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PREFACE

During the last few decades historians of science have
shown a growing interest in science as a cultural activity
and have regarded science more and more as part of the gene-
ral developments that have occurred in society. This trend
has been less evident among historians of mathematics, who
traditionally concentrate primarily on tracing the develop-
ment of mathematical knowledge itself. To some degree this
restriction is connected with the special role of mathematics
compared with the other sciences; mathematics typifies the
most objective, most coercive type of knowledge, and there-
fore seems to be least affected by social influences.

Nevertheless, biography, institutional history and his-
tory of national developments have long been elements in the
historiography of mathematics. This interest in the $§ocial
aspects of mathematics has widened recently through the stu-
dy of other themes, such as the relation of mathematics to
the development of the educational system. Some scholars
have begun to apply the methods of historical sociology of

knowledge to mathematics; others have attempted to give a

ix



Marxist analysis of the connection between mathematics and
productive forces, and there have been philosophical studies
about the communication processes involved in the production
of mathematical knowledge. An interest in causal analyses of
historical processes has led to the study of other factors
influencing the development of mathematics, such as the for-
mation of mathematical schools, the changes in the professi-
onal situation of the mathematician and the general cultural
milieu of the mathematical scientist.

We feel that these studies, and others which view mathe-
matics as, at least in part, a social activity, may be re-
garded as "social history of mathematics". A neat definition
of such a field cannot and need not be given; we do not in-
tend to announce the start of a new separate subdiscipline.
But we want to signal a new, broad and largely interdisci-
plinary movement in the historiography of mathematics. In

this volume we present results of this movement.

The volume consists of papers presented at the third of

a series of meetings on social history of mathematics spon-

1)

sored by the project PAREX. This third meeting, which took

the form of a workshop, was held in West Berlin from July 5th

1) For reports of the meetings see Historia Mathematica 3
(1976), 470-71, 5 (1978), 141-42, 7 (1980), 75-79; Social
Studies of Science 8 (1978), 141-42, 10 (1980), 121-125;
PAREX informations 2 (1977), 3-4, 3 (1977), 13-14.
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to 9th 1979. Twenty-eight participants from eight nations
presented and discussed their research, concerning the social
history of 19th-century mathematics. Since the texts of the
papers were distributed before the conference, there was
ample time for discussion. During the meeting there were
group discussions on three topics: mathematics in the early
nineteenth century, professionalization of mathematics, and
methods and research programmes in the social history of
mathematics. Reports of these group discussions were presen-
ted to the conference and discussed again at a general mee-
ting. As a result of the discussions, which were intense, at
times controversial, and very rewarding, most authors de-
cided to revise their papers. Some of the points that were
brought up in the discussions have been incorporated in the
introductions to the sections. Three of the papers presented
at the workshop have been omitted. Two of them have been

2) 3)

and the third is still under study.

published elsewhere,
We have grouped the papers thematically, as was done
during the workshop. Henk Bos wrote the introductions to

parts I and III. Part II on the dual topic of education and

2) Grattan-Guiness (1981a, 1981b), Pyenson (1979) (cf. Select
Bibliography) .

3) MacKenzie, Donald and Mike Barfoot; "Scottish Mathematics
- A Sociological Approach"”.
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professionalization, is introduced by Ivo Schneider. Herbert
Mehrtens prepared a methodological paper, which served as an
introductory exposition for the workshop, and a select bib-
liography; both are included in the form of an appendix.
Herbert Mehrtens organized the editorial division of labour
and took upon himself the task of general editor.

We feel that the workshop hes been very rewarding. Al-
though the participants had a great variety of disciplinary
backgrounds and methodological approaches, the thematic field
proved quite homogeneous. The papers present important re-
sults of historiographical research as well as an intriguing

field for further study.

We are grateful to all those who helped to organize
the workshop and who have made it possible to publish the
results. We are especially indebted to the staffs of the

Institut fir Philosophie, Wissenschaftstheorie, Wissenschafts-

und Technikgeschichte of the Technische Universitdt Berlin

and of the Kolpinghaus, Berlin, where the workshop was held.

We also wish to express our gratitude to the Stiftung Volks-

wagenwerk and to the project PAREX, which have given finan-
cial assistance, and to the publishing house which has made

the publication of this volume possible.

Henk Bos, Herbert Mehrtens, Ivo Schneider.



PART I

ASPECTS OF A FUNDAMENTAL CHANGE

THE EARLY NINETEENTH CENTURY



INTRODUCTION

Henk Bos

The first half of the nineteenth century was a period of great
changes in politics, in commerce and industry, in the arts,
and in religious, philosophical and scientific thinking. For
mathematics as well it was a period of deep change, in views
on mathematics as a whole, in ideas about its foundations and
the nature of its principal concepts, and in the educational
function of the discipline. New institutions for the pursuit
and teaching of mathematics and the sciences were created,
and older institutions were radically transformed.

The three articles in this section are concerned with
these changes, both within mathematics and in society in
general. Dirk Struik succinctly formulates the question which
underlies the other two articles as well: "How to argue the
connection 2?".

At the workshop Struik's article also served as an intro-
ductory survey. It depicts the change in society and the
atmosphere of pioneering, renovation and rebellion which
pervaded many aspects of politics and culture. The connection
between developments in one field, such as mathematics, and
those in other fields and in society in general are not yet
well understood, and require further study. But it is Struik's
conviction that in a time of such vigorous novelty in so many

fields innovations in one field cannot be treated or under-



stood as isolated phenomena.

The other two articles aim at tracing the connections in
specific cases. The theme of Luke Hodgkin's paper is the
revolution in thinking about the foundations of the calculus,
a revolution that was provoked especially by Cauchy's text-
books on the topic. Hodgkin is interested in connections
between changes in the practice of mathematics, especially
in the education system, which were caused by the political
revolution, and changes in the language and the rules of
mathematics. In studying this theme he makes use of the
concept of "discursive formation" introduced by Michel

Foucault in The Archeology of Knowledge. From this methodo-

logical starting point Hodgkin discusses two cases. The first
is the role of Lacroix's textbooks on the calculus, which,
though they date from a period before Cauchy, retained their
readability for a long time after Cauchy's textbooks had
started the new approach. As another example illustrating

the "discursive formation" of the calculus and of mathematics
in general in this period,Hodgkin presents and discusses an
autobiographical fragment on mathematics by Stendhal.

The article by Niels Jahnke and Michael Otte concerns
another deep change in views of the foundations of mathematics
which occured during the nineteenth century, namely the
process of arithmetization. Jahnke and Otte note that in this
period the sciences were directed for the first time towards
applications on a broad scale, and that the social basis of
science underwent fundamental structural changes in this

process. The development of methodological ideas in mathematics,



in particular the ideas that played a role in the process of
arithmetization, are related to these broader changes within
science. Against this background Jahnke and Otte treat the
emergence of the concept of relation in mathematics and
discuss the arguments of Gauss and Hamilton on the concept
of number, in which the role of this concept is central.

The articles of Hodgkin and of Jahnke and Otte are
programmatic in the sense that they originate from research
projects that are still in progress. They point to further
areas in which it would be important to study the connections
between changes in society and in the institutional and social
bases of science on the one hand and changes in scientific
concepts and methods on the other. Such areas were also
mentioned in discussions during the workshop, for instance

the role of geometry and the influence of textbook literature.



MATHEMATICS IN THE EARLY PART OF THE NINETEENTH CENTURY

Dirk J. Struik

ll)

Great changes in the social-political structure, and especially re—
volutions, have a way of influencing the thoughts of men, also in the
field of science, including mathematics. The urban rewolution of the
fourthand third millennium B.C. brought us the Babylonian-Egyptian type
of mathematics, the establishment of the Greek polis in the eighth and
seventh century B.C. the whole new edifice of Greek science with its new
type of mathematics. In modern times revolutions act less slowly. The
Revolution in the Netherlands known as the Eighty Years War brought us
the mathematics of Stevin and Huygens. The British Revolution, often
labeled the Puritan one, carried the Royal Society in its wake, featuring
Wallis and Newton. The French Revolution of 1789 equally stimulated a re-
newal of the mathematical sciences, continued during the Napoleonic pe-
riod and the Restoration.

There were, of course, two revolutions, the French one, primarily

! )This is a somewhat enlarged version of the address presented in Berlin.



political, and the Industrial Revolution, centered in Great Britain. All
these revolutions of the sixteenth till the nineteenth century were suc-—
cessive steps in the gradual ascendance to economic and political power
of the bourgeoisie, the tiers—&tat. Its interests and ideals were fos-
tered, stimulated and reflected in the scientific revolution of that pe-
riod, and mathematics, especially the new mathematics - calculus, ana-
lytic geometry , probability - played a fundamental role in this revolu-
tion.

The creed of this bourgeoisie, especially of its most powerful and

influential section, the haute bourgeoisie, had a tendency toward opti-

mism, leading to a belief in the progress of the human race, progress in
knowledge, in power and in social advancement. Beginning with the huma-
nists of Renaissance days - Ulrich von Hutten's "O seculum, o literae,
iovat vivere!" - through the seventeenth century's building of great me-
taphysical systems deeply influenced by mathematics, this belief in pro-
gress became the passion of the philosophes beginning with old Fonte-
nelle. Here Newton's mathematical exposition of terrestrial and celestial
mechanics showed the ways of God to Man, and led to a belief not only in
scientific, but also moral progress. Mathematics, the basis of Cartesian
and Newtonian philosophy could not only lead to understanding, but also
to economic power, as in the search for the determination of longitude
at sea, or the accuracy of artillery. But the mathematical sciences were
encouraged above all because of their accumulative character, a visible
vindication that progress was possible, and by a bold generalization this
tenet was extended to education and morality. As a matter of fact, pro-
bability theory showed that mathematics could even be applied to moral
issues.

The nineteenth century continued in this belief in progress, but the



emphasis was changed. With the growth of other sciences, mathematics
lost its rank of pride to be the number one. The belief in progress was
now based on the triumphs of the industrial revolution and the science
and engineering it promoted - never mind the "dark, satanic mills" of
Blake. The decline in this belief among the middle classes came only
towards the end of the century with the advent of imperialism with its
global conflicts and dark outlook for mankind.

But at the time of the French Revolution belief in progress and in

the illuminating example of the mathematical sciences, pures et appliquées,

was strong. When the tiers—état seized power and began to reform educa-
tion for its own needs, it saw in these mathematical sciences a mears to
this education. And, thanks to the encouragement given to these sciences
during the Ancient Regime, the Rewolution and the Napoleonic period
found a galaxy of leading mathematicians ready to provide both education
and paths to new frontiers of science.

One of the most efficient and permanent reforms was, as we know, the
opening in 1795 of the Ecole Polytechnique in Paris, created primarily
for the education of military engineers for the defense of the young Re-
public, but also combining other, older, schools as the Ponts et Chaussées,
the civil engineeringz). Military academies were already in existence, as
the one in Mézieres near Sedan, where Gaspard Monge had been teaching
mathematics and developed his descriptive geometry. The academy at

Brienne in Champagne had taught young Bonaparte his love for mathematics.

2)See e.g. H. Wussing, Die Ecole Polytechnique - eine Errungenschaft der

Franzdsischen Revolution. Padagogik 13 (1958) 646-662.




But the Ecole Polytechnique was a far more ambitious institution, as it
developed under the Directoire and Napoleon. With its classroom instruc-
tion and general discipline, examination, textbooks developed out of the
instruction, the most brilliant scientists as instructors, the school
set the example for technical teaching over the Western World and by its
stress on the mathematical sciences also deeply influenced university in-
struction and research. Eventually its influence extended to Prague,
Vienna, Stockholm, Zurich, Copenhagen, Karlsruhe, even to the young USA,
where West Point, the militf'u:y acadeny founded in 1802, was based on the
exanple of the Paris School. It was around this institution, its teachers
and its pupils, that Paris maintained for many years its reputation as

the mathematical center of the world.

There were other educational reforms in Paris, as the establishment
of the Ecole Normale. For many decades teacher training schools in many
countries were known as normal schools. The archaic Académie des Sciences
was replaced by the Institut - with Napoleon a proud member. But for the
development of mathematics we have to look in the first place at the

Polytechnique. Here entirely new fields of mathematics were opened.

2 There always will remain persons for whom it is an open question
whether, and if so, how, the new flowering of mathematics, so unexpected
by the older generation - had not Lagrange written to D'Alembert in 1772
"Ne vous senble-t-il pas que la haute géometrie va un peu 3 décadence"?
- can be related to the political events associated with the great re-
volution. Founding new schools does not necessarily mean founding new
science. It can be maintained that simultaneous events need not be caus-

ally connected; and post hoc ergo propter hoc is not a good argument

either. Mathematics, it is argued, is an autonomous science, its promo-

tion depends on mathematical genius, and the appearance of genius is ac-
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cidental and certainly has nothing to do with politics,commerce or indu-
stry. And indeed, the direct demands made by government, mercantile and
industrial circles on mathematics during and after the Revolution were
not very great, not even in the practice of warfare, especially as com-
pared to the present age. True, many French mathematicians were politi-

cally active in some way or another, Carnot was the organisateur de la

victoire, Monge was a Jacobin and even a régicide, Laplace was for a
while a minister of marine, Fourier a provincial administrator. In a
next generation we find in Galois a militant republican, the opposite of
Cauchy, royalist. But the mathematicians of Germany, who contributed so
much to the new mathematics were mostly university professors without
political ambitions. The role of the mathematical leaders in the new
great educational reforms is more pronounced, but this says little of the
content of their research. Then, how to argue the connection?

This we can probably do by realizing that the new mathematics was
only one aspect of the vigorous pioneering, renovation and rebellion that
went on in almost all aspects of intellectual and artistic, literary,
religious, moral and scientific thinking of Europe, wherever the armies
of the republic and empire had brought the slogans of liberty, equality
and fraternity to every nook and corner between Cork and St. Petersburg.
We, who have passed through the equally, or even more heavy emotional
shock of the World Wars, have witnessed how they produced, in their
aftermath, not only political and economic rebellions and revolutions, but
rebellions affecting every aspect of moral, artistic and scientific life,
from sex to semantics. If not outright rebellions or revolutionary,
sharply critical attitudes could prevail even among persons of conven-—
tional life style. It thus becomes easier for us than for the Victorians

and Wilhelminians to understand the state of mind that prevailed, es-
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pecially among the younger generation, during and after the Napoleonic
cataclysm. Thus the new mathematics of the period was only one aspect of
that vigorous pioneering and rebellion that went on in almost all intel-
lectual life in this period from 1789 to 1848, between the first and
the third French Revolution. Think of the new ideas: in politics Repu-
blicanism and Carbonari, in economics the theories of Adam Smith and
Ricardo and Fourier, in literature the modern novel with Dickens and
Stendhal and in poetry the visions of Shelley, in theology the new cri-

tique of Strauss, the German philosophy from Kant to Hegel, the new lin-

3)

guistics of the Grimms, socialism and commmism™’ - and equally the

spate of new ideas and theories in physics, chemistry, biology and geology.
The gods themselves were challenged by inwvoking the spirits of Faust and
Prometheus, and nationalism tended to replace the cosmopolitanism of the
intellectual world in the previous century. If rebellions against the

Holy Alliance and the Church were rampant, why not against the legend of
creation, Newton's theory of light and even that pillar of sientific se-

curity, Euclid? Let us quote what Eric Hobsbawn, the English historian,

3)'1‘1'1is trend in literature and arts is known as romanticism. It is pre-
ceded by a period often called classical. J.E. Hofmann calls the whole
period fram c. 1550-1700, baroque (in his "Geschichte der Mathematik").
There is no objection to call in mathematics the period from c. 1650-
1700 classical (the "Hochbarock" and "Spdtbarock" of Hofmann).But what
is '"baroque" in the mathematics of the scientific rewvolution except
the periwigs of the mathematicians ? It is the same with the term
romanticism. Cauchy's complex functions and Abel's elliptic functions
are not more romantic than Lagrange's real functions and ILegendre's
elliptic integrals. What the mathematicians and the poets had in com-
mon was a critical attitude with respect to their predecessors as well
as a growing national feeling and we therefore prefer to call the
period from 1789-1840 the critical, or perhaps the national-critical
period. But the mathematicians only looked forward, the romantics some—
times forward, sometimes backward. This relationship (or non-relation-
ship) between romanticism and the new attitude in science deserves
deeper study (e.g. the influence of Naturphilosophie).
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has said about this exciting and creative intellectual life, this out-
burst of vitality:

"No one could fail to observe that the world was transformed more
radically than ever before in this era. No thinking person could fail to
be awed, shaken and mentally stimulated. It is hardly surprising that
patterns of thought derived from the rapid social changes, the profound
revolutions, the systematic replacements of customary or traditional in-
stitutions by radical rationalist innovations, should become acceptable...
We know that the adaptation of revolutionary new lines of thought is nor-
mally prevented not by their intrinsic difficulty, but by their conflict
with tacit assumptions about what is or is not "natural". It may take an
age of profound transformation to nerve thinkers to make such decisions,
and indeed imaginary or complex variables in mathematics, treated with
puzzled caution in the eighteenth century, only came fully into their
own after the Revolution."4)

It is easy to find other examples of mathematical fields, long ne—
glected mainly because of the intensive cultivation of the calculus
during the eighteenth century due to its interest in Newtonian mechanics.
Projective geometry already goes back to Desargues and Maclaurin, the
foundation of the calculus on the limit concept to D'Alembert. Even a
non-euclidean geometry had appeared in Thomas Reid's theory of vision of
1764. Nobody in particular cared. It even needed the French Revolution

to introduce a metric system of weights and measures, an idea already

4)E. Hobsbawn, The age of revolution 1789-1848, Mentor Book, New York,

Toronto, 1962, p.345.
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proposed by Stevin in 1585. Professor Wilder in such cases speaks of
cultural stress and cultural lag.5)
Hobsbawn also points the many, now familiar, terms originating in
this period 1789-1848, words we cannot do without, such as industry,
factory, capitalism, railway (railroad in the USA), liberal, conservative
(in the sense of party), nationality, engineer, liberalism. We can add
mathematical terms as complex number and complex function, vector, de-
terminant, potential, contour integral, projectivity, polarity, number
congruence, lines of curvature, analytical geometry (in our present
sense) . Even the word scientist dates from this period, denoting a need
felt at the time for a word expressing what had became a widely recog-
nizable profession (Whewell, 1840). The term technology, introduced in

1769 by Beckmann, became only current in this period.

3 As we said, a good deal of the new mathematics originated at, or was
directly influenced, by what was going on at the Polytechnique. Through
the teachings and research of Monge, his colleagues and pupils Hachette,
Biot, Malus, Dupin, Poncelet the whole aspect of geometry was changed;
starting from what was Monge's new discipline, descriptive geometry.

Here again we find one of these renovations of the type mentioned by
Hobsbawn. Monge put orthogonal projection firmly on the mathematical map
- but Diirer used it successfully as early as 1525, after which it

was almost forgotten in favor of linear perspective. In Monge's school

grew projective and analytic geometry, and by the application of calculus,

5)J .R.L. Wilder, Evolution of mathematical concepts. An elementary

study, Wiley, New York, etc., 1968, passim.
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differential geometry. This again fertilized the calculus itself, and
with it mechanics. Fourier demonstrated the power of his trigonometric
series in what may be called the opening up of mathematical physics;
Cauchy developed the theory of complex functions and was one of the first
to rescue the limit concept for foundation of the calculus. Lagrange and
Laplace are also connected with the Polytechnique, and so is Poisson. A
new type of textbooks appeared, result of classroom teaching, direct an-
cestor of our own ocollege texts, such as Biot's and Hachette's books on
conics and second degree surfaces, introducing the term géométrie ana-
lytique. But it did not all happen in Paris; Gergonne, in Montpellier, in
1810 began to publish the first meriodical exclusively dedicated to the
mathematical sciences, the "Annales de mathématiques pures et appliquées”
(till 1832). And one of the sources from which sprang projective geometry
with its concept of polar reciprocity. The many textbooks of Lacroix
served as models for years to come.

