
Time Frequency Analysis - Winter 2012

Exercise Set 1

.

1.1. Sketch the graph of the function w7 (the seventh Walsh function). All
the Walsh functions are periodic with period (at most) 1 so it is enough to study
what’s happening in the unit interval [0, 1). The binary expansion of the number 7 is

7 = 20 + 21 + 22 =:
2∑

i=0

2ini.

Thus by the definition of the Walsh functions

w7(x) =
2∏

i=0

(ri(x))ni = r0(x) · r1(x) · r2(x).

r0(x)
r1(x)
r2(x)

w7(x)

1

−1

1
8

6
8

3
8

5
8

2
8

7
8

4
8

1

1

−1

1
1
2

All the horizontal segments are supposed to be either at 1 or at −1 but they’re moved
a bit for the sake of clarity.

1.2. Prove that: ∫ 1

0

wnwm = δnm :=

{
1, if n = m,

0 if m 6= n.

First of all observe that w2
n =

(∏∞
i=0(ri(x))ni

)2
=
∏∞

i=0(ri(x))2ni = 1 where remember
that the previous products are actually finite for any non-negative integer n and r2i ≡ 1
for any i.
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Let us now move to the interesting case n 6= m. Observe that for n = 1 and m > 0 the
claim is that every Walsh function wm with m > 0 has zero-mean. Let us first prove
this fact. The observation here is that every Rademacher function ri, i = 0, 1, 2, . . .,
is constant on dyadic intervals of length 2−i−1 and has zero-mean on every dyadic
interval of length 2−i. Now suppose that m =

∑M
i=0 2imi with mM = 1 so that

wm(x) =
M−1∏
i=0

(ri(x))mi · rM(x).

The product
∏M−1

i=0 (ri(x))mi is a function which is constant on every dyadic interval
of length 2−M . On the other hand rM has mean-zero on every dyadic interval of
length 2−M which implies that the product has mean-zero on [0, 1) (actually on any
dyadic interval of length at least 2−M). Here we have used the fact that two dyadic
intervals of the same length are either disjoint or they coincide.

The case of a product of two different Walsh functions wm, wn with n 6= m is not so
different. Indeed suppose that m =

∑M
i=0 2imi with mM = 1 and n =

∑N
j=1 2jnj with

nN = 1.

We can assume without loss of generality that M > N . Indeed if M = N then denote
by N1 the largest positive integer such that nN1 6= mN1 . The fact that such an integer
exists is immediate from the fact that m 6= n. We have

wn · wm =

N1∏
i=1

(ri)
ni

N1∏
j=1

(rj)
mj

N1∏
i=N1+1

(ri)
ni

N1∏
j=N1+1

(rj)
mj

=

N1∏
i=1

(ri)
ni

N1∏
j=1

(rj)
mj .

Now one of the two products has at most N1 − 1 factors since nN1 6=N1 . Thus it
suffices to show that the function

N∏
i=1

(ri)
ni

M∏
j=1

(rj)
mj , M > N

has mean-zero. We have

wn · wm =
N∏
i=1

(ri)
ni

M∏
j=1

(rj)
mj =

N∏
i=1

(ri)
ni

N∏
j=1

(rj)
mj

M∏
j=N+1

(rj)
mj

The function
∏N

i=1(ri)
ni
∏N

j=1(rj)
mj is constant on dyadic intervals of length ≤ 2−N−1.

On the other hand the product
∏M

j=N+1 has mean zero on every dyadic interval of

length at least 2−M ≤ 2−N−1. The product thus has mean-zero.

