^{-1}(s+1) \leq\left|I_{P^{\prime}}\right|^{-1} m \Rightarrow s+1 \leq m \Rightarrow s \leq m-1,
$$

or the tile Q is 'above' P^{\prime} :

$$
\left|I_{P^{\prime}}\right|^{-1}(m+1) \leq\left|I_{P^{\prime}}\right|^{-1} s \Rightarrow m+1 \leq s \Rightarrow m \leq s-1
$$

In both cases we must have $m \neq s$ so that

$$
\int_{\mathbb{R}_{+}} w_{Q} w_{P^{\prime}}=\frac{1}{\left|I_{Q}\right|} \int_{I_{Q}} w_{s}\left(\frac{x}{\left|I_{Q}\right|}\right) w_{m}\left(\frac{x}{\left|I_{Q}\right|}\right) d x=\int_{0}^{1} w_{s}(x) w_{m}(x) d x=0
$$

according to Exercise 1.2. Since all the tiles in $\mathbb{P}_{k}(P)$ are orthogonal to $w_{P^{\prime}}$ and $w_{P} \in \operatorname{span}\left\{w_{Q}: Q \in \mathbb{P}_{k}(P)\right\}$ we conclude that $\int w_{P} w_{P^{\prime}}=0$ as we wanted to show.

For the opposite direction assume that $P \cap P^{\prime} \neq \emptyset$ thus $\omega_{P} \cap \omega_{P^{\prime}} \neq \emptyset$. Without loss of generality we may assume that $\omega_{P^{\prime}} \subset \omega_{P}$. Like before, consider the collection $\mathbb{P}_{k}(P)$ for k large enough so that $\left|\omega_{Q}\right|=\left|\omega_{P^{\prime}}\right|$ for $Q \in \mathbb{P}_{k}(P)$. Since $\omega_{P^{\prime}} \subset \omega_{P}$ we necessarily have that P^{\prime} is one of the tiles in \mathbb{P}_{k}. It is now not hard to check that $\int w_{P} w_{Q} \neq 0$ for every $Q \in \mathbb{P}_{k}$ and every positive integer $k \geq 1$. Indeed for $k=1$ this is contained in Exercise 1.5 (you can use the other direction of the current exercise, already proved) while for general k one can show this by a simple inductive argument for example.