Germany, in the time of Lessing and Goethe, had its own Enlighten-
ment, but German middle classes being economically and politically weak,
the stress here was on literature and philosophy, and not on the sciences.
Germany had its Gauss, enthroned in Olympic isolation in his GSttingen
abservatory, like the equally Olympic Goethe in his Weimar Kleinstaat,
both representing in a sense the transition from the old to the new on
the highest level. It was the trauma of the Napoleonic invasion that
woke Prussia up from its selfindulgence, and the university of Berlin,
founded in 1810 under the influence of Wilhelm von Humboldt, became a
model for the further development of the German university system,
taking its place beside the older institutions like the ones at GSttingen
and Konigsberg. The earlier years at Berlin were strongly humanistic,

reflecting the influence of Wilhelm von Hunboldt (think of Ranke and
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F.A. Wolff) and the still general weakness of economic development, but
the mathematical sciences took a more leading position with the return
of Wilhelm's brother Alexander from Paris, where he had mixed freely with
the leading mathematicians. That happened in the 1820's. Then we find in
Berlin Steiner and Dirichlet, representing novel approaches in geometry
and analysis, while Crelle, the architect-engineer, begins his "Journal
fir die reine und angewandte Mathematik" in 1827, opening its pages for
papers of the young and creative like Abel and Jacobi, incidentally the
first Jew since the Middle Ages to occupy a leading position in mathe—
matics, and in his case even a university position. The French Revolution
also in this domain showed its emancipating influence. Germany begins its
own path to mathematical glory, following in its own constructive way the

lead of France and of Gauss.

4 In the new mathematics of the period of revolution the classical
union of calculus and mechanics, typical of Lagrange and Laplace, is
maintained, but supplemented by new and critical concepts. The way the
eighteenth century worked with a calculus without satisfactory foundation,
with infinite series without satisfactory study of convergence and with
the "paradoxes of infinity" in general, was found highly unsatisfactory.
With the new rigor came new criteria for the convergence of series and
new understanding of such concepts as continuity and function. We think
of Cauchy, Gauss, Bolzano, Abel, Fourier, Dirichlet.

We mentioned already the widening of the field of geometry. Started
in France with Monge and his school, continued by Chasles, the Germans
took over and developed affine, algebraic and more dimensional gecmetry,
with Steiner, Grassmann, Pliicker, von Staudt. Projective and more dimen-

sional geametries can be seen as breaks with the Euclidean "paradigm”.
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Hardly any mathematical thinker in previous time had thought in terms of
spaces of more than three dimensions, or, if he did, he certainly did not
follow it up. This holds even more for non-euclidean geometry, embodying
an idea so new that Gauss only discussed it in some letters to friends,
but which, after an incubation period of two millennia, finally was bold-
ly presented to a still sceptical public and by two men outside of the
mathematical centers, one in Russia, the other in Hungary. Once its vali-
dity was recognized, it revealed itself as one of the most revolutionary,
far reaching, discoveries in mathematics and far beyond it in science and
philosophy.

Not only the mystery of the "metaphysics" of the calculus was dis—
pelled, but also that of the imaginary and complex numbers. For centuries
a mystique had surrounded /=1, and though Euler and others had shown by
amazing results that operating with it "worked", only when Wessel, Argand,
Gauss, Hamilton established their geometric-algebraic interpretations did
the imaginary lose its position as a bastard in the respectable mathe-
matical family. With this recognition came the theory of complex functions
developed by Cauchy and anticipated by Gauss.

Once the "legitimacy" of the complex nurber was recognized, the door
was opened for its generalization. With the quaternions and other hyper-
complex nunbers came the concept of vector and of higher direct quantities.
We think of Hamilton, Grassmann and others. Here again we discover how
concepts, lying dormant for a long time, came to new life in this revo-
lutionary period. Operations with geometrical quantities instead of num-
bers or letters was, as we know, already suggested by Leibniz.

Just as Leibniz' ideas about a calculus of direct quantities, so
Lagrange's ideas on the solvability of algebraic equations were now

seriously taken up and further dewveloped. This concerned the ancient
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problem of why fifth and higher degree equations could not be solved in
radicals the way equations of lower degree could be solved. Through the
work of Ruffini and Abel this led to one of the most fertile of the new
mathematical ideas, Galois' theory of groups.

Elliptic integrals were long known and Legendre had written an ex-
tensive classification of these quantities and their transformations in
1811, continued in 1826. But the startling discovery of elliptic functions
as doubly periodic inversions of these integrals was made by younger men,
by Abel and Jacobi. This widened the bounds of function theory enormously,
not only by the free use made of the complex domain, but also by the in-
troduction of theta functions and Abelian integrals.

Jacobi also introduced determinants, as Cauchy introduced matrices.
With vectors, quaternions and groups a new algebra was born, a radical
departure from the age old identification of algebra with the theory of
equations of different degrees. But here new ideas also came out of Eng-
land in the work of DeMorgan, Peacock and Boole, steps leading to the

axiomatization of algebra and even of logic.

5 This brings us to Great Britain, the European country that dedica-
ted itself to fight the French Revolution and Bonaparte, and thus was

most inclined to withstand the intellectual and political influence of
this French Revolution and this Bonaparte. The opposition goes back to

the whole of the eighteenth century and its repeated British-French wars.
A bad period for the adaption, or even the serious study, of continental
ideas, the more so since the native sons with scientific and engineering
interests were absorbed, directly or indirectly, in research and construc—
tion related to the industrial revolution. Continental mathematics was not

very welcame.Not even the decimal division of weights and measures was
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allowed to enter Great Britain. Yet, "subversive" penetration of the
ideas of the French Revolution did exist — we may think of Goodwin and
Mary Woolstonecraft. In mathematics it came, in and around 1816, in the
form of the Cambridge Analytical Society and its young members Babbage,
Herschel and Peacock. They began to propagate the continental calculus,
the "&notation" instead of Newton's fluxions and translated a book of
Lacroix. Babbage would soon start on his mechanical computer.

Another influence in the same direction was the creative study of
Laplace's "MBcanique cfleste" by Hamilton and by Green, leading Green to
the mathematical theory of electricity and Hamilton (in Ireland) to his
remarkable work on optics and mechanics, which in its turn led to the
Hamilton-Jacobi theory and its far going consequences lasting till the
present day.

We have already mentioned the algebraic work done in England with-
out much influence from abroad - this therefore a native contribution,
as was Boole's (also in Ireland) creation of mathematical logic.

We see that mathematical research, as well as teaching, was spreading
outside of the West European heartlands. In the USA we find Bowditch
translating the "Mécanique céleste", and Farrar at Harvard introducing
continental calculus, like the youngmen at Cambridge, French texts in
translation. From Skandinavia came Abel, from Russia Ostrogradsky and
Lobatchevsky, from Hungary Bolyai. Attempts in Mexico to introduce con—
tinental calculus at the newly founded mining institute (the Mineria,
1792) were eventually frustrated by the War for Indemendence.

New perspectives were opened in education, in the first place for
the middle classes. The national states needed professionals for their
growing bureaucracy, schools and industry. The industrial revolution

spread over the continent and needed engineers. University systems were
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modernized and technical institutions founded, professionalism and speci-
alization encouraged.. Monge and Steiner were geometers, Laplace and
Dirichlet analysts, Peacock an algebrist, Boole a mathematical logician.
The road was open, in several of the leading countries, for talent, es-
pecially young talent. In 1814, when Comte entered the Polytechnique,
Cauchy, among the instructors, was 26 years of age, Arago 28, Poisson 33,
Poinsot 37, Ampere 39, several had seen many years of service. Hachette,
at 45, already had pupils as colleagues. "L'Empire n'est pas seulement
le temps des jeunes généraux, c'est aussi celui des jeunes professeurs",
writes Comte's biographer at the Polytechnique. Only Monge, Lagrange
(already dead) and Laplace belonged to the older generation.

Since specialization had set in, the gap between pure and applied
mathematics was widening, but not all links disappeared. In France the
connection remained strong, as in the case of Cauchy and Poisson. Mathe-
maticians like Duwin and Poncelet showed a deep interest in politics and
in industry. Rodriguez was a follower of Saint-Simon. Gauss, in Germany,
was of course master in both fields. We think of the wellknown inter-
change of opinions between Jacobi and Poisson: is the ultimate goal of
mathematics utility or the honor of the human mind? Yet it was Jacobi
who was interested in establishing a Polytechnique in Berlin.

This was also the age of periodicals purely devoted to mathematics.
We have mentioned Gergonne's Annales and Crelle's Journal. After
Gergonne's Annales had expired Liouville started, in 1836, his "Journal
de Mathématiques pures et appliquées". Pure and applied indeed, but
Crelle's Journal soon was nicknamed "Journal fur die reine unangewandte

Mathematik". In 1839 the Cambridge Mathematical Journal was founded.

A word about the historiography of mathematics in this veriod. The
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French Enlightenment had brought the first readable history of mathema-
tics, a splendid narrative quite different from the stale catalogs of
names and titles that had apoeared before. It was Montucla's "Histoire
des mathématiques" (2 vols, 1756, 4 vols 1799-1802, the last volumes
completed by Lalande). Some historics of minor importance appeared around
the turn of the century, those by Bossut (1802), well written, and K3stner
(1797-1800) , more a descrintive catalog. The new age went in for specia-
lization. Already in 1797-99 Cossali had published his 2 volumes on the
origins of algebra in Italy, with a light patriotic touch. Far more pat-
riotic was Libri's history of mathematics in Italy (1830-41). Chasles'
"Apergu historique" of 1837 dealt with the progress of geometry throuch
the centuries, integrating ancient and modern results into a living pat-
tern, the first book on the history of an important field of mathematics
written by a creative mathematician. Nesselman's "Algebra der Griechen"
was the solid work of a pupil and later colleague of Jacobi.

This was also the period in which the horizon was widened far beyond
the limits of the old classical-European world. The search for informa-
tion in connection with markets and imperial expansion brought scholars to
explore the East. This brought Rosen, Woepcke and the S&dillots to the
study of Arabic mathematics, Colebroocke and Strachey to the mathematics
of the Hindus. With Biot and Wylie begins the modern study of Chinese
mathematics. But despite the beginning flowering of Egyptology and Assvri-
ology the discovery of the mathematical treasures hidden in hieroglyphics
and cuneiform was still in the future. The total harvest in our period
remained small, and only during the second part of the century the new

and fertile period in the historiography of mathematics is opened.6)

6) See my article in NIM (cf. Select Bibliography).



ORIGINS OF THE PROGRAM OF "ARITHMETIZATION OF MATHEMATICS"

Hans Niels Jahnke and Michael Otte

1. Introduction

Curiously enough, mathematics and its historiography are
rather acutely conscious of the fact that the turn from the
18th to the 19th century marks a decisive turning point

full of consequences in the development of science. Contem-
poraries in the 18th century believed that mathematics

had come to an end of its growth. "A great upheaval in the
sciences is imminent. In view of the present aspiration of
the great minds, I should almost like to claim that there
will not be three great mathematicians in Europe within a
century. This science will suddenly remain fixed to the spot
where the Bernoullis, Euler, Maupertius, Clairaut, Fontaine,
d'Alembert, and Lagrange have left it." (Diderot 1754, p.

31). Similar statements have come down to us from Lagrange.

It is a well-known fact that Diderot's and Lagrange's fears
have not come true; rather, the "great upheaval in the
sciences" predicted by Diderot seized mathematics as well,
and led to new developments of method and object not antici-
pated. The new style of mathematics, which began to emerge
at the turn to the 19th century, is seen, as most historians

of mathematics agree, first of all in the tendency towards

rigorous proof, and in a more careful elaboration of the foun-

21
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dations and definitions of mathematics. Analysis sees a foun-
dation of its methods, the nucleus of which is described as
arithmetization. In retrospect, Felix Klein wrote in 1895:
"The spirit in which modern mathematics was born, however,
is quite another one. Starting from the observation of na-
ture, and aimed at explaining nature, it has placed topmost
a philosophical principle, that of continuity. This applies
to the great pioneers, for Newton and Leibniz, it applies to
the whole of the 18th century, which, for the development of
mathematics, has really been a century of discoveries. It is
only gradually that rigorous criticism emerges, which en-
quires after the consistency of these bold developments -
something like a re-establishment of ordered administration
after a long campaign of conquest. This is the age of Gauss
and Abel, of Cauchy and Dirichlet ... hence the demand for

exclusively arithmetical proof." (Klein 1895, p. 143/144)

This summary by Klein represents a view of the development
of mathematics in the 19th century current far and wide to
this day. It entails, however, some difficulties and prob-

lems.

The first problem is of immanent order and concerns the
opposition established by Klein between mathematical dis-
covery in the 18th century, and the foundation resp. codifi-
cation of mathematics in the 19th century. Is it true that

this codification has nothing to do with the development of
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new knowledge, should the new foundation of mathematics have
no productive function at all? Does this separation between
development and foundation really apply to the mathematics
of the 19th century, which did show the marks of a histori-
cally unprecedented productivity? The second problem lies in
the question whether, and how, this recourse of mathematics
to its own foundations is connected with the fact that the
sciences, in the 19th century, are, for the first time,
directed towards application on a broader and soc%ﬁlly per-
tinent scope, and that its entire social and institutional
basis is subject to a fundamental change of structure. In
our opinion, this question should be made the starting point
for any analysis aiming to study the historically unique
character of mathematics' development during the first half

of the 19th century.

These questions sketch a program the implementation of which
will require studies of different types, and which cannot be
realized, either, in the domain of mathematics history
alone. The connection between the sciences and their appli-
cations on one hand, and the social environment on the
other, cannot be studied in an isolated fashion according to
individual disciplines. That which has been described by
others as "Finalisierung" (see Bthme et al. 1973) cannot be
a statement pertaining to an individual science, but rather
represents a (historical) characterization of the totality
of the science system. In the period under consideration,

i.e. the turn to the 19th century, this idea, i.e. that the
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relationship between theory and practice can only be dis-
cussed referring to the totality of the sciences, was an
essential point of debate. The attacks, in particular those
of German Neo-Humanism, against the "utilitarian thinking of
the Enlightenment", were not directed against the orien-
tation of the sciences toward application, but rather
against a too narrow understanding of that which is to be
understood by application of science. Neo-Humanism is con-
cerned with developing conceptions for the development and
the application of science, which are more appropriate to
the social character of science, resp. which foster this
process of socialization. The same intention seems to under-
lie Saint-Simons famous remark which has been taken from
quite another context of discussion: "The philosophy of the
18th century was revolutionary; that of the 19th century is

called upon to organize."

To explain autonomy and dependence of the sciences si-
multaneously, in our opinion, thus seems to be possible only
if the totality of the sciences is considered an essential
element of the context of the explanation. This level of
"totality" is not identical to the direct relationships
between the various disciplines, but represents, in itself,
a new level. With regard to the institutional and material
basis of the sciences, this is expressed in the requirement
to view the sciences as components of a total system, which
might tentatively be designed by the term of "superstruc-

ture". This "superstructure" has its specific organizational
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and material foundations and is determined by the latter. An
important point of investigation, for instance, would be to
study the superstructure's technologies, such as printing
technologies, experimental techniques, present-day media,

etc.

On the other hand, the element of the totality of the scien-
ces is present on the level of knowledge as well in the
shape of philosophy, or "meta-~knowledge". It is only in this
medium that "boundary concepts" are generated, "which do not
only orientate scientific research in a fundamental way,
because they 1) are immediately accessible to content-rela-
ted intuitions, 2) possess a methodological constructivity,
and 3) are of theoretical fundamentality, but are fundamen-
tal concepts as well, i.e. fundamental concepts in the sense
of linking scientific research to the other dimensions of
human orientation." (AG Mathematiklehrerbildung 1981, p.

158)

This background makes plausible that the connection between
science and education is of such extraordinary importance
for investigating the development of science at the outset
of the 19th century. To apply science is not merely to pro-
vide concrete knowledge for the solution of concrete prob-
lems. Rather, the function of science to provide general
orientations is essential for developing an active-practical
behaviour toward real life. "If one tries for a better un-

derstanding of the connection between education and science,
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it must be realized that education establishes above all the
individual's conscious and also unconscious relationships to
knowledge, produces ideas of the unity and coherence of
knowledge, and furthers the methodolisation of knowledge.
Education is connected in an essential sense with the estab-
lishment of scientifically general, supradisciplinary con-
cepts. ... Education is thus revealed as an important field
in which the very connection between epistemology and social
theory becomes operative, which we supposed above to be
characteristic of the newly emerging rationality type."

(Jahnke/Otte/Schminnes 1981, p. xx-xxi)

Indeed, social theory, personality theory, and theory of
science have entered into close combination in the early
19th century pedagogical literature of Germany in particu-
lar. A further characteristic is that the pedagogical liter-
ature cannot be clearly separated from the philosophical.
Methodological and social aspects of the development of
science are considered closely connected. Contemporary
French positivism, too, is strongly rooted in pedagogical

thought (see Cassirer 1957, p. 17ff).

In studies pertaining to the methodological change at the
turn to the 19th century, history of science thus must in-
corporate that type of literature in which this way of think-
ing emerged. Hence, in the German case, for instance, the
essential comprehensive mathematical teaching and textbook

literature as well as, say, the "Programmschriften" of the
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Gymnasia must be taken into consideration. To show the con-
nection between the thought reflected in this type of liter-
ature, on the one hand, and the actual academic research on
the other, is an important requirement asked of history of
science. A first essential step could focus on such authors
who, in their time, consciously assimilated the literature
mentioned above, and who, in addition to that, had an impact
on the most advanced level of scientific discussion. With
regard to mathematics, Bernard Bolzano is undoubtedly such a

person; others, however, might also be listed.

To be concerned with social history of science cannot mean
simply to reveal "social influences" exerted on the scien-
ces. Scientific knowledge is not socially constituted for
the mere reason that the sciences represent an activity of
human beings who act and communicate. Such a vague use of
the term "social" would disregard the specific nature of the
scientific field, "which is the specifity of the politics of

truth in our society". (Foucault 1977)

Hence, social history of science also implies close study of
the subject matter and applications of scientific theories.
In this respect, the social history of science is no oppo-
site to the history of ideas. The philosophical understand-
ing of the object field of scientific theories, conceptions
of what is usually called the subject matter of a scienti-
fic theory, provides an essential yardstick for the pro-

gress of the sciences itself, and this not only with regard
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to the contents of knowledge, but also with regard to the
very social and institutional foundations of the sciences.
Any increase in differentiation of the object field will be
accompanied by an increase in differentiation and explana-
tion of the scientific system in its social, institutional,
methodological, and literary components. In this sense, the
following will attempt to describe some aspects of the
change undergone by the methodological self-understan~*=ng of

mathematics in the early 19th century.

2. Arithmetization of Mathematics

An attempt for better comprehending the change in mathema-
tics' understanding of its object field, which began to take
place towards the turn to the 19th century, first of all
requires tackling the problem and the context of the "arith-
metization of mathematics". It must be said at once that
this arithmetization was not only, as 1s often supposed, a
matter of founding infinitesimal calculus anew, but rather
of reshaping and reformulating mathematics as a whole. The
nucleus of that which will be termed arithmetization here,
might be approximately described as follows: During the 18th
century, numbers, in their inseparable linkage to the quan-
tity concept, represented the actual object field of mathe-
matics, and algebra, and the symbolic calculi of mathematics
were regarded merely as a language permitting an easy and
suggestive manner of representing relationships between

numbers or quantities. This status became precisely the
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reverse in the 19th century. Algebra was now to directly
include the actual mathématical relationships, which con-
stitute the subject matter under study, while arithmetics,
for its part, became the language of algebra resp. of the
entire mathematics, by means of which, and in which, all
mathematical facts must ultimately be expressible. This
process of arithmetization finally culminated, towards the
close of the century, in the fact that the consistency of
mathematics was reduced to the consistency of arithmetics,
raising arithmetics to the position of foundational sci-
ence proper of mathematics. Hilbert's program, which attemp-
ted to reduce the entire mathematics to finitist combina-
tions of signs resp. numbers, is but a pointedly formulated
version of these efforts, which, eventually, led to Goedel
arithmetizing the logical system of the "principia mathema-

tica".