1.3. Prove that two tiles P, P ′ are comparable if and only if P ∩ P ′ 6= ∅.
Suppose that P, P ′ are comparable, say P ≤ P ′, which means by definition that
IP ⊂ IP ′ and ωP ′ ⊂ ωP . Thus the rectangle ∅ 6= IP ∩ IP ′ × ωP ∩ ωP ′ ⊂ P ∩ P ′. To
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prove the other direction, assume that P ∩ P ′ 6= ∅ so IP ∩ IP ′ 6= ∅ and ωP ∩ ωP ′ 6= ∅.
We conclude that we must have IP ⊂ IP ′ or IP ′ ⊂ IP and ωP ⊂ ωP ′ or ωP ′ ⊂ ωP since
all intervals are dyadic and they intersect. Let us fix the case IP ⊂ IP ′ (the other
case can be treated in a similar way). Since P, P ′ are tiles and |IP | ≤ |IP ′| the only
possibility is that we have |ωP ′ | ≤ |ωP | thus ωP ′ ⊂ ωP . This means that P ≤ P ′.

1.4. Let T be an up-tree of bitiles. If P, P ′ ∈ T are two different bitiles,
show that Pd ∩ P ′d = ∅. Since P, P ′ ∈ T there exists a bitile T (the top of the tree
T) such that IP , IP ′ ⊂ IT and ωT ⊂ ωPu , ωP ′

u
. Thus ωPu ∩ ωP ′

u
⊃ ωT 6= ∅. Since ωPu

and ωP ′
u

are dyadic and they intersect, one must contain the other. Suppose that
ωPu ⊂ ωP ′

u
. Then there are two cases:

In the first, |ωPu| = |ωP ′
u
| and since ωPu ⊂ ωP ′

u
the two intervals coincide. This

means however that ωP and ωP ′ also coincide and since P, P ′ are bitiles we get that
|IP | = |IP ′ |. If the intervals IP , IP ′ intersect then they must coincide since they have
the same length. But then the tiles P, P ′ would also coincide which is not the case.
Thus IP ∩ IP ′ = ∅ which means that P ∩ P ′ = ∅ and a fortiori Pd ∩ P ′d = ∅.
In the second case we have |ωPu| < |ωP ′

u
| which implies that |ωPu | ≤ 1

2
|ωP ′

u
| since the

intervals are dyadic. This shows that the whole interval ωP ⊂ ωP ′
u

so that P ∩P ′d = ∅.
We thus have Pd ∩ P ′d = ∅.

1.5. Let P = I × ω and Pi = I(1) × ωi for i = 0, 1, where I(1) is the parent
of I and ω0, ω1 are the children of ω. Prove that ωP ∈ span{ωP0 , ωP1}. Let
ω = |I|−1[n, n+ 1) so that the children have the form:

ω0 = |2I|−1[2n, 2n+ 1) and ω1 = |2I|−1[2n+ 1, 2n+ 2).

I

I(1)

ω ω1

ω2

Thus

wP = wIP×ω = |I|−
1
2 1Iwn(

·
|I|

),

wI(1)×ωi
= |I(1)|−

1
2 1I(1)w2n+i(

·
|I(1)|

) =
1√
2

1

|I| 12
1I(1)w2n+i(

·
2|I|

)

Now writing n =
∑∞

j=0 2jnj we have 2n =
∑∞

j=1 2jnj−1 while of course i = i20 which
means that n and i have ‘disjoint’ binary expansions. By Lemma 1.1 of the notes we
have that w2n+i = w2nwi and by Lemma 1.3 of the notes w2n = wn(2·) so that

w2n+i(
·

2|I|
) = wn(

·
|I|

)wi(
·

2|I|
).
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Write I(1) = I∪I ′ where I ′ is the dyadic sibling of I. We have that wi(x) = (−1)i(s+1)

on I for some s ∈ {0, 1} (in the picture we have that wi(x) = (−1)i but observe that
I could be the left child of I(1) in which case the signs would be reversed) and also
wi(x) = (−1)i(s+1)+1 on I ′. Thus

wP0 =
1√
2

1

|I| 12
1I′wn(

·
|I|

) +
1√
2

1

|I| 12
1Iwn(

·
|I|

)

wP1 =
1√
2

1

|I| 12
1I′wn(

·
|I|

)(−1)s +
1√
2

1

|I| 12
1Iwn(

·
|I|

)(−1)s+1

We can now write wP as a linear combination of wP0 , wP1 as follows

wP =
1√
2

(wPo − (−1)swP1).

