Time-frequency analysis - Winter 2012

6. EXERCISE SET

6.1. Prove the following estimate, which was needed to complete the proof on the lectures:

$$
\sum_{k=0}^{\infty} \int_{I_{T}^{c}}\left(1+2^{k} \frac{\operatorname{dist}\left(x, I_{T}\right)}{\left|I_{T}\right|}\right)^{-9} \mathrm{~d} x \lesssim\left|I_{T}\right| .
$$

Here I_{T} is an interval, and $\operatorname{dist}\left(x, I_{T}\right)$ designates the distance of the point $x \in I_{T}^{c}$ from this interval.
6.2. Prove the other estimate needed in the lectures:

$$
\left|\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\right| \lesssim\left(\frac{\left|I_{P}\right|}{\left|I_{P^{\prime}}\right|}\right)^{1 / 2}\left\|v_{I_{P}} 1_{I_{P^{\prime}}}\right\|_{1}, \quad v_{I}(x):=\frac{1}{|I|}\left(1+\frac{|x-c(I)|}{|I|}\right)^{-10}
$$

[Hint: Recall that $\left|\phi_{P}\right| \lesssim\left|I_{P}\right|^{1 / 2} v_{I_{P}}$, and such a bound is true even if the power 10 in the definition of v_{I} is replaced by any bigger number.]
6.3. In the lectures we considered a collection \mathscr{T} of trees with the following property:
$(*)$ If $P \in \mathbb{T} \in \mathscr{T}$ and $P^{\prime} \in \mathbb{T}^{\prime} \in \mathscr{T}$ satisfy $\omega_{P} \subseteq \omega_{P_{d}^{\prime}}$, then $I_{P^{\prime}} \cap I_{\mathbb{T}}=\varnothing$.
Prove that under this assumption, every tree $\mathbb{T} \in \mathscr{T}$ can be divided into up-trees \mathbb{T}_{j}, whose top time-intervals $I_{\mathbb{T}_{j}}$ are pairwise disjoint. [Hint: Let T_{j} be the maximal tiles in \mathbb{T} and define the subtrees $\mathbb{T}_{j}:=\left\{P \in \mathbb{T}: P \leq T_{j}\right\}$. Check that these give the required decomposition, in particular, they are uptrees. Note that in the assumption $(*)$ we also allow the case that $\mathbb{T}^{\prime}=\mathbb{T}$.]
6.4. Recall from the lectures the sums

$$
S:=\left(\sum_{P \in \mathbb{P}}\left|\left\langle f, \phi_{P}\right\rangle\right|^{2}\right)^{1 / 2}, \quad S_{2}:=\sum_{\substack{P, P^{\prime} \in \mathbb{P} \\ \omega_{P} \subseteq \omega_{P_{d}^{\prime}}}}\left\langle f, \phi_{P}\right\rangle\left\langle\phi_{P}, \phi_{P^{\prime}}\right\rangle\left\langle\phi_{P^{\prime}}, f\right\rangle
$$

where $\mathbb{P}=\bigcup_{j} \mathbb{T}_{j}$ is a union of trees. In the lectures, we derived the bounds

$$
S^{2} \lesssim \sqrt{S^{2}+S_{2}}\|f\|_{2}, \quad S_{2} \lesssim A S, \quad A:=\sup _{P \in \mathbb{P}} \frac{\left|\left\langle f, \phi_{P}\right\rangle\right|}{\left|I_{P}\right|^{1 / 2}}\left(\sum_{j}\left|I_{\mathbb{T}_{j}}\right|\right)^{1 / 2}
$$

Now, prove the alternative bound $S_{2} \lesssim A^{2}$, use this to get a bound for S, and then derive by this alternative way the estimate of the Energy lemma,

$$
\sum_{j}\left|I_{\mathbb{T}_{j}}\right| \lesssim \mathscr{E}^{-2}\|f\|_{2}^{2}
$$

6.5. This result will be needed on the final week of lectures: Let \mathbb{P} be a finite collection of tiles. Let \mathscr{J} be the collection of all maximal dyadic intervals J with the property that $3 J$ (the interval with the same centre and triple the length of J) does not contain any I_{P} with $P \in \mathbb{P}$. Prove that \mathscr{J} is a partition (a pairwise disjoint cover) of \mathbb{R}.