Arithmetics as a foundational science of mathematics does
not mean that arithmetics constitutes the actual subject
matter of mathematics. Rather, numbers are no longer inter-
preted as objects, but as pure symbols, as "marks", as a
means of objectifying mathematical thought - i.e. as a lan-
guage. This will be exemplified by quoting one of Helmholtz'
remarks, who says in his fundamental essay "Zdhlen und
Messen, erkenntnistheoretisch betrachtet” (Counting and
Measuring from an Epistemological Point of View, 1887): "I
consider arithmetics, or the theory of pure numbers, as a

method based on purely psychological facts, which serves to
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teach the consistent application of a system of signs (i.e.
numbers) of unlimited extent and unlimited opportunities of
sophistication. In particular, arithmetics explores the
question which different ways of combining these signs (cal-
culating operations) will lead to the same final result. ...
Besides the proof thus furnished of the inner consistency of
our thoughts, such a method would of course at first be a
mere play of our acumen with imagined objects, ... if it did
not permit such extremely useful applications.” (Helmholtz
1887, p. 303/304). In connection with non-Euclidean geome-
try, Gauss wrote to Bessel on April 9th, 1830: "According to
my innermost belief, the status of space theory with regard
to our a priori knowledge is quite different from that of
pure quantity theory; our knowledge of the former must do
quite without that utter conviction of its necessity (that
is, of its absolute truth as well) which is proper to the
latter; we must modestly admit that, if the number is merely
the product of our mind, space has a reality outside our
mind as well, to which we cannot a priori prescribe its

laws." (quoted after Becker 1975, p. 179)

There was the widespread idea that number theory was the
purest expression of the laws ruling our thoughts. Hence it
seems to be no accident, even if the causes, as a whole, may
have been much more complex, that number theory saw such a
flourishing growth towards the beginning of the 19th cen-
tury. Crelle's following statement is typical: "This theory
of numbers now is, at least in its further extension, a

n e wer branch of mathematics, comparable to differential



31

and integral calculus. Only the first traces of it are to be
found with the ancients. Its development did not begin until
Fermat's time, and it has reached its present scope but
recently; particularly due to the efforts of Euler, Lagran-
ge, Gauss, Legendre; later to those of Jacobi, Dirichlet,
etc. No matter how novel it is, however, it has made an
unprecedented advance. It has grown to a large amount of

theorems, and is extending daily." (Crelle 1845, p. V)

3. On Hamilton's Number Concept

The conception saying that numbers are signs rather than
objects by no means entailed that mathematics became a
science removed from real life. On the contrary, the rela-
tive separation of the sign level from applications expres-
sed by this conception fostered the relation of mathematics
to reality. This can be shown in an exemplary fashion in
Hamilton's efforts to establish algebra as a "science of
pure time". Hamilton frequently is considered an adherent of
Kant. As far as this may be correct, it does not refer so
much to Kantian epistemology, however, but rather to the
dynamistic (anti-atomistic) conceptions developed by Kant in
one of his early stages. This makes Hamilton just one re-
presentative of a host of British scientists, who were in-
fluenced by the German Philosophy of Nature, by Kant and
Schelling, in their efforts to come to an appropriate under-

standing of physical and chemical processes. Coleridge and
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Humphrey Davy are the most influential proponents of dyna-

mical philosophy in England. (see Williams 1965, p. 63ff.)

This connection with the German philosophy of nature already
shows that Hamiltons thoughts were strongly guided by phy-
sical-dynamical intuitions, from which he developed his
conception of mathematics. Hence, algebra is founded by
Hamilton under the perspective of a general hypothesis about
the world's material structure. By his dynamical ideas,
Hamilton is led to the belief that space and time are not
independent of each other, but form a unity. Hamilton sear-
ches for a new relationship between geometry and algebra
(see Hankins 1977, p. 178). These conceptions guided him for
years in his search for the quaternion-calculus, which was
to express this unity of space and time. Hamilton is anti-
atomist, he aspires at supplanting the theory of atoms by a
theory based on the "forces" and "energies" acting in space
and time. In June 1834, he had a decisive meeting with Fara-
day in Dublin, which encouraged him to pursue his ideas on
this matter. In the last instance, highly general physical
ideas in the sense of an intended reference to applications
entered his considerations on the foundation of mathematics,

and of algebra in particular.

In his fundamental work "Theory of Conjugate Functions, or
Algebraic Couples; with a Preliminary and Elementary Essay
on Algebra as the Science of Pure Time" (1837), in which

Hamilton develops his conception of algebra as the "science
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of pure time", he starts from the assumption that there are
three possibilities of conceiving algebra: a "practical"
one, which considers algebra as being purely instrumental, a
"philological” one, which sees in algebra a pure calculus,
oriented toward a symmetry of expressions, and a "theore-
tical" one. It is the theoretical conception he seeks to
develop, and it consists precisely of the attempt to iden-
tify an object of algebra. After having shown that neither
the appearance of negative nor that of imaginary numbers can
be founded on the quantity concept, he develops a conception
of his own which is based on the concept of "progression" or
of "order in time". Hamilton thus supposes that the time
axis is given, together with a relation of order between the
point situated on this axis. Then he proceeds to consider
pairs of moments (points in time), which can be compared
with regard to the relation of order, i.e. with regard to

"before" and "afterward", and finally assigns, to each pair,
a "step", i.e. a translation which translates the earlier
point in time into the later one. Subsequently, he develops
the laws of calculating by means of such steps, and finally
he is able to quite generally introduce (real) numbers as
"quotients" of two of these translations, respectively. It
is well known that Hamilton, in his presentation, antici-
pated much of the foundation of the number concept developed
later; he also gets very close to Dedekind's intersection
axiom in showing that the "quotient" of two steps will not

always yield a rational number, using a construction analo-

gous to Dedekind's intersection axiom in doing so. The core
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of Hamilton's approach is that numbers are being introduced,
by means of these definitions, as pure numbers resp. marks
for the relations between steps, thus converting algebra to
an aprioristic, completely certain science. He expresses
this quite unequivocally in an unpublished manuscript quoted
by Hankins (1976) and Mathews (1978): "In all Mathematical
Science we consider and compare relations. In algebra, the
relations which we first consider and compare, are relations
between successive states of some changing thing or thought.
And numbers are the names or nouns of algebra: marks or
signs, by which one of these successive states may be remem-
bered and distinguished from another ... . Relations between
successive thoughts thus viewed as successive states of one
more general and changing thought are the primary relations
of algebra... . For with Time and Space we connect all con-
tinuous change, andby symbols of Time and Space we reason

on and realise progression. Our marks of temporal and local
site, our then and there are at once signs and instruments
of that transformation by which thoughts become things, and
spirit puts on body, and the act and passion of mind seem
clothed with an outward existence, and we behold ourselves
from afar. And such a transformation there is when in Alge-
bra we contemplate the change of our own thoughts as if it
were the progression of some foreign thing and introduce
numbers as the marks or signs to denote place in that prog-

ression." (Quoted after Mathews 1978, p. 188)

The meaning of Hamilton's foundation of mathematics will

only be uniderstood if there is a careful distinction between
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a concept's simulative function, i.e. the production and
variation of sign models, and its explorative function, i.e.
the intended reference to the object, which continuously
reflects congruence and difference between the concept and
the object. Numbers, as objectified helps for acts of
thought, serve to simulate. Numbers are the matter used to
produce symbolic models. The explorative content of theory,
however, lies in its intended reference to physical applica-
tions, which is conveyed by the concept of "progression" or
"order in time". Subjectivation of the sign level, conceiv-
ing of numbers as of pure symbols of thinking acts will not
retain a rational meaning unless it is regulated by concep-
tual generalizations, which refer to the objectified field
of application to a far more comprehensive and extensive
degree than was hitherto the case. The simulative and the
explorative function of the concept are only conveyed with-
in, and by means of, the activity of cognition, and communi-
cation. The fact that activity becomes the point of referen-
ce for the understanding of scientific generalization is the

decisive achievement of 19th century epistemology.

4. Gauss and the "Metaphysics of Mathematics"

Gauss' dislike for most philosophical schools has led many
authors to believe that he considered any treatment of ques-
tions of philosophy of science irrelevant. Documentary evi-
dence, however, shows that the opposite is true, and that

Gauss thought about philosophy of science and mathematics in
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a very profound and intense way. Those philosophical manus-
cripts of his which have been handed down to us contain,
despite their cursory character, the nucleus of a very far-
reaching meta-mathematical conception which helps us to
decipher important aspects of the self-understanding of

mathematics during the early 19th century.

Among these philosophical manuscripts, we also count the
well-known "2. Ankiindigung der Theorie der biquadratischen
Reste" (Second Announcement of the Theory of Bi-Quadratic
Residues) published in 1831, in which Gauss founded the
introduction and admissibility of complex numbers. A closer
look at this text will be rewarding, as it can be shown that
Gauss did not consider the "illustration” of complex numbers
in the plane the essential feature. Gauss writes: "Positive
and negative numbers will only lend themselves to applica-
tion, when that which has been counted has an opposite,
which, if thought combined with the former, amounts to anni-
hilation. Upon closer look, this prerequisite will be given
only in cases where, rather than substances (objects which
can be thought apart), relations between two objects, re-
spectively, are that which has been counted. The postulate
is that these objects are ordered in a series according to a
certain manner, e.g. A, B, C, D..., and that the relation of
A to B can be considered equal to that of B to C. The con-
cept of opposition, here, requires nothing more than an
exchange of the relation's members, so that, if the relation

(or the transition) from A to B is considered to be +1, the
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relation from B to A must be represented by -1. Insofar as
such a series is unlimited to both sides, each real whole
number thus represents the relation of one member arbitrari-
ly selected at the beginning to one very distinct member of
the series." (Gauss 1831, p. 175/176) This, in all its
briefness, is a "definition" of whole numbers which corres-
ponds to that which Hamilton comprehensively developed in
his algebra as a science of pure time. Also remarkable is
the insight that it is already the negative numbers which
require that the concept be conceived of as the designation

of a relation rather than as a name of a substance.

For the complex number, Gauss continues as follows: "If,
however, the objects are of such kind that they cannot be
ordered into a single, if unlimited series, but only into
series of series, or, what amounts to the same, if they form
a variety of two dimensions and if a relationship holds
between the relations of one series to another, or between
the tranistions from one to the other, which is similar to
the transitions already mentioned from one member of a se-
ries to another belonging to the same series, measuring the
transition from one member of the system to another will
require, in addition to the units +1 and -1 already noted,
two others, which are also opposed to each other, +i and -i.
Evidently, this requires the additional postulate that the
unit i always denotes the transition from a given member of
a series to a determinate member of the immediately ad-

joining series. In this manner, it will be possible to order
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the system in a double way into series of series. The mathe-
matician abstracts entirely from the quality of the objects
and from the content of their relations; he is only concer-
ned with counting and comparing their relations among them-
selves: Insofar he is entitled, just as he assigns similari-
ty to the relations designed by +1 and -1, seen as such, to
extend this similarity to all four elements +1, -1, +i, and

-i." (Gauss 1831, p. 176)

Gauss begins by developing a general concept circumscribing
an intended field of application characterized by a high
degree of generality, and by an extensive scope. Of course,
such a description makes sense only if there is an activity
which refers to this field of application, and is precisely
formulated with regard to its content, and if he sees how
this concept refers to the theory of the functions of two
variables, resp. to number theory in this context. Only then
Gauss continues and provides the well-known illustration of
this notion on the Euclidean plane, emphasizing the symbol-
ic, simulative character of this illustration by his choice

of terminology.

In his letters, Gauss repeatedly stated that the illustra-
tion in the Euclidean plane does not represent the essence
of his foundation of the concept of the complex number. To
Drobisch, he wrote: "The representation of the imaginary
guantities, however, by means of the points in the plane, is

not their very essence, which must be conceived of as being
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higher and more general, but rather the example of their
application purest to man, or perhaps even the only really
pure example of their application." To Hansen, he wrote:
"The true meaning ofJ:T—is very vivid in my mind, but it
will be very difficult to grasp with words, which will al-
ways give but a vague image floating in the air... ." (Both

quotes after Schlesinger 1912, p. 56)

It can be shown that Gauss is concerned with thoughts on the
"ontology" of mathematics here, which go far beyond the
occasion of introducing complex numbers. Indeed, there is a
short manuscript of one and a half pages among his work,
which was given the title "Zur Metaphysik der Mathematik"
(On the Metaphysics of Mathematics) by the editors, and
which was probably written in 1825 or 1826. In this manu-
script, Gauss begins with the general question: Which is
the essential prerequisite permitting that a linkage of
concepts be thought as referring to a quantity? This is a
question enquiring after the essential prerequisite for

the fact that a theory pertaining to a subject matter field

can be mathematized.

Gauss gives a quite universal answer to this question, say-
ing that mathematics is in the most general sense the
science of relations, abstracting from all content of these
relations. He explains this general statement by placing a
drawing of the whcle number plane on the margin, saying that

points should be conceived of as objects, and transitions as
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relations, just as in this drawing. The general notion of
things, in which each has a relation of inequality only with
regards to two other things, is that of points on a line. If
one of these points can have a relation to more than two
others, we must picture these as points in a plane, which
are connected by lines. If, however, study shall be possible
here, it can only concern those points entertaining a mutual
relationship within three others, a relation existing be-

tween the relations (Gauss' Werke X/1, p. 396/397)

Hence, mathematical concepts do not represent things, but
relations between things. Cassirer has provided a detailed
analysis of this transition from thinking in objects to
relational thinking (Cassirer 1910, 1976). Beyond that,
however, two other elements of the text quoted are impor-
tant. First, this text indicates the prominent role of the
discrete (of whole numbers) for understanding relational
thinking, and second, it emphasizes that the quantity con-
cept was no longer sufficient to characterize the object

field of mathematics.

With regard to the historical contexts of this note by
Gauss, it will first of all have to be realized that there
were decisive efforts undertaken at the turn to the 19th
century to apply mathematics in several empirical object
fields outside of mechanics, geometry, or astronomy. Most

prominent among these are the theory of heat (Fourier), the
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theory of electricity, and the theory of magnetism.

Besides these efforts at mathematization, which were ulti-
mately successful, there were efforts as well to apply
mathematics to the social sciences, resp. to psychology
(e.g. Herbart). The attempts to use mathematical methods in
chemistry, too, were fundamental and more far-reaching in
their intentions than was proved possible in the end. Gauss
himself was deeply involved in these attempts; the measuring
problem linked to the application of mathematics is an
essential component of his scientific biography. This refers
not only to his substantial geodetic surveying, but also to
his successful efforts of many years at surveying earth's
magnetic field. Both series of surveys are not only scienti-
fic masterpieces in a cognitive sense, but also represent an
important organizational achievement. In retrospect, it
seems obvious that Gauss was very interested in theoretical

concepts and ideas related to the problem of measurement.

On the background of the problems raised by the task of
mathematizing and quantifying fields of experience hitherto
not mathematized, Gauss' above position, which was not only
his own, but widespread in his time, can be interpreted
convincingly. In epistemological terms, quantifying an ob-
ject field (the transition from the gqualitative to the quan-
titative) is not to be imagined as consisting of a) previous
identification of the decisive quantities, b) development of

methods to measure them, and c) final empirical discovery of
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the important natural laws. Rather, the determination and
definition of the relevant gquantities is itself dependent on
a previous knowledge of the relationship, for which these
quantities are sufficient. To quantify a field of experience
thus is to intervene into this field of experience, and to
change it. In the philosophy of science, these problems are
well known under the heading of "theory-loadedness of em-

pirical terms".

In order to show what is the point without getting lost in
technicalities we shall quote a statement of G. B&Shme on

the connection between scientific experience and everyday
experience which expresses the same problem. "A fifth char-
acteristic of everday life experience is that all qualities
are polarized and often show an inner structure of harmony
resp. disharmony. There are heavy and light things, there is
heat and cold, there are high and low tones. The actual
phenomena will always be determined by this polarity's span.
Science, however, will tolerate polarities almost nowhere.
Its objective is to achieve general comparability of phe-
nomena in one field. There are no more heavy and light
things, but merely more or less heavy ones. This "linear-
ization" is the first step to quantification." (BShme 1979,

126)

Compare this description of how everyday life qualities are
linearized in relations (and thus mathematized) to A.N.
Whiteheads following argument: "The whole difference between

the older and the newer mathematics lies in the fact that
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vague half-metaphorical terms like "gradually" are no longer
tolerated in its exact statements... . Of two numbers one can
be greater or less than the other; and one can be such and
such a multiple of the other; but there is no relation of
'graduality' between two numbers, and hence the term is
inadmissible... . In working our way towards the precise defi-
nition of continuity (as applied to functions) let us consi-
der more closely the statement that there is no relation of
'graduality' between numbers. It may be asked, cannot one
number be only slightly greater than another number, or in
other words, cannot the difference between two numbers be
small? The whole point is that in the abstract, apart from
some arbitrarily assumed application, there is no such thing
as a great or a small number. A million miles is a small
number of miles for an astronomer investigating the fixed
stars, but a million pounds is a large yearly income... . Our
task therefore is to define continuity without any mention

of a 'small' or 'gradual' change in value of the function.

(Whitehead 1961, p. 115-117)

The elimination of everyday life elements of description
from scientific representation leads to the conception say-
ing that scientific, mathematical concepts do no longer
reflect things, but rather relations between things. The
prominent role of arithmetics, of the discrete, is based
upon this transition to relational thinking. We believe that
the distinction between numbers and quantities is not trivi-

al in this sense. As Bateson remarks: "It is impossible, in
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principal, to explain any pattern by invoking a single
quantity. But note that a ratio between two quantities is
already the beginning of pattern. In other words, quantity
and pattern ... do not readily fit together in the same
thinking." (Bateson 1979, p. 53). At the same time, and for
the same reason, the quantity concept becomes obsolete, as
quantities can no longer be empirically demonstrated, but
rather as their definition results from the relational
pattern, which they belong to. In addition to this, numbers
are more suited to bring forward the procedural aspects of
the generation of knowledge. The program of "Arithmetization
of Mathematics" marks therefore not only the transition to
relational thinking but at the same time gives the procedural
aspect of knowledge a more prominent role. A theoretical
concept not only embodies relations but simultaneously be-
comes a scheme of action in a new way.

The vicious circle of the relations determining the quanti-
ties, and the quantities determining the relations, can

only be dissolved into a process in time.

Within this framework, the function concept, of course, is
entitled to a prominent position. It becomes important as
empirical research is now examining complex natural phe-
nomena which can no longer be modelled such as to achive
correspondence between a definitely given parameter, and a
definitely given result. This conception which may be char-
acterized as "theory of the one-factor-experiment" is no

longer adequate to the situation. Rather, it is a question



45

of various parameters varying against each other. Of course,
a changed attitude towards the experiment results from the
more complex understanding of the processes. It is no longer
the single experiment which will serve to clarify a natural
phenomenon. Rather, the transition to sequences and series
of experiments, that is, to the establishment of an experi-
mental practice, is the essential methodological character-
istic of this process. In our opinion, the emergence of the
general function concept at the turn to the 19th century
does not just represent the development of a new concept.
Rather, the function concept represents a fundamentally new

model of scientific generalization.

5. Resume

As measured against the program sketched in the introduc-
tion, the above considerations have only yielded a contribu-
tion towards clarifying a detail. It has been attempted to
show that the program of arithmetizing mathematics can be under-
stood as a response to the changed relationship between
mathematics and the empirical sciences. In that, we will
have to stress that it is not so much a matter of the rela-
tionship between mathematics and any one specific disci-
pline, but rather that the empirical sciences in their to-
tality have created a new situation for mathematics. The new
conception of the relationships between science and experi-
ence, science and society, science and progress, according

to which it is considered useful to mathematize, say, psy-
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chology, has an impact on mathematics, and entails far-
reaching consequences for the latter. This results in
another level coming into play, which has played no explicit
part in the above lines, but ought to be represented in the
same manner, in case we intend to clarify the phenomenon of
mathematics' arithmetization: the level of philosophy. We
shall confine ourselves to the proposition that the early
history of the program to arithmetize mathematics could also
be written as a history of Kant's philosophy of mathematics,
and the criticism advanced against it by the mathematics of

the early 19th century.

According to our introductory considerations, philosophy, in
the early 19th century, is deeply linked to the education
problem. It is very revealing that there is, Jjust at this
time, an author in Germany, Martin Ohm, the brother of the
physicist Georg Simon Ohm, who presented a draft of "a per-
fectly consistent system of mathematics" (Ohm 1822) expli-
citly based on pedagogical ideas. Judging by its inherent
logic, this work can probably be said to be the most de-
veloped attempt to explain the program of arithmetizing
mathematics (see Bekemeier 1980). In this respect, Ohm was
recognized by Hamilton and Bolzano. This, however, creates a
new outlook. The most current view of a connection between
science and education, which simply regards education as a
reproduction of the subject matter, will presumably not
hold water. Rather, education is shown to be a field and an

activity having a most essential part in founding science.
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MATHEMATICS AND REVOLUTION FROM LACROIX TO CAUCHY

Luke Hodgkin

1. Some questions

This paper is the outline of a project arising out of
more general work on mathematics in France in the period 1790-
1830. The problem on which I shall focus can be stated quite

simply. Cauchy's 1821 Cours d'analyse aimed explicitly at pro

ducing a 'revolution' in the language of analysis to super-
sede the erroneous earlier approach (which we could call
'classical'). The passage from Cauchy's introduction which is
generally regarded as his manifesto reads:

I have sought to give tc the methods all the rigour which
is demanded in geometry, in such a way as never to refer
to reasons drawn from the generality of algebra... They
tend to cause an indefinite validity to be attributed to
algebraic formulae, while in reality the majority of
these formulae hold only under certain conditions, and
for certain values of the variables which they contain.
By determining these conditions and values, and by fixing
precisely the meaning of the notations I shall make use
of, I shall dispel all uncertainty. (Cours d'analyse,p.ii)

The programme urged by Cauchy was widely adopted, and he is
now, in the standard histories, credited with the systematic
introduction of rigour into analysis. And yet some, but not

all, of the older works survived. In particular, S.F.Lacroix's

50
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two main works on calculus (dating from 1795-1810) remained
popular in France for a long time, several times revised and
reprinted. Is this simply to be seen as conservatism - a de-
lay in assimilating new ideas? Or are there some works which,
after a revolution, have a greater survival value than others,
insofar as there are alternative ways in which they can be
read? b
This limited question needs to be set in the context of
two wider problems:
l.Internal. What significance do we give to the concept of
a 'Cauchyan revolution' dated around 1821, given the
points made by Grattan-Guinness (1970) about Cauchy's un-
originality (debt to Bolzano in particular), his failures
in carrying out his programme, the persistence of infini-
tesimals, etc.?
2.External. An important transformation had already taken
place in the practice of mathematics as a result of the
Revolution - if by 'practice' we mean the ways in which
the subject was studied, taught, communicated. Is there
any link between this transformation and changes in the
language and rules of mathematics - and if so, how do we

describe it and account for it?