1.6. For two tiles P, P ′, prove that
∫
R+
wPwP ′ = 0 if and only if P ∩ P ′ = ∅.

Let P = IP × ωP and P ′ = IP ′ × ωP ′ . Assume first that P ∩ P ′ = ∅ and we want to
show that

∫
wPwP ′ = 0. If IP ∩ IP ′ = ∅ then the conclusion is obvious so suppose

that IP ∩ IP ′ 6= ∅ and necessarily ωP ∩ ωP ′ = ∅.
We need the following notation. For any tile P = IP × ωP let I

(1)
P be the unique

parent of IP and ω0, ω1 be the children of ωP like in Exercise 1.5. We define the

collection P(P ) = {I(1)P × ω1, I
(1)
P × ω2}. Now fix an initial tile P0 and set P0 := {P0}

and for any integer k ≥ 1 let Pk+1(P0) := {P(Q) : Q ∈ Pk(P0)}. Observe that the
first collection P1 contains exactly the tiles constructed in Exercise 1.5 and at each
step we repeat the construction for every tile in the previous collection. Exercise 1.5
now implies that for any k ≥ 1 we have

wP ∈ span{wQ : Q ∈ Pk(P0)}.

Observe that for any Q ∈ Pk(P0) and any P ∈ Pk−1(P0) we have that |ωQ| = 1
2
|ωP |.

Going back to the exercise, suppose that |ωP | ≥ |ωP ′| (otherwise rename P and
P ′). Consider the collection Pk(P ) with k large enough so that |ωQ| = |ωP ′ | for
any Q ∈ Pk(P ). We then have |IQ| = |IP ′ | for all Q ∈ Pk(P ) and since ∅ 6= IP ∩
IP ′ ⊂ IQ ∩ IP ′ we must have IQ ≡ IP ′ . Let Q = IQ × ωQ be any tile in Pk(P ) and
ωQ = |IQ|−1[s, s+ 1) = |IP ′|−1[s, s+ 1) and also write ωP ′ = |IP ′|−1[m,m+ 1). There
are two possibilities. First the tile Q is ‘below’ P ′ so that

|IP ′ |−1(s+ 1) ≤ |IP ′|−1m⇒ s+ 1 ≤ m⇒ s ≤ m− 1,

or the tile Q is ‘above’ P ′:

|IP ′ |−1(m+ 1) ≤ |IP ′ |−1s⇒ m+ 1 ≤ s⇒ m ≤ s− 1.

In both cases we must have m 6= s so that∫
R+

wQwP ′ =
1

|IQ|

∫
IQ

ws(
x

|IQ|
)wm(

x

|IQ|
)dx =

∫ 1

0

ws(x)wm(x)dx = 0



5

according to Exercise 1.2. Since all the tiles in Pk(P ) are orthogonal to wP ′ and
wP ∈ span{wQ : Q ∈ Pk(P )} we conclude that

∫
wPwP ′ = 0 as we wanted to show.

P0

P1(P0)

P2(P0)

For the opposite direction assume that P ∩P ′ 6= ∅ thus ωP ∩ωP ′ 6= ∅. Without loss of
generality we may assume that ωP ′ ⊂ ωP . Like before, consider the collection Pk(P )
for k large enough so that |ωQ| = |ωP ′ | for Q ∈ Pk(P ). Since ωP ′ ⊂ ωP we necessarily
have that P ′ is one of the tiles in Pk. It is now not hard to check that

∫
wPwQ 6= 0 for

every Q ∈ Pk and every positive integer k ≥ 1. Indeed for k = 1 this is contained in
Exercise 1.5 (you can use the other direction of the current exercise, already proved)
while for general k one can show this by a simple inductive argument for example.
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