1) For the idea of different 'readings' of the same text, see
the work of Pierre Macherey, in particular "An Interview with
Pierre Macherey", Red Letters 5, London, n.d.
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The second problem leads in turn to the methodological ques-
tion repeatedly raised in this workshop of what is a legiti-
mate programme for the social history of mathematics. Must it
be restricted to mathematicians' 'external' life, to institu-
tions and professions, applications and ideological content -
'what the internal history cannot explain', as some partici-
pants put it? Or can it go further and treat the way in which
people do mathematics - in speech and writing - as part of
their social discourse, interacting with other parts in ways
which we try to understand? Is there, to take our example, a
social analysis of the introduction of rigour in analysis
which is not limited to describing a struggle between 'groups
of supporters of competing paradigms' & la Kuhn, but which ex-
plains the meaning of rigour at different times for those who
did or did not claim it? Can we extend a social explanation
beyond the programmatic statements of mathematicians in the
introductions to their books - often, as with Cauchy, state-
ments of intention rather than accurate descriptions of the
author's practice - and show what it meant at a given time to
choose a more or less 'rigorous' method of finding the value
of an infinite integral, or the Taylor series for a¥? 1 hope
that in what follows I shall indicate the possibility of
'maximalist' answers to these questions - of an integrated

description of mathematical practice within society.

2. Readability

To begin with, the question of what Cauchy's revolution

may have done for subsequent reading and writing in analysis.It's
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an essential fact in the history of mathematics that much
mathematical writing carries almost no explicit trace of its
period. Lenin's 'Socialism equals soviets plus electrifica-
tion' is clearly an equation which refers to a particular
place and time; but, as we know, a textbook which poses the
problem

x2 + 10 = 7x
and finds the solution x = 2 or 5, can lay a trap for the
historian in the apparent timelessness of its 'rightness',
which in fact leaves many questions unanswered : Could the
author have solved a wider class of equations - so that this
one was chosen simply because it was elementary? How much wi-
der? Would the readers of the text - at the time or later -
have made the possible generalizations? I have mentioned
these very simple questions just because we have the methods
to deal with the history carefully in such a case. We don't
always have them, because for some reason arguing from hind-
sight is more the norm once we get to something harder than
quadratic equations. And yet every mathematical text is in
some sense historically specific, written at a given time for
a given audience. There are unwritten changes in the language
of mathematics, or differences in understanding at a particu-
lar time, which elude us. Add to these notational changes
(replacing 'a + b + ¢ + ad inf.' by'_; ai') and the describ-
able structural changes (changing us;joand eventual disappear-
ance of infinitesimals); we see any work being subjected over

a period of time to a series of transformations in the con-

text of reading which eventually lead to its becoming 'unread-
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able' in terms of a modern discourse and needing translation
if it is to be used. (This has been done for example for some

2) But before that stage,

of the works of Riemann and S. Lie.)
any important shift changes the way in which what has previ-
ously been written can be read. Schwarz' work on distribu-
tions changed the way in which mathematicians read the ear-
lier work of physicists on quantum mechanics, since there was
now a reputable analytic discourse in which the delta function
and its derivatives could be accommodated; previously such
functions were either an acceptable piece of imagery which

could be rigourously justified if one wanted to, or (for von

Neumann) dangerous nonsense.

We need a language, a theory for describing these changes
in the discourse of mathematics, in the rules for writing and
readiny. Some are abrupt and overt, some slow and almost un-
conscinus. 'f|A is continuous' has come tomean somethingdiffer-
ent irom its predecessor 'f is continuous on A', with the
spread of categorical ideas. A reader will bring a different
set of assumptions to bear on such a statement, so that al-

though its 'logical' meaning may be seen as remaining constant,

2) Riemann's 'Uber die Hypothesen...' is edited and commented
(among other works) in M. Spivak's Differential Geometry:
some of S. Lie's main papers have been edited with commenta-
ries by R. Hermann. In both cases it's a gquestion of updating
texts for working mathematicians, though there are interes-
ting differences of approach.

The general gquestion of when and how a work 'drops out of
circulation' is a fascinating one which would repay particu-
lar study.
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its meaning in terms of the mathematician's practice has
changed.

The specific point about Cauchy's work which transcends
the limitations raised above, is that it made definitive one
of these shifts in the domain of what is readable and how it
is read. It's better to use such relativistic language here
than to talk of 'rigour', whose meaning can vary widely. Cer-

tainly the Cours d'analyse (with Cauchy's associated writings)

do not carry the whole responsibility for the shift; we must
take in the previous work of Gauss, of Bolzano and others,
and the subsequent tidying up of Cauchy's failures on uniform
convergence and elsewhere. But they have the particular status
of propaganda works which announce to the students who learn
from them (explicitly or implicitly): these are the rules for
forming correct statements, disregard anything which seems to
be constructed otherwise. We have evidence from Abel and
others that there were students who accepted the message com-
pletely. A modern parallel is the work of Bourbaki - which,
significantly, does not need to advise the student to reject
non-Bourbakist work, since it creates a universal and cohe-
sive system of practice which it's difficult for a student to
get out of, once inside.

If we now ask what were the new rules on how texts should
be read instituted by Cauchy, one in particular has been
clarified by Grattan-Guinness: the requirement that the ex-
pression for the sum of a series should mean its sum by
'orthodox' or 'regular' summation (i.e. without rearranging

terms), and that such a sum should be convergent. Also, series
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of functions should carry with them, as part of their descrip-
tion, the limits within which they converged. (Again, even
for those of Cauchy's contemporaries who didn't accept this
requirement, its presence, for acceptance or rejection, con-
stituted a new point of reference.) But this is only one ele-
ment among others, which need to be made explicit: on conti-
nuity, the use of infinitesimals, and so on. The whole struc-
ture, when reconstructed, will involve many such elements and

linkages.

3. Revolutions

There is an obvious answer to the 'external' question
(the influence of the revolutions in French society), which
is part of the historical tradition. The first ten years of
the Revolution created teaching institutions, notably the
Ecoles Centrales and the Polytechnique, in which mathematics

had a new importance for a much wider class of students, the

3)

cadres of the new army and civil service. Immediately the

“teaching of analysis became a problem area. (The connection

3) This needs to be qualified, since there were certainly
some changes in curriculum in the last years of the Ancien
Regime at the colleges (probably limited), and more impor-
tantly at the military schools. Also, the class of students
seeking education seems to have been changing; see Mornet for
these points. The reform of the year III did however mark a
radical break in institutionalizing the links between school
and state (especially the army) and in the importance which
it gave to mathematics in particular.
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with teaching is the significant element here since, as is
well known, the foundations of calculus - 'metaphysique du
calcul' - had been a problem since its origin.) Lagrange's
prestigious course at the Polytechnique, which was based on
his ideas of how analysis should be made problem-free for
students, had to be supplemented by a simpler one which ex-
plained what he was doing. Over the next few years a number

of textbooks, in particular Lagrange's Legons sur le calcul

des fonctions (1801-6) and Lacroix's Traité& &lémentaire du

calcul (1802) and Traité du calcul (1797-1800), set out to

make classical analysis sounder and more accessible, aims
which were not always harmonized. Cauchy's work is in this
tradition; devised for the post-restoration Polytechnique -
which, like many of the institutions of the Restoration,
shared more with its Napoleonic predecessor than with the old
Bourbon system - it succeeded where the earlier works had
failed.

This account does place the events in the context of the
changed institutions of post-revolutionary France. But it has
the limitations of much 'external' history of mathematics
which I outlined earlier; it fails to explain why the change
in analytic discourse took the form it did - why 'limit-
avoidance' and similar methods were chosen for dealingwith the
problems. Such questions are open to the standard criticisms
of 'why' questions in history - the whole collection of pro-
blems associated with historical causation and determinism.
And yet any description which does not attempt to explain in

some terms is historically sterile. One fresh approach, which
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relates particularly well to the kinds of problems I have
raised, is provided by the idea of 'archaeology' which Michel

Foucault has outlined in The Archaeology of Knowledge, and

applied to various fields in history of science - in our pe-

riod in particular - in The Birth of the Clinic and The Order

of Things.

It is almost impossible to summarize Foucault's method
in a short space; but one central feature is the attempt to
look not for 'traditions' linking work done in a science at
different times, but for a 'law of dispersion' which charac-
terizes the (contradictory) state of a science at one parti-
cular time, the fundamental units of study being all state-
ments made within or about the science (the 'archive'):

Whenever one can describe, between a number of state-
ments, such a system of dispersion, whenever, between
objects, types of statement, concepts, or thematic
choices, one can define a regularity (an order, corre-
lations, positions and functionings, transformations),

we will say, for the sake of convenience, that we are
dealing with a discursive formation = thus avoiding words
that are already overladen with conditions and consequen-
ces, and in any case inadequate to the task of designa-
ting such a dispersion, such as 'science', 'ideology',
'theory', or 'domain of objectivity'. The conditions to
which the elements of this division (objects, mode of
statement, concepts, thematic choices) are subjected we
shall call the rules of formation. The rules of formation
are conditions of existence (but also of coexistence,
maintenance, modification, and disappearance) in a given
discursive division. (Archaeology of Knowledge, p.38)

The aim as applied here would then be to draw on the largest
possible field of statements available to characterize two
discursive formations - the 'classical' analysis of the 1780's
and its successor, a 'postclassical' analysis whose boundaries
still need to be determined. (Lagrange after 1795 is on this

model no longer writing within 'classical' analysis; indeed
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it is important that statements by the same author at differ-
ent times, or in different contexts, may not belong to the
same discursive formation.) The statements available should
extend beyond research papers and advanced textbooks to ele-
mentary textbooks, teaching manuals, examination questions
(and answers, where we have them), and more generally to every-
thing which bears on the way in which analysis was practised
and spoken about during the period. Examples which come to
mind are the educational projects of Condorcet, Lepeletier
and others, the actual educational decrees of the Convention
and Directory, and what we know of their application (records

4)

of the Ecoles Centrales in particular), the accounts of pro-

gress at the Polytechnique, meetings of learned and not so
learned societies. Further, given that many figures whose life
was far from mathematical (military men, politicians, etc.)
passed at this period through an educational process in which
mathematics had a decided importance, we may recover quite

specific attitudes to mathematics in memoirs of the period

4) One question which occurs is precisely how much mathema-
tics was taught in the Ecoles Centrales, and at what level.
By the formal programme of the law of 3 Brumaire IV it should
have been confined to 1/3 of the teaching in the second year
(out of three); and in Lacroix's Ecole des Quatre-Nations this
seems to have happened (Crosland, 1969). But in many provin-
cial schools some at least of the teachers were missing, so
the programme would differ from the prescribed one. At
Grenoble, by Stendhal's account, there seems to have been
much more mathematics.
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(see below, §4 for an example). Further, (and here we return
to the original question of this section), the breadth of the
material may make possible the construction of the important
linkage which Foucault avoidss) - the relation between the
change in the discursive formation and the political and ideo-
logical changes in French society.

Some tentative thoughts in this direction are:

1. It would appear that in the 18th century the space of
mathematical objects has certain boundaries - about which
there may be dispute. (A curve traced at random on a sheet of
paper is not a curve in the sense of mathematics, wrote
d'Alembert in the Encyclopedie (article Courbe); others
thought differently.) But the space of operations on these
objects, once they have been so restricted, is free; so func-
tions exchange with Taylor series, and surfaces are also poly-
hedra with infinitely small faces. The 19th century seeks to
extend the rules for entry into the domain of mathematical
objects (discontinuous or many-valued functions, for example),
while the criteria for entry become more technical and less
'philosophical’. At the same time it moves to a position where

within this domain each operation has a restricted subdomain

5) D. Lecourt (1972) has criticized Foucault specifically
from a Marxist viewpoint for avoiding such a linkage, while
claiming an importance for Foucault's work within his own
Marxist perspective.
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of validity, and is the result of labour rather than free ex-
change. Even over the mathematician's work, Adam Smith casts
a shadow.G)

2. It is fairly clear from the writings of political
thinkers some of whom (like d'Alembert and Condorcet) were
themselves mathematicians, that at the outset of the Revolu-
tion mathematics had a specially privileged position among
sciences as the model of 'rationality' and the opponent of
obscurantism. This position, which seems to belong particu-
larly to the 18th century, lost both influence and credibility
around 1800 with the growing importance of chemistry in par-
ticular, and the fall of the political tendency which the
Ideologues represented; by 1815, mathematics was one important
science among others, without a particular moral weight. It
therefore needed guarantees of a new kind, not in terms of
abstract rationality, but of unproblematical technique.

3. It would be fascinating, in terms of the 'sociology
of knowledge' programme, to juxtapose these tendencies with
the very heterogeneous reaction against the Enlightenment which
is generally called Romantic, and which often involved a de-

nial of the 'open space' which the Enlightenment took for

granted. Blake's attitude to Newton is well-known; equally

6) Explicitly, of course, in the classic example of Prony's
application of the division of labour to the calculation of
tables.
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suggestive is Saint-Simon:
Great men of all the ages, Newton and Leibniz, Voltaire
and Rousseau, do you know what you are great in? You are
great in blindness... for having thought that civiliza-
tion was the social destiny of the human race.7)

Did Cauchy's restrictions draw their strength from an increa-

sing belief in the impossibility of freedom - reinforced by

his peculiar political convictions?

4. An example

Among the 'statements' we might examine for evidence on
the practice of mathematics in the 1790's, Stendhal's auto-

biographical fragment The Life of Henry Brulard is exemplary.

At a very far remove from the world of research papers,
Stendhal describes what it was like to study mathematics in
Grenoble in the 1790's - indeed to have a 'love-affair' with
the subject. Importantly, mathematics represented (as mentio-
ned before) republicanism, rationality; also the means of es-
cape from Grenoble to Paris and the Polytechnique. Added to
these we have the real presences of teachers, textbooks, and
difficulties with the subject, which Stendhal never dissolves
into a fraudulent unity. The collection of 'statements' which

are held together in a passage such as the following is there-

7) Quoted by L. Fébvre in his article on 'Civilization'
(Fébvre 1973, p.239). The reactionary nature of early French
romanticism (e.g. Chateaubriand) should be taken into account.
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fore exceptionally rich:

I loved mathematics all the more because of my increased
contempt for my teachers, MM. Dupuy and Chabert. In spite
of the grandiloquence and urbanity, the suave and digni-
fied air that M. Dupuy assumed when he spoke to anyone,

I had enough shrewdness to guess that he was infinitely
more of an ignoramus than M. Chabert. M. Chabert, who in
the social hierarchy of the bourgeoisie of Grenoble stood
so far below M. Dupuy, sometimes on a Sunday or Thursday
morning would take a volume of Euler or ... and resolu-
tely tackle difficulties ....

My enthusiasm for mathematics may have had as its
principal basis my loathing for hypocrisy, which for me
meant my aunt S&éraphie, Mme Vignon and their priests.

In my view, hypocrisy was impossible in mathematics
and, in my youthful simplicity, I thought it must be so
in all the sciences to which, as I had been told, they
were applied. What a shock for me to discover that no-
body could explain to me how it happened that: minus

multiplied by minus equals plus (- x - = +)! (This is
one of the fundamental bases for the science known as
algebra.)

Not only did people not explain this difficulty to me
(and it is surely explainable, since it leads to truth),
but, what was much worse, they explained it on grounds
which were evidently far from clear to themselves.

M. Chabert, when I pressed him, grew confused, re-
peating his lesson, that very lesson against which I had
raised objections, and eventually seemed to tell me:
'But it's the custom; everybody accepts this explanation.
Why, Euler and Lagrange, who presumably were as good as
you are, accepted it!' (From The Life of Henry Brulard
(1973), 299-302.)

Mathematics indeed, in becoming a study, not for 'the
masses' but for a relatively large and unformed élite, had to
abandon its position of bastion against 'hypocrisy' and learn,
like the priests, how to get around contradictions and diffi-
culties. The 'jacobin' feeling that 'it is surely explain-
able, since it leads to truth' had to be dealt with, better
suppressed, not by the crude methods of Dupuy and Chabert,
but by taming the role of the imagination. And the great text-

books of the period had a crucial influence on this process.
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5. Lacroix

This leads us to the very interesting historical figure
of Lacroix, a participant in the institutions and thought of
the whole period. In the field of education, where his views

are best expressed by the Essai sur l'enseignement en général

et sur celui des mathématiques en particulier (1805), he had

a great deal of experience, of influence, and of commitment to
'revolutionary' ideas and methods. His equally important mathe-
matical writing has been misread by a history which stresses
clear innovation in content, ignoring style and discourse.

And yet if we compare them with the more original works on
which he - very conscientiously, naming his sources - draws
(Clairaut, Euler, Lagrange) as well as those which he defini-
tely avoids (Bézout), the sense of limitation, the common
sense of the 19th century, is already there in embryo, con-
trasted with the assured rationalism of his 18th century pre-
decessors. The influences on Lacroix were diverse; his much
more talented (from the research standpoint) contemporaries
Lagrange, Legendre and in particular Laplace, to whose work

the Traité du calcul is meant to be an introduction; pre rious

educational thinkers particularly Condorcet and Rousseau; and
the experience of a teacher and educational 'politician',
mostly at the Ecole Centrale des Quatre-Nations, which seems
to have been a showpiece for the system of écoles Centrales.
These combine to produce a mathematical discourse in which
many contradictory elements coexist. For example, he more
than once states the very 'classical' view that the differ-

entiability of functions is a fact 'antérieur a toute
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hypothése' like the falling of heavy bodies to the earth. On
the other hand in his textbooks he practises limit-avoiding
arguments, without including them in general programme such
as Cauchy was to introduce. (He also avoids infinitesimals,
which Cauchy did not.) I think that the unity of these ele-
ments lies in a pragmatic belief in the correctness of doing
mathematics, simply and without philosophical underpinnings.
If we are not too fanciful (as say Euler was) about the cal-
culations we do, we avoid the dangerous recourse to the out-
side for justification. It is interesting to see Lacroix

quoting with approval (in the Essai sur l'enseignement) the

following passage from Saurin (1725):

Philosophers and those who principally study the higher
sciences honour Geometry when they deign to apply them-
selves to it; but, full of confidence in their enlighten-
ment, they wish at first to clarify everything, as if
everything was left obscure. With the greatest enlighten-
ment and the best intentions, they might spoil everything
in giving too much weight , not to reason but to the rea-
soning (non a la raison, mais aux raisonnemens)... Our
calculations have not so much need of clarification as
one thinks; they carry their own light with them; and it
is normally from within them (de leur sein mé&me) that
issues forth all the light that one can throw on them,
and that the subject being treated can receive ... It
is never calculation which deceives us when it is well
done; it does not need to be supported by reasonings;
but, normally, it is reasonings which deceive us, and
which must not decide us except insofar as they are sup-
ported by calculation.

Saurin's text, which belongs to an 18th century discus-
sion on the guarantees of mathematical reasoning, has become
transformed by being placed in a discourse on education eighty
years later. A key sentence is: 'It is never calculation which
deceives us when it is well done'. In the perspective of 1725,

'when it is well done' is a routine point of qualification;
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by 1805, with the experience of repeated controversies in

analysis about what are 'well done calculations', and of pro-
blems in conveying their value to the student (e.g. Stendhal)
who is the main focus of attention for Lacroix, that qualifi-

cation has become a prise de position closely related to that

of Cauchy. 'Reasonings' must give way to 'calculations', in-
deed, but not everything which has the outward appearance of
a calculation can be accepted. In these traces, I think, we
can find the first signs of the new discursive formation.

The real test lies in the mathematical texts, and it is
instructive to consider Lacroix's derivation of the Taylor
series for a® in relation to those of Euler (in the Introduc-

tio ad analysin) and Cauchy. (Ideally one should do this at

length and include a wide range of other writers, but space
forbids this here.) The three are logically very close; all
of them use arguments which would be faulted from a modern
standpoint. But there is an attempt by Lacroix and Cauchy to
ensure a restriction for the domain of validity of operations
whose staggering absence is one of the impressive features

(in a sense) of Euler's proof. To take one example: Euler

uses an infinitesimal called w' in his proof, and then as an
example sets w = 1/1000000. This fluidity has vanished by the
time of Lacroix.

Lacroix's proof (from the Elementary Treatise in Babbage

and Herschel's translation, p.24), reads:

23. Those functions which are not ¢comprehended in the enu-
meration made in No. 14, are called transcendents. The
exponential function u = a” is the most simple of this
sort. When we substitute x + dx instead of x, the differ
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ence hecones

ax+dx _ X x(adx

a” = a - 1);

and in order to express it according to the powers of dx,
we make a = 1 + b, when it becomes

adx = (1 + b)dx =1 + ax b + dx(dx - 1) b?
1 1.2
dx(dx = 1) (dx = 2) .3
+ 153 b’ + &c.
Whence
dx _ ;o Jdx dx (dx=1) ;2 , dx(dx-1) (dx=2) .3
a 1 { 1 b+ 1.5 b* + 1.3 b+ &c.}
and arranging this according to the powers of dx,
dx b _b* b’
a -l=dX(T—‘—2—+—3-—&C)+&C.
replacing b by its value a - 1, there results (5)
X _ X a-1 _ (a-1)? (a-1)® _ .
d.a” = a“dx (—T— 5 + 3 &c.);
and making
_ a1l _ (a-1)? (a-1)?3
k = - > + 3 &cC.

we have d.aX = k a¥ dx.

This is the form of the differential of the propo-
sed function, and we shall soon find a new expression

for the constant quantity k.

Lacroix deduces from this the Taylor series for ax, de-
fines e, and shows that ek = a. This gives the promised ex-
pression for k= log.a/log.e. The derivation above is conventional.
enough. The notation does hide some points. For example, dx
is not an infinitesimal - this is clear from the beginning of
the treatise. The final formula expresses d.a* as a function
of two independent finite variables x and dx (an approach com-
mon in modern differential geometry). Hence expressions like
adx are not dependent on the theory of infinitesimals as they
are for some other writers of the period.

The derivative of the function u is found by taking u'

(the value of u at x + dx), expanding it in powers of dx, and

isolating the term of first degree in dx,whichis precisely du.
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This is equivalent to the limit definition for du/dx, be-
cause for Lacroix all functions can be expanded in power
series.

A problem is that the various series (e.g. for k = log.a/
log.e) are written down with no statements about their con-
vergence. It is clear from other places in the book - as usual
at this period - that this is not because it's not known that
divergent series exist, are a nuisance, and should be avoided.
However, this is definitely an example of the kind of unli-
mited formalistic statement which Cauchy wished to banish.

The difference between Lacroix and Euler is that Euler, at

the comparable point in the Introductio ad analysin, takes

the example a = 10 and claims that, in some sense to be made

clear later,

- 9 . 9 _
log.10 = 5 3 &cC.

|0
)
|
+

The absence of such a statement can be taken as an implicit
instruction from Lacroix to the reader not to specialize the
formula in this way.

To summarize: more evidence is needed, of course, before
the discursive formations involved can be analysed, disting-
uished, and related to the practice of mathematics in teach-
ing and elsewhere. For example, any account of the period
which does not mention descriptive geometry, the 'ruling sub-
ject' in the Polytechnique, if only to justify its omission,
is very incomplete. With this qualification, we can give a
quite specific importance to Cauchy's role in recasting the
language of analysis; while at the same time fixing the major

transition from classical to postclassical in the years 1795 -
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1800 when the conditions of practice of mathematics became
transformed so that some linguistic reform became essential.
Because of his closeness to those changes in practice,
Lacroix's languace was new enough to look forward to future

readings; and hence his work was able to last.

MAIN BOOKS CONSULTED
Textbooks

Cauchy, A.L., (1821) Cours d'analyse de 1'Ecole Royale
Polytechnique, Paris.

(1823) REsumé des legons données a 1'Ecole
Rovale Polytechnique sur le calcul
infinitésimal, Paris.

Clairaut, A.C. (1749) Elémens d4'algébre, Paris.

Euler, L. (1748) Introductio in analysin infinitorum,
Lausanne; also French translation
(1796-7) 'avec notes et éclaircisse-
ments' by J.B. Labey, Paris.

(1755) Institutiones calculi differentialis
cum ejus usu in Analysi Finitorum ac
Doctrina Serierum, St. Petersburg/
Berlin.

Lacroix, S.F. (1797- Traité du Calcul différentiel et du
1800) Calcul intégral, Paris.

(1802) Traité élémentaire du Calcul différ-
entiel et du Calcul intégral, Paris.
English translation by Babbage,
Peacock and Herschel, (1860),
Cambridge.

Lagrange, J.L. (1804) Lecons sur le calcul des fonctions,
Paris.

Others

Balibar, Renée (1974) Les Frangais Fictifs: le rapport du
style national au frangais national,
Paris.




Clagett, Marshall

Crosland, Maurice

Ecole
Polytechnique

Euler, L.

Fé&bvre, L.

de 1la
Fontainerie, F.

Foucault, M.

Fourcy, A.

Gramsci, A.

Grattan-
Guinness, I.

Guiomar, J.-Y.

(1969)

(1967)

(1969)

(1895)

(1787~

1789)

(1973)

(1932)

(1970)

(1972)

(1973)

(1828)

(1971)

(1970)

(1974)

70

ed.,Critical Problems in the History
of Science (pp. 291-320), Madison.

The Society of Arcueil, London.

ed., Science in France in the Revo-
lutionary Era, described by Thomas
Bugge , Cambridge, Mass. and London.

Livre du Centenaire, 1794-1894, t.l.
(L'Ecole et la Science), Paris.

~

Lettres 3 une Princesse Allemande,
nouvelle &dition avec des Additions
par. MM. le Marquis de Condorcet et
Lacroix, Paris.

A new kind of history (ed. Peter
Burke), London.

tr. and ed., French Liberalism and
Education in the Eighteenth Century.
The Writings of La Chalotais, Turgot,
Diderot and Condorcet on National
Education, New York and London.

The Order of Things, London.

The Archaeology of Knowledge,
London.

The Birth of the Clinic, London.

Histoire de 1'Ecole Polytechnique,
Paris.

The Formation of the Intellectuals,
in Selections from the Prison Note-
books, tr. Q.Hoare and G.Nowell-
Smith, London.

The development of the foundations
of mathematical analysis from Euler
to Riemann, Cambridge Mass. and
London.

L'idéologie nationale, Ed. Champ
Libre.




Hippeau, C.

Israel, G. and
Negrini, P.

Lacroix, S.F.

Lakatos, I.

Lecourt, D.

Liard, L.

Mornet, D.

Stendhal

Taton, R.

(1883)

(1973)

(1805)

(1978)

(1972)

(1888)

(1933)

(1973)

(1959)

71

L'Instruction Publique en France
pendant la Révolution: D&ébats

Legislatifs, Paris.

"La Rivoluzione Francese e la
Scienza", Scientia.

Essai sur l'enseignement en général
et sur celui des mathématiques en

particulier, Paris.

Mathematics, Science, Epistemology,
Cambridge.

Pour une critique de l'é@pistémologie:
Bachelard, Canguilhem, Foucault,
Paris.

L'Enseignement supérieur en France,
1789-1889, Paris.

Les origines intellectuelles de la
Révolution francaise, Paris.

The Life of Henry Brulard, tr.
Jean Stewart and B.C.J.G. Knight,
Harmondsworth.

"Condorcet et Sylvestre-Frangois
Lacroix", Rev.Hist.Sci.l2, 128-158,
243-262.



PART II

THE PROFESSIONALIZATION OF MATHEMATICS AND ITS

EDUCATIONAL CONTEXT



INTRODUCTION

Ivo Schneider

When one speaks publicly today of a "pro," it is almost always

in association with sports. The professional athlete is distin-
guished from the amateur, the most important difference between
them lying in the payment of the professional for his perform-

ance. The prerequisite for this payment is of course the pro's

fairly high performance level, whose attainment and maintenance
demands a training program that absorbs a large part of the

time normally available for one's occupation.

Quite naturally some historians of science have attempted to
associate the idea of a sports "pro" with the concept of
professionalization, speaking of it in the modern sociological
sense as a process in the development of science. More precise-
ly, professionalization has to do with a transition phase in
the development of mathematics and science, at whose end it was
possible to pursue science for its own sake. This transition
phase has generally been placed in the 19th century, its begin-
ning and duration being setat different times in different
countries depending on local political and social conditions.
Thus in Germany one finds the beginning of professionalization

in the first half of the 19th century, together with the estab-

75
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lishment of a new educational system that culminated in the
new Prussian universities, while in the United States it is
placed in the 1860's,1 reflecting the delayed scientific devel=-

opment of that country vis-d-vis Europe.

It is tempting to understand this process as the replacement
of the amateurs, who had until then been responsible for the
progress of science, by a new group of professional scientists.
In this way one looks for criteria that will characterize or
distinguish this new professional group. It is clear, however,
that there is no single set of criteria for characterizing a
professional scientist that will be suitable for all scientific
disciplines. One reason for this impossibility is that there
are not only various degrees, but also various forms of profes-
sionalization, depending on the subject and on the embedding
of the educational system within the political and social sys-
tem of a particular nation. Even more important, at the end

of the process of professionalization one does not find, as

in sports, two groups facing each other that one can call
amateurs and professionals; rather, the professional scien-
tist stands alone. This phenomenon is central to the inter-
pretation of a group of sociologists of science whose prin-
cipal representative I will take as Magali Sarfatti Larsonz.
Larson sees "professionalization as the process by which
producers of special services sought to constitute and con-
trol a market for their expertise" and "also as a collective
assertion of special social status and as a collective proc-

ess of upward social mobility"3.
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In this sense, Larson says, "the professionalization movements
of the nineteenth century prefigure the general restructuring
of social inequality in contemporary capitalist societies:

the 'backbone' is the occupational hierarchy, that is, a dif-
ferential system of competences and rewards; the central prin-
ciple of legitimacy is founded on the achievement of socially
recognized expertise, or, more simply, on a system of educa-
tion and credentialing. Professionalization is thus an at-
tempt to translate one order of scarce resources - special
knowledge and skills - into another - social and economic
rewards. To maintain scarcity implies a tendency to monopoly:
monopoly of expertise in the market, monopoly of status in

a system of stratification"4. In particular the intended mo-
nopoly of status "accentuates the role that educational sys-

tems play in different structures of social inequality”.

Different degrees of professionalization are arranged by Lar-
son according to the degree of their monopolization of the
market, to attaining social status and work autonomy which
seems to him to reach its highest point in medicine. Two struc-
tural elements are necessary for this: "a specific body of
knowledge, including techniques and skills", and "a market

of services". Both elements vary nationally and historically

as well as according to the specific professions.

The essence of the professionalization process, in Larson's
view, is the training of a professional producer, which is

indissolubly tied to the development of the universities. The
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result of this is the "monopolization of competence and the
demonstration that this competence is superior to others."

One of the most important conditions for the legitimation

of this training monopoly is that it permits the training of
anyone who seeks it and is able to produce the necessary work
required for it. This "meritocratic legitimation" process be-
comes effective only after the establishment of a bourgeois
hegemony, which permits an "open, although hierarchical system

of education."6

Larson's concept of professionalization appears to be espe-
cially useful, because it avoids the difficulties that result
from the common tendency to evaluate various national situa-
tions in terms of a particularly successful model of profes-
sionalization. On such a basis, for example, one would assign
a hopeless backwardness to England in professionalization in
the 19th century in spite of its obvious proficiency in fields

like astronomy and biology.

One of the most important aspects of the professionalization
process is research, which Ben-David has called perhaps the
highest product generated by the professional scientist. Pro-
ceeding from the role of research in the professionalization
process, one next asks how research and forms of professional
science that can serve as a model were operative before the
beginning of the professionalization process. Of course, there
were mathematical research and forms of professional activity

in mathematics in earlier times that influenced positively or
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negatively the structure of the forms that developac in the
nineteenth century. This is especially to be expected in those
places where the educational system was taken over relatively
unchanged from the 18th to the 19th century. In this context
the first article, "Forms of Professional Activity in Mathe-

matics before the 19th century," seeks to develop such models
and to describe the corresponding objectives of mathematics

in the two centuries preceding the 19th.

In the interval between 1600 and 1800 the dominant mode of
occupation in mathematics was based on the model of the arti-
san, working within the structure of a guild. Mathematics
remained a static subject, the content of which was organized
in recipe-like methods applied to a canon of nearly standard-
ized exercises. The increased influx of Greek mathematics in
the 16th century and the subsequent attempts to reconstruct
the missing parts of Greek mathematics opened up new areas of
mathematical activity. Beginning in the second half of the 17th
century, first the private tutor (following the model of the
artisan) and then the academician developed as forms of
professional activity suitable for these areas. Of these

two forms, which continuedup to the 19th century, the private
tutors failed as a professional form because the attempt to
transform the results of the new mathematics into a subject
taught in a recipe-like manner caused an ever widening divi-
sion between teaching and research which could be bridged

only by autodidactical study. In addition the market for the

product "mathematics" was still much too small to allow more
than a very few to work in it. Connected with this is the
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comparatively low prestige and social status accorded to mathe-
matics which caused serious problems in recruiting new candi-

dates for the academies.

In order to overcome theseobstacles to the establishment of a
professional mathematics, one had to create a new social image
of the subject and with it a considerably enlarged market. The
second and following articles are mainly concerned to show
how in the different European countries with their specific
economic and political conditions, as well as intellectual
climates, such an enlarged market for mathematics was consti-
tuted and to what degree it could be controled. This is to

say that we observe different stategies used by the rising
bourgeoisie to gain influence over the educational system as
the most important means to develop a new market for mathe-
matics and by it to professionalize mathematics. Gert Schub-
ring's "conception of pure mathematics as an instrument in

the professionalization of mathematics" treats this process
for the first decades of the 19th century in Germany. The
bourgeoisie in Prussia used a neohumanistic ideology in order
to reform the entire educational system which was itself in-
strumental in replacing a mercantile by a bourgeois middle-

class production system.

The aim of upward social mobility within an intended hier-
archy of occupations including scientific professions was to
be secured by proofs of competence, that is by meritocratic

legitimation. The ability to do research was already consid-
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ered by 18th century academicians as the most important crite-
rium for competence in science. Thus the neohumanistic ideolo-

"re-

gy stressed the importance of research by instituting a
search imperative"7 for everybody involved in the system of
higher education as a teacher. The fact, that the bourgeoisie
succeeded in making this the Prussian state ideology and that
the Prussian state required complete control of the education-
al system, paved the way for the professionalization of sci-
ence in Prussia and Germany. The Prussian state monopoly of
the educational system automatically secured a monopoly in
expertise and status for the new scientific professions. Due
to a prevailing neo-Kantian, idealistic tradition which opened
a market for pure mathematics within the educational market,
mathematics became one of the subjects that figured prominent-
ly in this educational system; it was freed from the necessity
to justify itself by its applicability and utility to other

domains.

It is regrettable that we cannot include a special study of
the professionalization process in France. Schubring, however
compares France with Germany and, utilizing an understanding
of professionalization different from Sarfatti Larson's, con-
cludes that in France there is no professional mathematics
before 18708. A detailed account of the French situation would
have to consider the fact that French mathematicians produced
more than 80% of the mathematics published in the first three
or four decades of the 19th centuryg, that in spite of a

climate favourable only for applied mathematics much of the
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French mathematics labelled "applied" would have been con-
sidered as pure mathematics by German mathematicians, and that
most of the leading French mathematicians enjoyed a very high
social status. In other words the fact that the international
"market" of mathematics was dominated by French mathematical
production at least up to 1840, hints at the likelihood of

a process of professionalization in French mathematics before
1870. This still unravelled process must have followed a pat-
tern different from that in Germany. This is recognizable
from the stress on applied mathematics, the prevailing ide-
ology of spiritualism, and the comparatively low degree of
institutionalization in French mathematical research. Recent
articles by Crosland, Fox, and Shinn10 offer at least some

material in order to clarify this process.

The situation in 19th-century England differs from that in

both Germany and France. The English educational system was
composed of a large number of different independent private
schools and two universities, to most of which access was
controled according to one's social background and/or quali-
fications. Considering the relatively high stability of this
system the possibilities of creating a new market for mathe-
matics and by it of professionalizing mathematics were restric-
ted, the only means being the foundation of new private schools
or universities or a modest reform in the curricula of the old
ones. In the light of these possibilities, neither a statement
like, "It is wrong to conclude that science achieved full

Wl

professional status in 19th century Britain, nor the profes-
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sional performance of men like John Herschel, George Boole

or Charles Darwin, are astounding. What could be achieved in
the English situation was a restricted professionalization
within a part of the educational system. This is dealt with

for the domain outside the universities by Leo Rogers. Rogers
maintains that, on the one hand professional forms of mathe-
matical activity like the private tutor and the mathematical
practitioner continued and, on the other hand, that a climate
created by a rationalist, materialist philosophy, and by the
necessities of the Industrial Revolution caused a change in

the social image of science and mathematics. As a result the
rising English middle class, especially those from a non-
conformist background, who were not allowed to study at Oxford
or Cambridge, established new institutions with special empha-
sis on the teaching of science and mathematics. Thus we observe
an enlarged market for an essentially practical, applied mathe-
matics which was transmitted to a wider public by a new class
of teachers. These teachers present a professional group of
mathematicians different from the German Gymnasia-teachers.
There was no special "research imperative" for the English
mathematics teachers. However, they backed up their claim to
expertise and competence by shaping a new methodology for
disseminating mathematical knowledge. Many of these mathematics
teachers took part in the later development of a national sys-
tem of universal education and so prepared the way for a higher

degree of monopolization and professionalization in mathematics.

Phil Enros shows, taking Cambridge as his example, how, on the



84

higher level of the English universities, a social demand for
mathematical research was developed. According to the prevail-
ing ideology of Cambridge at the beginning of the 19th century,
mathematics was considered an essential subject for educating
the future leaders of the Commonwealth. This close relation-
ship between mathematics and leadership was extended to re-
search by Cambridge students, who perhaps were impressed by
the successes of Napoleonic France. Contact with the most
recent research mathematics would improve the quality of
leadership. As a first step, the students took care to get
better information about Continental and especially French
analytics. As a second step, the Cambridge tutoring and exami-
nation system in mathematics was adapted to the more advanced
French level. Even if Cambridge did not get interested in
mathematical research for its own sake until much later, its
privileged position in the English educational system sufficed
to stimulate a new concern for mathematical research in Eng-
land which finally led to the beginnings of a professional

mathematics in England.

Another factor influencing the professionalization process in
mathematics is that once it has started in a particular country,
that is that mathematics is understood as a socially relevant
product, the mathematical production of this country must com-
pete with that of other countries within its own national
market. This competitiveness, together with national prestige,
makes the "market leader" a good model for other countries

which are behind in the professionalization process. This can
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be seen especially in Umberto Bottazini's "Mathematics in a
unified Italy." In the middle of the 19th century, Germany
had taken the lead in mathematics from France. The German
model of professionalization in mathematics seemed the more
acceptable to the Italians because the political and social
developments in Italy and Germany showed considerable simi-
larities, most noticeably in the unification movements in
both countries. Thus the typical German combination of teach-
ing and research in mathematics in universities and secondary
schools was adopted by Italian mathematicians, who had aban-
doned the prevailing French tradition in applied mathematics,
and who had considerable influence in shaping the new Italian

educational system and with it their own market.

The concluding article, Horst Eckart Gross' "The employment of
mathematicians in insurance companies in the 19th century,"
considers a more advanced level of the professionalization
process in mathematics which extends the educational framework.
When the foundation of insurance companies in 19th-century
Germany opened a new market for some kind of expertise, it
was by no means clear who would have access to this market,
since it demands the solution of some comparatively simple

mathematical problems with a host of nonmathematical problems.

The formation of courses in insurance mathematics at the univer-
sity level indicates that professional mathematicians were
attempting to conquer and monopolize this new market for them-

selves.
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Gross' analysis of the working process of actuaries in the
19th century can be seen as a case study of the working proc-
ess of the mathematician outside the educational system. This
may be applicable to especially industry in the 20th century,
where, similar to the insurance scene, mathematical expertise
is used to solve a combination of mathematical and nonmathe-
matical problems. Of course, this development demands a new
type of mathematics and new forms of research in this mathe-

matics, which can claim a new dimension of social relevance.
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FORMS OF PROFESSIONAL ACTIVITY IN MATHEMATICS BEFORE THE

NINETEENTH CENTURY

Ivo Schneider

In 1977 a questionnaire was sent to all mathematics graduates
of the BRD asking what their current professional activity was.
This very fact demonstrates that while the existence of a spe-
cialized training program forms the basis for recognizing the
professional status of the mathematician in current society,
the manner and extent of the ever-changing and expanding possi-
bilities for utilizing the special skills of this professional
group must be constantly reexamined . These shifts are even
recognizable in the instructional program itself, for the course
offerings in the various institutions of learning are closely
correlated with current research, which influences not only the
composition and selection of materials for required courses of
study but also the introduction of new disciplines. That even
areas considered as the core of the educational curriculum are
subject to gradual change is indicated by the progressively
diminishing course offerings in number theory and geometry,
which were once considered classical areas of study, but are

scarcely even regarded in current research. Any attempt to

89



90

delimit the current professional structure of mathematics must
take into consideration this dynamic change in the content of

educational programs and employment opportunities.

On the basis of that "backslapping” fraternal relation between
mathematicians and the history of their subject, which, indi-
vidual details notwithstanding, permits figures such as Archi-
medes, Newton, Euler, GauB or Cauchy to be accepted as permanent
members of the club of respectable mathematicians, it is assumed
as obvious, even unquestionable, that the factors conditioning
the actual conduct of mathematical research and the ability to
engage in mathematics are nearly the same at all times; and
accordingly it is not regarded as necessary to inquire further
into these conditions. In point of fact, however, the precondi-
tions for the current professional structure of mathematics and
its dynamic character were generated only recently. Whether the
image of the mathematician as a professional existed earlier or
not, and if so, of what sort it was, remains for the present an

open gquestion.

Modern sociology understands "professionalization" as a social
process in science which begins somewhere in the 19th century1.
Accordingly "professional mathematics" cannot be expected be-
fore the 19th century. However, one cannot deny the existence
of some form of "professional activity" before the 19th century.
Needless to say, the professional forms identifiable in the
19th century are in various ways connected with previous occu-

pational forms.
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How should we proceed in this situation? As a minimal condition
a professional structure of whatever sort must establish the
outlines of an educational framework, an activity exercised
predominantly through the methods acquired within this framework,

and the financial means allocated for the support of this activ-

ity.

Were such a "professional mathematician" to be found in the
seventeenth century, then in terms of our present conception

he should be sought among the outspoken exponents of the new
mathematics. But although the seventeenth century has appeared
as a "century of mathematics" to later observers, among the
creators of the new mathematics scarcely a single one meets the
criteria sketched above. As a result of their social origins a
portion of these men were spared the necessity of having to
exercise a profession in order to supply their means of sub-
sistance; others were lawyers, theologians, diplomats, or poli-
ticians, and conducted their mathematical researches as a recrea-
tional activity. Nevertheless a substantial number devoted some
part of their lives exclusively or principally to mathematical
problems and earned their living mainly through this means.
This group includes, for example, Desargues (1591-1661), Cava-
lieri (1598-1647), Wallis (1616-1703), Mercator (1619-1687),
Huygens (1629-1695), Barrow (1630-1677), James Gregory (1638-
1675), Newton (1642-1727), Jakob Bernoulli (1654-1705), and his
brother Johann (1667-1748). Seven of these ten held chairs for
mathematics at a university, of which five were newly founded.

If we take into consideration that Huygens was paid from the
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Royal purse for his activities as an astronomer, physicist, and
mathematician at the Paris Academy, then it appears that at

least eight of the ten meet part of the criteria set forth above.
It is worth noting, however, that each of these cases of a finan-
cially supported mathematician, v :h the exception of Cavalieri,

occurs in the second half of the seventeenth century.

If one considers that in the sixteenth and first half of the
seventeenth century chairs for mathematics were already in
existence, housed in the arts faculties, then the preceding may
lead us to suspect that if extraordinary performance in mathe-
matical research played any role whatsoever in the appointment
to such chairs, then it certainly did not do so until the second
half of the seventeenth century. This could indicate that the
search for some sort of professional self-image among the mathe-
maticians of the seventeenth century is completely misguided,
since the possibility of being introduced to research within

the framework of a thoroughly established program of education
theoretically did not exist until the end of the seventeenth
century and was only practically introduced after the French
Revolution. Our search for a professional image which is stamp-
ed by our present conception of the dynamic development of
education and opportunities for employment has produced a con-
jecture which leads to a series of other questions: If mathema-
tical knowledge at the beginning of the seventeenth century
started from a relatively static condition due to the absence

of any concept of research, perhaps a professional self-image

oriented along the lines of the contemporary artisan may have
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provided a model. Did the designation "mathematician" as such
exist, and if so, is this to be conceived as the designation

of a professional? If there existed some concept of mathematical
research, who was responsible for it, and how were its relations
to a more or less fixed body of mathematics regulated? Is some
entrance to mathematical research imaginable and perhaps even
demonstrable other than that based on training regulated by an
institution such as a university? Did the understanding of the
nature of mathematics itself change during the seventeenth cen-
tury, perhaps creating a shift in the professional image of the
mathematician or an aspect proper to a later image of the mathe-

matician as professional?

In order to answer these questions it is useful to construct a
sketch of the understanding of mathematics around 1600, which,
considering the varieties of opinion represented in the availa-

ble sources, can only be a gross generalization of the facts:

The main function of the universities in the later Middle Ages
and early modern period was to train future generations for
professional activity in the state, the church, or medicine. As
a necessary preparation for this end it was required to com-
plete a course of study in the arts faculty, which included
instruction in elementary mathematics. There existed no reason,
therefore, to demand special qualifications of the teachers for
this curriculum, which was stable for many generations; this
would have only endangered that very stability which was jtself

regarded as the guarantee for the standards of education. As a
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result of this stable situation, the universities were able to
recruit the personnel for the arts faculty from their own ranks;
that is, suitably inclined and talented graduates of this course
of study were immediately installed in the arts faculty after
passing their exams. In addition, outside the university there
existed groups of reckoning masters partially organized in
guilds, which transmitted the necessary knowledge of basic tech-
niques needed for business calculations, which likewise remained
stable for centuries. In the early modern period a third group
emerged, the mathematical practitioners, who had competence in
areas such aS geodesy, fortification, astronomy, artillery, navi-
gation, and the production of the instruments proper to these
concernsz. Without going into the potential overlap of two or
all three of these areas in a single person, it suffices to
point out that the stable character of these forms, particularly
the first two, is their dominant feature. So far we have discov-
ered that a professional image of a mathematician existed within
these three groups. But the mathematics involved was not a
science, it was an art. This is to say that it was static knowl-
edge, a fixed repertoire of skills to be used and applied in
established situations. Later when the idea of research made
mathematics a dynamic field, where new methods were consciously
sought and encouraged, the o0ld social structure of mathematics
was first altered and eventually replaced entirely. In what

follows I will be concerned with this process.

Changes were introduced into the structure of mathematics

through the availability of almost the entirety of the recovered
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sources of Greek mathematics in the printed editions of the
sixteenth century. On the one hand a rich field of activity

was opened up outside those unchangeable areas partially locked
into the social forms of the artisan tradition. On the other
hand this work was interpreted as the reconstruction of knowl-
edge which had already existed; that is, even the discovery

of new solutions to new problems within the domain established
by Greek mathematics were to be attributed to the Greek tradi-
tion, only a small fraction of which had been transmitted. Re-
search, no matter by whom it was conducted, was thus considered
at first only as re-discovery. Confidence in the possibility

of ever going beyond the bounds set by Greek mathematics was

first awakened only about 1600.

At the level of the universities these developments produced

few if any changes. An expansion of the course offerings in
mathematics is seen in the foundation of new chairs of mathe-
matics; but the example of Petrus Ramus in Paris illustrates
that the principal work of the occupant of a chair corresponded
closely to the educational function of the university, that is,
it was limited to the rearrangement of, for example, Euclid's
Elements according to the pedagogical standards of the time.

His aim was to select materials useful for craftsmen and to make

them understandable for thirteen-year-old students.

In the case of the reckoning masters these developments led
principally to the creation of a new market in the form of

nobles and powerful financial magnates, who in addition to
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elementary methods of calculation desired entrance into the
reopened world of Greek mathematics. Moreover a new form of
competition was introduced to determine the relative ranking
among the reckoning masters which served as an index for orien-
tation within the new market. These competitions consisted in
challenging a colleague to solve a series of mathematical prob-
lems within a limited period of time. At the end of this period
the two competitors met, frequently before a large audience,
where the challenger was required to produce the required solu-
tions, and in the case that he could not, the victor was to
reveal his own solutions. There emerged among the leading reck-
oning masters of the sixteenth century, therefore, a strong de-
mand to fashion for oneself a method which was at once capable
of solving the problems posed by a competitor while at the same
time permitting the formulation of the most difficult problems
imaginable for one's opponents. This demand for guarding the
secrecy of such newly developed methods corresponded to the
similar pattern of monopolizing recipes and methods of produc-
tion in the guild tradition. This secrecy secured the possibil-
ity of a steady income, but it stood in direct conflict with
the growing demand for information, which was satisfied without
restriction at the elementary level offered at the universities
as well as at the elevated level offered by the Greek classics

in the original and in translation.

The victory of unlimited access to information had two sources.
First, the knowledge of the newly acquired theory of equations

kept secret for some time by the reckoning masters seemed mod-
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est in comparison to the influx of knowledge from Greek sources
and the widespread efforts to add to them. Secondly, those con-
cerned with the solution of new problems in the domain estab-
lished by Greek mathematics were not motivated by securing a
source of income. For them the problem domain opened by the
Greeks served as a stimulus for a new, creative intellectual
arena in which the chivalric virtues of dexterity, technical
skill, power, and endurance were replaced by the virtues of
knowing about problems and their methods of solution, synthetic
ability, and individual genius. The prize remained the same:
success in this arena of combat brought materially incalculable
growth in reputation and honor. It was the time when one strove
to be a new Archimedes,Apollonius, or Euclid, a time when Adriaan
van Roomen, the Apollonius Belgus, damaged the honor of France,
which was repaired by Frangois Viéte, the victorious Apollonius
Gallus. On this level qualities such as practical applicability
and general utility did not play a role, for the neoplatonic
tradition denied them the status of characteristics proper to
pure mathematics, and at least some of the new Apollonii con-
cerned only with their personal honor or that of their country
maintained a conscious distance from the material utility of

their favorite pastime.

In this situation only a loose relationship could be established
between the amateurs responsible for the development of the new
mathematics and the representatives of a traditional mathema-
tics circumscribed by its own problems and methods of solution,

such as that practiced in the universities, by the reckoning



98

masters, and the mathematical practitioners. All of this changed
slowly to be sure with the discovery that the methods found
through the reconstruction of Greek mathematics could be em-
ployed with great success in the classical applied domains of
mathematics, astronomy and mechanics. The developments origina-
ting with this discovery formed the basis of a new conception

of mathematics which wasreinforced by the value it assumed with-
in the ideology of the pedagogical reform movements of the Pro-

testants and Jesuits.

These different trends united at an early stage in the life of
Johannes Kepler. Moreover, Kepler was quite conscious of the

. . A 3
status of his profession, as mathematician-astronomer”.

Even within the still imprecise image projected by the represent-
atives of the various groups earlier designated as mathematicians,
a pronounced tendency to limit the connotation of the word
"mathematicus" is visible by 1600. Thus the algebraical problem
of solving an angle-section equation of degree 45 proposed by
Adriaan van Roomen in 1593 was directed explicitly to "mathema-
ticis totius orbis." Viéte, who was not included by van Roomen
among the fifteen professional mathematicians capable of solving
the problem, emphasized in his own solution that he did not con-
sider himself a member of the group of professional mathemati-
cians, but rather of the amateur mathematicians who concerned
themselves with mathematical problems in their spare time out

of pure pleasure4. Viéte's modesty is only apparent: he intended

to have nothing to do with the stagnant mathematics of the practi-
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tioners; rather he aimed at shaping a new mathematics according
to the standards of rigor and purity of Greek mathematics. That
such an approach did not succeed initially, that others, such

as Kepler for example, had no interest in occupying themselves
with Viéte's algebra, was due to the large spectrum of possibil-
ities for going beyond the rediscovered works of the Greeks;

but even more importantly it was due to the non-binding charac-
ter of the new mathematics. Precisely because a large percentage
of the mathematical achievements of the seventeenth century was
accomplished by amateurs, the usual forms of reward and punish-
ment associated with professionalism were not operating. For
those amateurs who had either another profession or no profes-
sion at all, it was of little consequence whether others valued
the results of their mathematical hobbys. The same held for those
who were active as mathematicians at universities, as practi-
tioners or as private instructors; for the static field in which
they worked was nearly independent of the open mathematics
leading to new frontiers. An excellent example of this point is
provided by Roberval, who held the chair of mathematics in Paris.
The various disputes with Fermat and Descartes, in which he often
exhibited crass misunderstanding and committed numerous errors6,
did not at all damage his position in Paris. A counterweight to
this situation dominated by lack of unanimity concerning the
nature and significance of the objects under investigation was
offered by the unifying power of the standards taken over from
the Greeks. Thus one could agree upon the correctness of a result,
simplicity of a solution, or a demonstration, and that one ought

to explore the greatest possible range of validity for a method.
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With these standards the possibility was offered for distin-
guishing the significant from the less significant; and in
addition, the possibility of application - or even better uti-
lization - of the new methods within other branches of mathema-
tics was offered as an aid for orientation. A strong hedonistic
element played a central role in this "hobby mathematics", for
the great degree of freedom resulting from the absence of con-
trols as well as the fullness of open problems promising suc-
cess led to a tremendous increase in the number of amateur mathe-

maticians and an expansion of available knowledge.

Accordingly young mathematicians quickly encountered difficul-
ties in attempting to link their work to the results of the new
mathematics because the division between the static areas repre-
sented by the professional mathematicians and the dynamic re-
search front explored by the amateurs was growing ever wider.
This division could at first only be bridged by self-education
or later through private instruction by someone who had contrib-
uted to the new developments. In the main this was due to the
fact that it seemed impossible to change or expand the curricu-

la of the Latin schools and the universities.

Symtomatic of these problems was the Idea matheseos published

in 1650 by John Pell. This book, which was based on the pedagog-
ical ideas of Comenius, starts from the assumption of the util-
ity of the new mathematics and from the necessity for private
study as the only possible means of acquiring entrance to it.

In order to meet these needs Pell suggested a plan for organiz-



101

ing autodidactic study involving the foundation of a public
mathematics library, the construction of appropriate introduc-
tory texts with methodical guidelines for individual study,

and a critical bibliography of the relevant literature. The
public library was to collect not only all books in mathematics
but also every mathematical instrument. In addition the growth
of mathematical knowledge was to be registered in an encyclope-
dia, conceived as a sort of data bank for the new mathematics.
Similarly, compendia and appropriate guides for individual study
were to be published7. However utopian certain aspects of Pell's
plans may have seemed at the time (although they were in fact
applauded by Descartes and Mersennes), they still clearly enter-
tained the possibility of collecting the entire domain of new
mathematical knowledge and giving it a coherent and unified

presentation.

Pell is representative of those calling for the construction of
an educational and organizational framework designed to serve as
an entry to mathematical research. But such appeals had only a
limited success. Although the idea of a central mathematical
library was never realized, a portion of the new mathematical
literature was purchased by the university libraries, particu-
larly in England, thereby opening the possibility for individ-
ual study outside the standard curriculum, which continued to
outlaw the new mathematics. On the other hand, the demand for
including the new mathematics within the university curriculum
required not only a change in the understanding of the educa-

tional task of the universities but also a higher degree of
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maturity of the new mathematics itself. Decline in the hedonis-
tic appeal of mathematics was a necessary condition for these
developments as well as increasing unanimity within a recog-
nized scientific community concerning the object, goals,and
value of mathematical research. The achievement of this unanim-
ity was still an object of struggle within the developing sci-
entific societies in the secord half of the seventeenth century,
which from the very beginning attempted to separate experimental
and theoretical natural philosophy and mathematics from rampant
dilletantism. The correspondence of men like Barrow, Collins,
James Gregory, Newton and Wallis from the sixties of the 17th

century on shows clearly a growing awareness of the existence

of an invisible college of mathematicians, being part of the
often quoted "commonwealth of learning“g. This is connected
with the development of a common terminology, criteria for dis-
tinguishing important from unimportant, good from bad. In addi-
tion we find increasing concern with making money as a mathe-
matician10, a "mathematicus". The connotation of the word mathe-
matician or the Latin "mathematicus” seems to be unchanged up

to the 19th century. Only in the second half of the 18th century
in France did the proper designation of higher mathematics be-
come "haute géométrie" and accordingly a research mathematician

have to be entitled as “géométre“11.

The separation of a more elevated level from dilletantism re-
quired the creation of something new, namely, social forms for
professional research in natural science and mathematics. In

addition to ability and education, professional engagement in

research obviously required the availability of time. If the
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circle of future scientists and mathematicians was not to be
limited to those who could live from their own means, then pos-
sibilities would have to be found for compensating these new
full-time researchers for their work just as in any other oc-
cupation. In the Academy of Paris, therefore, and later in the
European academies that followed the same model, absolute gov-
ernments allocated funds to support full members of the acad-
emies. These persons were in turn required to follow prescribed
statutes in working together on commonly designed research
projects, in acknowledging control over the quality of their
results and in their activities as referees. In the Royal Soci-
ety of England, where the members were supported by the good
will of the king, but not financially, and therefore were re-
quired to pay membership fees, only the functions of quality
control of scientific research and scientific communication
could be fulfilled. Already by the end of the seventeenth cen-
tury, however, membership in the Royal Society was sufficient
qualification to insure success in finding a position at a
university, in one of the many private institutions, or as a
private tutor. In England and to a certain degree on the conti-
nent, the private tutors assumed the role of providing the
preparatory instruction needed for participation in mathematical
research, which now could be evaluated according to commonly
accepted standards; the private tutors represented a special
group that had evolved from the practitioners and reckoning
masters. The ability to assume the educational function for the
dynamic part of mathematics obviously presupposed participation

in the actual process of research. Examples of such private tu-
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tors can be found from the end of the seventeenth century on
among the group of Huguenots who fled to England, as for in-
stance Abraham de Moivre12; but even James Stirling and Thomas

Simpson temporarily belonged to this group.

These two forms of professional activity, continuing in the
eighteenth century, brought to the rapidly expanding field of
mathematical research a series of introductory texts in the most
attractive areas of mathematics. They had a form similar to text-
books which utilized, for example, the formulation of unsolved

problems as material leading to mathematical research.

In the course of the eighteenth century a degeneration of these
two forms of professional activity is observable. This is partic-
ularly noticeable in the case of private tutors in England: for,
following the patterns set earlier by the practitioners and reck-
oning masters, the attempt was made to separate off parts of the
new mathematics and to specialize in this newly restricted area.
One possible reason for this is that most of the students who
sought a tutor were not interested in active research but rather
wanted only to acquire an understanding of the major lines of
development in an easily digestible form. The introductory texts
were accordingly altered into textbooks, with the result that
contact with research was lost, a situation symptomatic of the
decline of mathematics in England after Newton. This development
was .carried further by the mathematicians in the academies of
Europe; but here many additional factors led to the search for

other ways to professionalize mathematical research. The few
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who were paid for their activities as mathematicians in acad-
emies were gradually limited by the increasing number of com-
missions for research into particular problems. At the same
time multiple membership in several academies led to a complete

internationalization of mathematics13

and the concentration of
control within a small group of the most capable mathematicians
who were therefore able to determine the direction, content,
and methods of research, as for example through the prize ques-
tions of the Paris Academy. The result of these developments
was an ever growing alienation between mathematics in the uni-
versities and that in the academies, and by the end of the
eighteenth century a dessication of analysis which had been
exhausted through its applications to astronomy and mechanics.
Accordingly, in the correspondence between d'Alembert and La-
grange the problem of how to develop research mathematicians is
repeatedly discussed, and the future of mathematics is pessi-
mistically compared with that of Arabian studies14. This situa-
tion was aggravated by the low prestige still accorded to a

"savant" or a "géométre" for a member of the aristocracy15.

Euler also found this to be an extremely pressing problem after
the attempt was made to gradually fill the Petersburg academy
with native Russians, replacing the foreigners originally call-
ed to the Academy. In Berlin Euler sought to train young Russian
mathematicians through private instruction, carefully introducing
them to research along with his son Johann Albrecht16. The

method consciously used by Euler of systematically increasing

the demands on performance until his charges were capable of
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independent mathematical research had validity in the nine-
teenth and twentieth centuries as well.His successful approach
marked the beginnings of a Russian school of mathematics. For
the solution of the problem of how to generate creative mathe-
maticians in large numbers, however, the achievements of Euler

alone were not sufficient.

In order to bridge the gap between the research-oriented acade-
mies and the teaching-oriented universities, paths were cut in
the eighteenth century. Thus the professors at the University
of Gbttingen, founded in 1737, were obliged to do research as
well as teach. For the eighteenth century at least, the new
emphasis on combining research and teaching at Gottingen
brought no noteworthy advances in mathematics. The professors
available to respond to such a call were not at once in a po-
sition to become researchers simply on demand. Moreover, in
those cases in G6ttingen where research was actually conducted,
a corresponding connection to teaching could not be made so
abruptly. The viewpoint of organizing the curriculum in order
to fit research to teaching emerged in France during the last
years of the eighteenth century and was first realized in Prus-
sia during the first half of the nineteenth century. These de-
velopments concern already the nineteenth century for which I

want to formulate some presuppositions in a sketchy form.

One precondition was the expansion of the educational function
of the universities in various respects. In France at the turn

of the century, the awareness that academic mathematics could be
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applied to technology, which by itself had gained importance

in economics and military sciences, prepared the ground for
raising considerably the position of mathematics within the
general educational system. In Prussia this awareness was com-
plemented by a new ideology stemming from a neohumanistic move-
ment which secured a new form and status for pure mathematics17.
This meant that the social strata from which were drawn those
who were able and even forced to concern themselves with mathe-
matics were extended far beyond the privileged classes. The
fact, for example, that from at least the middle of the eight-
eenth century every French officer was required to demonstrate
a command of practical mathematics, also meant that in the
nineteenth century mathematics no longer needed to depend upon
the framework of preparation for the higher faculties but could
now be studied for its own sake. Connected with this was also
the fact that the researchers earlier active primarily in the
academies were brought into the universities as teachers respon-
sible for carrying out research. In addition it meant that grad-
ually a complete educational system preparatory to university
study was created and fitted to the new circumstances. As a
result of this development the practitioner and the private
tutor disappeared in the nineteenth century and with them the
model of a professionally self-contained mathematics. In its
place came professional activity primarily as teachers in Gym-
nasia or universities engaged in a mathematics dynamized
through the connection of research with teaching. In the course
of the nineteenth century ever greater domains of activity were

opened for mathematicians trained in the universities.
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THE CONCEPTION OF PURE MATHEMATICS AS AN INSTRUMENT IN THE
PROFESSIONALIZATION OF MATHEMATICS

Gert Schubring

J.D. Bernal characterized the growth of science during the
first half of the 19th century by the following paradox: "At
the time when science should have been most obviously connect-
ed with the development of the machine age, arose the idea of
pure science". (Bernal 1973, 29) This paradox of the relation-
ship between the dimension of development and application of
science may serve to provide a better understanding of the
problems of the professionalization of scientific activity in

mathematics.

The transition from the 18th to the 19th century meant for
mathematics the beginning of a fundamentally new phase in its
development. The most prominent feature of this new develop-
ment was that the type of mathematician usual at that time -
the amateur, the practitioner, the universal scholar - was
superseded by a full-time researching and teaching mathematic-
ian. In the course of this process a specific place for mathe-
matical activities emerged - in contrast to the wide variety
of locations which had existed previously - : the university.
At the same time, mathematics developed an autonomous communic-
ation-network: more and more research activities became a
matter of continuous development, following selfimposed aims,
so that external impulses such as Academy prize questions,

etc. were no longer needed.

Communication became increasingly down-to-earth. Under the
constraints of the subject, former excesses such as pointing
out one's own merits and trying to humiliate one's competitors
were reduced, which meant that the regulation of the method

through the content increasingly prevailed.
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The notion of discipline and progessionalization

It is clear that these qualitatively new developments suggest
a description in terms of "discipline" and "profession". To be
able to use these terms sensibly for the further explanation
of this new course in the development of mathematics it is

necessary to explain them.

While sociology has been analysing professions intensively for
decades, there is a lack of comparable work concerning "dis-
ciplines" due to the fact - according to Stichweh - of a "lag
in the sociology of science" (Stichweh 1980, 1). The tradi-
tional notion of both terms is that of a separation according
to cognitive and social factors: whereas "discipline" means
the unity of science as far as knowledge is concerned, "pro-
fession" embraces the social dimension of science. In connexion
with the discarding of the one-sided view of science as a
system of knowledge - the overcoming of the "statement-view"
(cf. Stegmiiller 1974, 172) - and the increasing interest in

the social history of science, historians of science frequent-
ly fell back on the term "profession" in order to include the
social component. Without "establishing sufficient contact to
sociological theory" (Stichweh 1980, 1) simply by taking over
the term, the concept of profession was often reduced to

"full-time and remunerated employment" (Crosland 1976, 139).

Obviously the adoption of these terms as they were developed
by sociologists for the analysis of traditional professions
such as doctor, clergyman, lawyer, etc. failed to take suffi-
cient account of processes connected with the institutionali-
zation of science. Stichweh therefore criticized the additive
use of "profession" to include social factors, since it im-
plied that "the processes of scientific communication ... are
basically non-social processes". He therefore proposed to take
the term "discipline" as basic for the study of individual
branches of science, and to regard it as an "integrating term

which embraces both cognitive and role-oriented relationships"
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(op. cit. 2). Such a unity of social and content factors can
be found in the characteristics of disciplines as given by
Stichweh, who defines them as "forms of social institutionali-
zation ... of processes of cognitive differentiation in scien-
ce":

Sufficiently homogenous communications between researchers,
i.e. a "scientific community"; a stock of theoretical know-
ledge represented in textbooks, i.e. characterized by codif-
ication, acceptance by consent, and basic teachability; a
plurality of problematical questions at any time; a "set" of
research methods, and paradigmatic problem solutions; a
discipline-specific career pattern and institutionalized soci-
alization processes which serve to select and educate cand-
idates according to the prevailing paradigms (R. Stichweh 1979,
83).

Indeed, it was just the relationship between content and social
factors which had characterized scientific activities since the
19th century. While it seemed to be justified in the 18th cent-
ury, to regard disciplines as systems of knowledge and to
examine the role-relationships of scientists and society sepa-
rately, in the 19th century disciplines gained a new character
with the emergence of the modern branches of science and their
institutionalization, which was manifested in the unity of
social and cognitive factors. In the present article profes-
sionalization of science is thus defined as the process of the
emergence and ultimate domination of the unity of cognitive

and social factors within a scientific discipline.

One could of course ask whether the term "profession" ought

not to be reconstructed analogously to the term "discipline".
As a matter of fact, it is not possible to understand the "Ver-
beruflichung" of scientific activities unless the traditional
sociological categories are linked with subject characteristics
of the kind mentioned above, as will be explained below. Stich-
weh, however, regards the term "profession" as not generally

applicable to sciences, as there are different relationships
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between society and profession on the one hand and profession
and disciplines on the other: whereas the typical professional
activity of a member of a traditional profession is complemen-
tary to a non-professional client, and thereby characterizes
"profession" by the application of knowledge, scientists are
interested in creating new knowledge; scientific disciplines
tend to be inward-looking rather than interested in active re-
lationships with the world around them. Professional associa-
tions are therefore more concerned with protecting themselves
from interference and external control than are disciplinary
communities and associations, which are more oriented towards

internal communication (cf. Stichweh 1980, 3-6).

It seems that this differentiation - and above all the relation-
ship to application - only concerned a particular phase of
scientific activity. But it is certainly true that the low
militancy of disciplinary associations reveals a remarkable
fact: the institutionalized disciplines had been safeguarded

up to that point by the social system in such a way that they
did not need any extensive external representation. The acade-
mic disciplines had thus achieved a degree of social recognition
which professions and their associations were still striving
for. The analysis of the development of this specific relation-
ship between science and society constitutes an even greater
task.

Since the institutionalization of a new discipline has been re-
garded as particularly important for the study of "the relation-
ship between intellectual and social processes" in scientific
development (Lemaine et.al. 1976, 17), I will consider the in-
stitutionalization of pure mathematics as a particular feature
of that process described above as professionalization. Accep-
tance of its legitimacy is crucial for the establishment of

a discipline (Lemaine et.al. 1976: 17; Thackray/Merton 1972:
473). I will first consider some dimensions of the process
associated with establishing legitimacy. To achieve acceptance
it is essential for a discipline to establish the relationship

between social recognition and the development of a methodology.
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Thackray and Merton have stressed the importance of "metaphysi-

cal assumptions, and particular Weltanschauungen" for the emer-

gence of a discipline (loc.cit., 474). A methodology - which

is also very much determined by the subject - not only has the
task of securing the coherence of a discipline and the unity of
methods and problems, but also faces the task of justifying it-
self - towards other disciplines as well as society as a whole.
It is therefore necessary to have an agreement between the dis-
ciplinary methodology and the prevailing system of values - the

Weltanschauung - at least for the period of institutionalization.

So far, the sociology of science has not sufficiently taken into
account the fact that there is one factor which is vital for
social recognition: the state. It is indeed true that the estab-
lishment as well as the continuous development of a system of
science requires decisions and means which are not available

on the basis of sectional social interests. Such institutions

of a social sub-system require a continuity which only the state
can provide, as it acts on behalf of society as a whole. At the
same time, it is evident that the state - in order to take over
these functions - has to override interests which are too narrow-
ly bound to particular sections of society. It is not surprising
therefore that the professionalization of science did not begin
until the feudal state had been more or less superseded and the
middle classes had risen to a strong position in the state (cf.
Schubring 1980 a). The necessity of social acceptance for a
discipline by those who act on behalf of a nation's society is
reinforced by the fact that the new social sub-system cannot
exist in its own, but needs a sub-structure such as would be
most effectively provided by a general education within the
school system. If it is true that the attention of disciplines
and university systems and their associations are mainly centred
on their internal affairs and therefore less oriented towards
resistance against intrusion and towards gaining control, it
suggests a high degree of legitimacy. Proof for this close re-
lationship can be found in a negative example: after the end

of the 19th century French governments more and more removed

the "Facultés des Sciences" from state control which led to a
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significant decline in professionalization (cf. Shinn 1979,
PP. 314 - 326).

It is important, therefore, for the professionalization of mathe
maticians' activities, to analyse the relationship between the
meta-conception of pure mathematics and the general methodology
of sciences then prevailing in Prussia. R.S. Turner has shown
that there was such a methodology in Prussia in the first half

of the 19th century, which he analyzed as "Wissenschaftsideolo-

gie". He pointed out that this "Wissenschaftsideologie", which

is also known as "neo-humanism", was the common scientific

ground - "Weltanschauung" - of the leading reformers: those in

influential position in the Government, the scientific and
educational fields (c.f. Turner 1973). This served the govern-

ment - especially the Kultusministerium - as a basis on which to

mould universities and schools to the new structure. At the same

time the "Wissenschaftsideologie" - connected with a reform of

learning - was part of a more dramatic reform of society and
the economy: the use of education for the encouragement of eco-
nomic activity-"industriousness" ("Gewerbefleif"). This policy
was intended to facilitate the transition from the primarily
state-organized economic activity of the prevailing mercanti-
lism, to an increasing mobilization of private initiative, a

prerequisite for middle-class modes of production.

Furthermore, Turner pointed out that the "Wissenschaftsideolo-

gie" led to the emergence of the "research imperative" for
scientific activities. It was only the development of the "re-
search imperative" at the reformed Prussian universities after
1810 which established the "dual role" of the teacher-researcher
as the characteristic feature of the institutionalization of
scientific activity (cf. Turner 1973). As far as the profes-
sional role of scientists was concerned this dual activity
became the significant content feature of the newly emergent
social role. For example, levels of gualification were laid
down, which led to certain career patterns as a specific

feature of the professionalization in the field of science.
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On the other hand, the development of the "research imperative"
and of professionalization at Prussian universities, as shown
by Turner, concerned at first only philology. Textual criticism
was the newly established research methodology: it was governed
by the paradigm of the unity of justifying or systematizing and
disseminating knowledge, and not on a unity of developing new
knowledge and disseminating it as a prerequisite for its perva-
sive social application: "a type of academic originality and
research which served the ends of synthesis, not analysis"
(Turner 1972, p. 155).

It is well known that the methods of philological science served
as a model for mathematics and science. Thus C.G.J. Jacobi took
the classical philology seminar of his teacher B&ckh as his
model for educating scientists in mathematics. Mitscherlich,

who also started his scientific career as a philologist, is
reported to have developed the chemical concept of isomorphism
along the lines of comparative language research (Lenz 1910,

p. 226).

Mathematical Methodology

Until recently, however, it was not known how the transition

to subject-specific methodology, which is necessary for profess-
ionalization took place in mathematics. I shall go on to discuss
this transition with regard to the autonomy of the discipline.
The emergence of the autonomy requires the development of subject
internally defined objectives and values, and, by the same token,

methods.

A recent case study concerning the plans to establish a poly-
technical institute in Berlin between 1817 and 1850 has shown
that the main function of these plans was to effect the profess-
ionalization and institutionalization of mathematics as an
independent, modern science, particularly through the creation
of full-time positions for mathematicians which would have

enabled them to do research and teaching in mathematics on the
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basis of living salary (Schubring 1979).

As the university during the twenties of the previous century
had not yet become the institution suited for this purpose,

the polytechnical institute was to be established separately.
The plans acted, however, as a means to transform the Prussian
university in such a sense as to make the "research imperative"
a constitutive factor for mathematics and the sciences there

as well.

The autonomy of mathematics as a discipline required not only
the development of subject-specific methods, but also in a
certain sense the pursuit of pure mathematics as an end in
itself, as we know C.G.J. Jacobi to have done. Jacobi, whose

most important motive was the professionalization of mathematics
as a university discipline, was concerned with securing its
autonomy. This aspect sheds a new light on his rejection of

the externally defined value of usefulness, andonhis correspond-

ing emphasis on the internal values of the discipline.

In the empiricist conceptions of science held by the English

and French materialists of the 18th century, the relationship
between development and the application of knowledge had not
been recognized as a problem. True, they distinguished between
pure and applied mathematics (using different designations),

but they did so more in the sense of systematically distinguish-
ing knowledge, and this was not meant to establish separate
disciplines in the sense of autonomous communicative metworks
(cf. Stichweh 1977).

The pessimistic suspicion - especially of French mathematicians
in the secondhalf of the 18th century - which feared that
mathematics might come to a standstill, as e.g. Arabic philology
had done, is well known. For the further development of
mathematics it was necessary to have a methodology which account-
ed for the possibility of theoretical, new knowledge - in
contrast to the then prevailing belief of the analytical method

which said that propositions of pure mathematics were always
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more or less trivial transformations of the "éléments". Toth
has shown that this situation was radically changed by the
philosophy of Kant: Kant proved that there can be essentially
new knowledge in pure mathematics - this is the real essence
of Kant's claim for synthetical a priori propositions (Toth
1972, p. 8).

Only on the basis of Kant's epistemology, which was dualistic
at the core (Buhr/Irrlitz, p. 40), did it become possible to
reflect on the relationship between pure and applied mathematics.
Kant had pronounced himself strictly against "mixing up" differ-

ent epistemological principles ('reine Anschauung" with experience)

and for a separation of the pure and the applied sections of
the sciences (cf. Kant 1977). On the other hand this new start
was initially elaborated more in abstract philosophical terms
rather than subject oriented. This lack of subject orientation
was criticized by Kliigel in his well-known "Mathematisches Wor-

terbuch": "Kant behauptet, daB die Philosophie eben sowohl von
GrdBen handele als die Mathematik." But the philosophical "Gr&-
Ben sind doch von einer anderen Art als die mathematischen".
Kliigel, however, also pointed out: "Das Wesen einer Wissenschaft
beruht auf ihrem Gegenstand, und ihre Methode wird durch diesen
bestimmt" (Kliigel, vol. 3, 1808, pp. 620 sqg.).

It is a fact in the history of mathematics which is almost
forgotten today that - starting from the foundation established
by Kant - the subject-specific methodology of mathematics was
founded as "pure mathematics" by the philosopher and natural
scientist (and quasicounterpart to Hegel) J.F. Fries (Konig/
Geldsetzer, pp. 44 sqg.).

While separating the more fundamental philosophical prerequisit-
es, the philosophy of mathematics asserted the reality of
mathematical concepts and the certitude of mathematical results.
Crelle drew on this new autonomy of the methods of mathematics,
on its self-confident independence of philosophy, pointedly
formulated by himself, to justify the Berlin plans to establish

a polytechnical institute.
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This philosophy of mathematics is in stark contrast to the
philosophical programme of Hegel und Schelling, who wanted to
subordinate the methods of mathematics to the methods of
philosophy. Hegel for example declared that mathematics was
"dead" and therefore incapable of any internal motion (Hegel,
p. 157).

It is thus not accidental that no supporters of Hegel or
Schelling, but rather adherents of Fries are to be found among
the "modern mathematicians", particularly among the promoters

of the Berlin plans. Gauss was very much in favour of Fries'
philosophy of mathematics and thought of him as the only
philosopher he couldtrust (Cf. Nelson, pp. 437 sq.). Fries'
methodology was based on a sign conception of mathematics.
Development and application are separated parallel to the
relationship between sign and meaning. The fundamental discipline
of pure mathematics is "syntactics" or "semiotics", as the
general theory of mathematical operations. Fries considers the
composition of equal elements the basic operation of mathematics.
This is the reason for the attractivity which the "Kombinatori-
sche Schule" had for the elaboration of the programme of pure
mathematics. At the same time, the radical separation of sign
and meaning by Fries led to the introduction of variables.

Fries did not confine himself to elaborating a philosophy of
pure mathematics, but also developed at the same time a
philosophy of applied mathematics. In order to connect these

two, he called for a "theoretische Lehre der Vermittlung"

(theory of mediation), which was to reflect the condition and
aims of applying the 'core' of the theoretical structure with

its initially empty abstractions, and signs devoid of meaning
(Cf. Fries 1822).

The significance of such a meta-conception can only be explain-
ed further by a comparison with France. So far it has not been
established whether mathematics too suffered that "decline"
after the French Revolution or after 1830/40 which in recent
years has been discussed under the name of the "decline of

French science" (Fox 1973, Shinn 1979) as for example F. Klein
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maintained. (F. Klein 1926; see in contrast Shinn 1979). How-
ever, there is no doubt that in France, in contrast to Prussia,
no institutionalization of mathematics took place, and no concept-

ion of an independent discipline "pure mathematics" developed.

In fact, in France no methodology had been developed which
would have overcome the utility orientated empiristic concept-
ions of knowledge held by the French Enlightenment. Wronski,
who was de facto the only one in France to make an effort to
develop an independent methodological discussion of the princip-
les of mathematics, did this from a position of a complete out-
sider. But he, too, failed to understand the difference between
development and application, and he was therefore unable to
justify "pure mathematics" when he said for example, that

mathématiques pures analyse the same subjects in abstracto",

which mathématiques appligquées enquire into "in concreto"

(Wronski 1811, 3 bis ). The small influence which Wronski's
reflections had on the basics of mathematical thought is appar-
ent, although Gergonne introduced the new section "philosophie
mathématique" in his annals (beginning with Vol. 4, 1813) after
the publication of Wronski's "Philosophie des Mathé&matiques",
with the purpose of discussing the questions it raised. How-
ever, after some initial interest, only a few articles were
published, mostly by Gergonne himself, so that this topic

actually no longer appeared from 1822.

This lack of development of an explicit subject-specific
methodology has to be seen in relation to the suppression of
the scientific Weltanschauung of the Enlightenment, which had

been pursued since Napoleon, resulting in the absence of a
general, socially accepted scientific methodology, in terms
of which the various disciplines could have found their justif-

ication.

There was no scientific value system comparable to the
"research imperative" of post-revolutionary France. This fact
resulted in the remuneration of scientific activity being based

almost exclusively on teaching. This, in turn, gave rise to the
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"cumulards": in order to survive many scientists were compelled
to accept several chairs simultaneously (Cf. Fox 1973). This of
course made the development of a scientific career for younger
scientists increasingly difficult. The lack of scientists'
orientation towards research as a value system, their continued
adherence to the utilitarian positions of the Enlightenment or
their transition to positivism, may be understood as a result
of successive French governments' anti-science policy, which

was quite consciously pursued from Napoleon's time onwards up
to the second half of the 19th century. Séve has shown that
Napoleon's objective was to eliminate those philosophers
described as "idé&ologues", who, in the tradition of Condillac
and Condorcet, continued to make a stand for reforming society
by means of science. They were sucessfully supplanted by ad-
herents of the philosophy of 'spiritualism', which had, in fact,
been newly created with the support of the state, and which
adapted the Scottish school of philosophy - (also called the
philosophy of common sense) - for Frenchpurposes. 'Spiritual-
ism', which allowed the clericals to reconquer the educational
system, thereupon rose practically to the position of a state
philosophy (Cf. Séve, pp. 18 sg.). Simultaneously, this served
to effect a re-orientation in the leading social values from

scientific to literary-political ones (Cf. Fox 1973).

The Lnpact to mathematics

The meta-conception of pure mathematics supported the profess-
ionalization of mathematics activity in Prussia in several

respects.

First, it made for the freedom from externally defined object-
ives of this discipline, and for a re-orientation towards
discipline internal values: this was the precondition for a
gradual shifting of the authority to appoint new scientists
from a ministry intend on safeguarding the scientific level

of the discipline to the representatives of the discipline

themselves.
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It laid the foundations for the acceptance of a dual teacher-
researcher activity as a full-time occupation, the remuneration
of which had to be sufficient to live off. The transition from
laying the main emphasis on teaching, which compelled the teach-
ers to seek additional part-time teaching posts, to a dual
activity, in which teaching comprised only the lesser part of
the remunerated activity, marks the decisive step towards

professionalization.

The specialization connected with the rise in the conception
of pure mathematics simultaneously made it possible to establish
an education for scientists and a scientific career (with the

stages of Doktor, Privatdozent, Extraordinarius, Ordinarius),

which, in turn, enabled the discipline to channel and to reduce
the number of self-taught scientists besieging the ministry and
the faculties. It is significant that the education of scient-
ists as outlined in the Berlin plans was to be carried out in
the form of "Seminar", together with the education of school-
teachers: as long as the discipline itself had not yet develop-
ed a specific model for educating scientists by means of co-
operative research activity, scientific training was modelled
on the training of lecturers (Dozenten), which thus could be
provided along lines similar to that of the other teachers.

The two models for the "seminary" which was to be built up
according to the plans for the institute, are typical of this
unity between the two aspects of teacher and scientist: the
philological seminaries of the Prussian universities on the

one hand, and the training provided at the Paris Ecole Poly~-
technique on the other. By the latter, however, was not meant
the official training - the education of engineers - but the
second, "hidden" education provided there: the training of
gifted students as répétiteurs, and finally, as scientists

(Cf. Schubring 1979) .

It is crucial for an evaluation of the meta-conception of pure
mathematics to realize that it did not stand in conflict with
the social demands for knowledge. Rather, the very emphasis

on the sign function of mathematical concepts is an expression
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of its orientation towards the new social requirements regard-
ing the dissemination of knowledge. The close relations of the
emerging discipline mathematics with society was mediated through

its being embedded in the prevailing Wissenschaftsideologie of

Neo-Humanism and through its "base" (substructure) of Gymna-
sium-teachers thereby created. The professional orientation
of the Gymnasium-teachers as a whcle, as well as the specific
activity with regard to the contents of mathematics teaching
finally had a positive effect on the development of the dis-

cipline.

It is known that after Humboldt's reforms Gymnasium-teachers
saw themselves as scholars ("Gelehrte") and worked in a scholar-
ly way. It is rather less commonly known, however, that this
scientific orientation was a deliberate strategy on the part

of the Prussian Kultusministerium with the intention of cult-

ivating a high social standing for teachers and of actively
encouraging learning and the acquisition of knowledge among
the middle classes. Two examples will be quoted of this
ministerial strategy to rouse the teachers to scholarly activ-

ity. One example concerns the so called 'Conduiten-Listen' in

which the supervisory school authority had to report annually
to the ministry on the behaviour of each teacher under the
headings e.g. "administration", "moral conduct". From about
1819 two new columns were to be answered by order of the
ministry: "Ob er fleiBig fortstudiert" and "ob er ein Schrift-
steller ist und was seine neuesten Werke sind" (compare for
example ZStA I, folios 19 sg.). In 1824 this stress on individual
scientific activity was extended still further by the ministry
through a decree which obliged each Gymnasium to publish a
scientific treatise ("wissenschaftliche Abhandlung") within
the so-called school programmes "on a scientific subject not
foreign to the teacher's profession and suited to call the
attention of at least the educated classes to matters of
public education in general, or to a topic of interest to
Gymnasiums in particular." Year by year the headmasters and
Senior teachers took it in turns to write the thesis, which
had to be decided internally. The objective was to encourage
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them "to continue their studies without interruption" (R&nne,
p. 155). By this means, the ministry had created an effective
instrument of professional communication. However, this was
only a first step towards disciplinary communication, because
the mathematics teachers used the dissertation not forenost
for active communication but for reasons of purely personal
prestige. Particularly in the early stages the authors were
very keen in pointing out the advantages of their own systems
while concealing the tracks of communication, such as e.g.

their relation with predecessors in the field.

The scholarly activity of the mathematics-teachers was the
basis for the survival and further development of the "combi-
natorial school”. The most interesting fact about this school
is, however, that it only came to full fruition after the death
of its founder Hindenburg in 1808. This can only be explained
by the fact that as an "educational mathematics" it seemed to
be an adequate conception for a training that aimed at the
development of mental abilities through the acquisition of the
fundamental concepts of the sciences. The mathematics of the
combinatorial school obviously had an analogous function in
the Gymnasium as set theory has lately had in our primary
schools.

At the same time this "educational mathematics" was of great
importance for the university discipline of pure mathematics,
since the combinatorial school preached the importance of the
formation of concepts quite regardless of their potential
applicability and usefulness (Cf. quotations from J. Grassmann
in: Schubring 1980 b).

The possibility cannot be discounted for example, that the geo-

metrische Combinationslehre initiated the breaking of the ties

of geometry with three-dimensional space. Supported surmise
may be found in a remark by Scheibert's, who wrote in one
school-programme (which followed J. Grassmarn's conception of
mathematics, when he as well as J. and H. Grassmann were teach-
ing mathematics at the same Gymnasium in 1834): "Die Geometrie

kann nicht einmal iber Produkte von drei Factoren hinaus, indem
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sie mit ihren Constructen an die drei Dimensionen des Raumes
gefesselt ist." (C.G. Scheibert 1834, p. 13).

This orientation of "educational mathematics" towards the
fundamentals, towards the elements of concepts in particular
was itself supposed to ensure the full applicability of know-
ledge.

Pure mathematics, according to Crelle, was also to have

the role of meta-knowledge, that is knowledge about knowledge
and about its application. The basic social prerequisite and
at the same time the prerequisite of educational theory for
this conception of a mediation between development and appli-
cation was a general demand for the dissemination of knowledge
in society as well as the insight that knowledge could, in
principle, be learned. Crelle, who argued for pure mathematics
even more narrowly and more pointedly than Jacobi, in his plan
for the institute of 1828 has formulated this social prerequisite
as follows: "Everybody, without exception, needs pure mathe-
matics". ("Der reinen Mathematik bedarf jedermann ohne Ausnah-
me", ZStA II, fo. 34).

This conception differs fundamentally from educational theories
based simply on aptitude.

It should not be overlooked, however, that the professional-
ization of mathematicians which was generally sanctioned by the
1866 examination regulations requiring from all "clients"
(students) of the mathematical discipline the ability to make
scientific studies of their own, stood in a certain conflict
with the future profession of most of the students, who were
studying to become teachers.

It must be added that no disciplinary association of mathematic-
ians developed during the first half of the 19th century, as is
otherwise typical for the professions. Jacobi, however, as the
"head" of the Kbnigsberg School exercised a similar function

by speaking for mathematics in Prussia and addressing demands
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for material equipment to the Kultusministerium. Its first seeds

are seen in a mathematicians' meeting which "was held in the
early thirties in Berlin" and in which "took part besides others
C.G.J. Jacobi, Minding and the two brothers Ohm", as is reported
in Cantor's call for the foundation of the Deutsche Mathemati-

kervereinigung (Chronik 1890, p.3. I could find no documentary

evidence for this report up to now.).

The relation of M. Ohm to the discipline

It is interesting to try test the applicability of the character-
istics of the professionalization described above on a mathe-
matician who stood in extreme contrast to the representatives

of the new discipline mathematics at Prussian Universities and
who characterized in many respects the transitional stage in

the history of the discipline: Martin Ohm. Ohm is known because
of his contributions to the fundamentals of algebra (Cf. Novy),
but he produced no essentially new results in research.
Apparantly due to the transitional character of his position he
has always roused great interest within the history of mathe-
matics (Cf. as newest publications: Dauben 1980, Mehrtens 1980).
As it is clear that the state and especially the Kultusministe-
rium played an important and active part in the process of
professionalisation, it is interesting to trace Ohm's relation
with the Kultusministerium. Actually an inspection of Ohm's
personal files reveals remarkable indications which give a
completely different picture to the so often quoted suppos-
ition of Lorey, that Ohm had influential supporters inside the
ministry (Lorey 1916, p. 35).

Sivern's marginal note - "good intentions" - in Ohm's memo-
randum of 1818 for the improvement of mathematical education
which only supports this guess, merely refers to a partial
aspect of Ohm's plan, namely "eine mathematische Pflanzschule
mit der Universitdt in Verbindung (zu) bringen" (ZStA III,

fo. 6). Ohm's essential demand to exempt prospective mathematics

teachers from the examination for higher teachers and only to



128

make them take "an examination in mathematics and sciences" was
severely rejected in a marginal note: the consequence of "Leh-
rer bloB. fiir diese Wissenschaften zu ziehen", would also requi-
re "besondere Lehrer filir Philologie u.s.f." to be educated and
would therefore violate the necessary "pddagogische Einheit".

Sivern remarks: "Ohm selbst ist ... einseitig gebildeter Mathe-

matiker" (l.c., fo. 5).

Ohm's pedagogical efforts were not regarded as in accordance
with the neo-humanistic conception of education. Consequently
his career cannot be considered as in any way comparable with
those of Jacobi, Dirichlet and others. Their appointments to
professorships and further advancement were based on their extra-
ordinary research achievements; but it seems that such a crite-
rion was never applied to Ohm. Characteristic for this is the
peculiar procedure that in 1820 the ministry subjected Ohm to in
an examination, if he were actually to be taken into considera-
tion for a professorship at a university, despite the fact that
Ohm had worked as a University lecturer in Erlangen for several
years. Ohm, who at that time was a Gymnasium teacher in Thorn,

had applied to the Kultusminister for a "University post" and

had handed in "Neun Thesen" on Euclid with the request to the
ministry to organize a colloguium on these theses with the Aca-
demy of Sciences. The "Special Commission", chaired by E.G.
Fischer, that was finally set up by the ministry, suggested dele-
gating the further examination of Ohm to the Wissenschaftliche

Priifungskommission, - the appropriate board for teachers! - and

recommended a mathematics examination before this board as well
as a public lecture. The fact is that Siivern has, indeed, acted
in favour of this extraordinary examination. Ohm had supposed
that the demonstration lecture would take place in a university,
but Johannes Schulze gave orders that it should be held in a

Gymnasium. Although the Wissenschaftliche Priifungskommission de-

clared after the written examination and the demonstration les-

son that they were convinced that Ohm "sich zu einer auBerordent-
lichen Professur der Mathematik bey einer Universitdt schon jetzt
wohl eignen werde" (l.c., fo. 51), the ministry did not offer Ohm

a chair. Instead, Schulze asked him to "habilitieren als ... akade-
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mischer Dozent bei der philosophischen Fakult&dt" in 1821 (l.c.,
fo. 77). The orientation to teaching without expecting any
research achievements, which was connected with this position
of an "academic lecturer", was clearly pointed out by the
ministry after his appointment. Therefore Ohm was reminded in
1822 that he will have to prove himself to be a good academic
lecturer. His qualification for a university career was serious-
ly questioned and warned "Ihre vorgebliche Abneigung gegen eine
Anstellung bei einem Gymnasio (zu) bekdmpfen", and he should
"nach einer reiflichen Prifung Ihrer selbst erkennen...., wie
sie vermdge ihres inneren Berufs und nach den bisherigen Er-
fahrungen mehr zu einem Gymnasiallehrer als zum Docenten bei
einer Universitdt geeignet sind" (l.c., fo. 102). However, that

did not prevent Ohm from constantly applying for a chair.

Many books which Ohm submitted were - in contrast with the
practice with university professors - given to Gymnasium teach-
ers for an expert opinion. There were generally no positive
expert opinions on Ohm's work which could have supported his
subsequent advancement. For his appointment as "auBerordentli-
cher Professor" in 1824 he himself had handed in two references:
the recommendation of a "Konsistorialrath Matthias in Magdeburg"
and a work of E. Collins of Petersburg Academy, which referred
positively to Ohms' publications (l.c., fo. 140 f). His appoint-
ment to a chair in 1839 can be related to external pressure:

the Board of Studies of the United Artillery and Engineering

School made an appeal to the Kultusminister to appoint Ohm Or-

dinarius (e.c., fo. 146). Ohm had evidently threatened to leave
Prussia otherwise. It thus seems that the military directly put

pressure on the king.

Ohm's scientific-pedagogical efforts also failed to meet the

new disciplinary values of the exclusively technical reference
but were directly focused on himself, as was typical for the
university style of the eighteenth century. This is evident,
e.g. from Ohm's 1828 request to the ministry to establish a
"mathematisch-physikalisches Lehrseminar, nach meinen Prinzipien
und unter meiner Leitung" (ZStA II, fo. 19). The ministry flatly
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rejected such a personalization of the organization of the semi-
nar, which was to play such a key role in the ministry's concep-
tion of institutionalization of higher learning: it would such

an institute "unter Ihrer Leitung nicht fiir ndthig und nicht
einmal fir nilitzlich erachten, vorziglich insofern solches nach
Ihren eigenen, bekannt gewordenen, und noch weiteren Diskussionen

unterliegenden Systemen geschehen soll" (l.c., fo. 20).

Ohm's views of science were obviously rooted in the strongly
personalized way of communication, and not integrated into the
content-oriented disciplinary communication system. The above
mentioned example of his challenging the academy to a disputa-
tion with him proves this as well as the numerous examples of
his philippic against other mathematicians (c¢f. e.g. Biermann
1973). In order to obtain personal advantages, he did not
hesitate to denounce other mathematicians. For example, in a
memorandum of 1832 to the Bavarian ministry of the interior,
he defamed Crelle as a quasi anti-German representative of a
"franzsische Parthey" (party) in German mathematics, and
declared himself the founder of a "German" "school of mathe-
matics" (Bayerische Akademie, fo. 193). By means of this me-
morandum, Ohm attempted to win support in Bavaria for his plan
of a seminar, in which teachers of mathematics and physics
were to be trained "in diesen (his) Ansichten" (l.c., fo. 194).
Crelle's criticism seems to be right, in that Ohm's plans of
institutionalization would have effected, in a certain sense,
privatisation instead of generalization of communication, in
the discipline, and would hence have led to its conversion to
a "guild": "es kann gleichsam eine zunftartige Schule entstehen,
die wohl von allem, was die Fortschritte einer Wissenschaft
hemmen mag, zu dem Gefdhrlichsten und Nachtheiligstem gehdrt
(zstA IV, fo. 14)."

He did not communicate with his colleagues via journals in the
usual way: only late in his career some articles by him appeared
in Crelle's Journal. His' form of publication being books, which
were still entirely under the influence of the methodological

conception of a closed system of sciences prevalent in the
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eighteenth century, and which were intended to lay down the
definitive foundations and the perfect construction of mathe-
matics. He aimed at systematizing existing knowledge, not at

gaining new knowledge.

Therefore, despite Ohm's undeniable merits in the systemati-
zation of elementary mathematics and in the dissemination of
the idea of an operational approach to its fundamental con-
cepts, Martin Ohm was in several respects at odds with the

new processes of professionalization of mathematics. His method
which rather adhered to the model of philological science and
his way of doing things which was rather aligned to the educa-
tional or Gymnasium teacher type of mathematical scholar provide
characteristical hints as to the transitional stages. Ohm's
case elucidates the contradictions which had to be overcome in
this process in order to make a unity of cognitive and social

factors prevail.
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CAMBRIDGE UNIVERSITY AND THE ADOPTION OF ANALYTICS IN

EARLY NINETEENTH-CENTURY ENGLAND

Philip C. Enros

The first decades of the nineteenth century witnessed a great
change in English mathematics. It was a time of revival marked by much
distress over the state of mathematics in England and also by many efforts
to rally from the English slump in mathematics of the eighteenth century.
The period served as a threshold from the relative barrenness of the
eighteentl. century to the rich creations of such eminent English mathe-
maticians as George Peacock (1791-1858), Augustus DeMorgan (1806-1871),
and George Boole (1815-1864). Englishmen were once again to contribute to
the mainstream of the development of mathematics.

This period in English mathematics has been portrayed, for
the most part, as one of transition from the Newtonian dot notation and
synthetic methods to the Continental differential notation and analytic
methods [e.g. Ball, Becher, Cajori, Dubbey, Koppelman]. The description
is barely sufficient. With its tacit assumption that a switch in mathe-

matics caused the change, the account is of little help in understanding

This paper is a revised version of that given at the Berlin Workshop. It
is based on sections of my doctoral dissertation “The Analytical Society:
Mathematics at Cambridge in the Early Nineteenth Century", University of
Toronto, 1979.
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the timing of the revival, the motivations or intentions of the actors
involved, or the direction in which mathematics in England was going. The
renewal of English mathematics involved much more than simply a switch in
notation and methods. Other important currents, some social in nature,
played significant roles in the transformation which brought about the
adoption and assimilation of Continental mathematics.

The University of Cambridge became an important center for
the English adoption of foreign mathematics in the early nineteenth cen-
tury. Its history provides a good example of the diversity of factors
which were involved in the revival of mathematics in England. The aim of
this paper is to show the chief ways in which Cambridge, as an institution,
acted in the process of revival. Before examining the University's role,
it is necessary to outline part of the background to the events. Two
factors are especially important for understanding the developments at
Cambridge: contemporary opinion about the state of mathematics in England,
and the position of mathematics at Cambridge.

By the end of the eighteenth century many persons in Britain
began looking to the Continent, and in particular to France, for advanced
knowledge in mathematics. Among these were the mathematicians John
Playfair (1748-1819) and Robert Woodhouse (1773-1827). They lamented the
decline , or stagnation, of British mathematics. One of the causes of in-
feriority, they felt, was the traditional British stress on synthetic
mathematics to the neglect of analytics.

"Analytic" denoted a particular style of mathematics. It had
come into fashion in mathematics on the Continent in the second half of
the eighteenth century largely through the works of L. Euler (1707-1783)
and J.L. Lagrange (1736-1813). Its main characteristic was the formal

manipulation of equations, or expressions; analytics implied an algebraic
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or formal, operational approach to a topic. The alternative style was
synthetics. This was all that was not algebraic. During the latter half
of the eighteenth century synthetics came to include all that was not
strictly analytic. Hence the Newtonian style of the calculus, the theory
of fluxions, was synthetic because it involved the idea of motion, a
concept which was held as not algebraic. With the great achievements in
mathematics and in mathematical science on the Continent at this time,
non-analytic methods came to be identified with British mathematical
inferiority. The adoption of analytics with its related differential
notation, therefore, was seen by many in England as a remedy for the
stagnancy of mathematics there.

There was, however, one other cause of the decline which was
frequently mentioned, particularly by those who were in favor of change:
the lack of public institutional encouragement for the mathematical sci-
ences [e.g. Toplis, Thomson]. John Playfair of the University of Edinburgh,
for instance, was not alone in arguing that the true cause of English
inferiority lay in the state of the English universities and of the Royal
Society [Playfair 1808]. The latter, for example, did not offer "sufficient
encouragement for mathematical learning", unlike the Paris Royal Academy
of Sciences which promoted mathematics by "small pensions and great
honours, bestowed on a few men for devoting themselves exclusively to
works of invention and discovery." [Playfair 1810, 398] Furthermore,
Playfair held the English inadequacy in the mathematical sciences to be a
result of the English public's self-defeating "mercantile prejudices"
which were always prepared to demand an immediate justification for sci-
ence in terms of use.

Playfair's lament was typical of the opinions of many others

in Britain interested in mathematics. It was not just a reflection of the
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backwardness of English mathematics, but also a signal of a change in
attitude in England towards mathematics. One of the key problems in
understanding the development of English mathematics in the early nine-
teenth century is to provide a satisfactory explanation of why there was
a concern for the state of English mathematics at that time. A tentative
solution, which will not be developed in this paper, is that the concern
was a reflection of the progress of the professionalization of mathematics
in England. In any case, the widespread nature of the lament revealed a
movement to renew English mathematics that had linked a style of mathe-
matics with the advancement of mathematics.

Mathematics occupied a very important place in the system of
Cambridge studies. Indeed, its prominence was one of the two aspects of
Cambridge which distinguished that University from others in Britain. The
second feature was Cambridge's final examination, the Senate House exam-
ination, which later evolved into the Mathematical Tripos. Young men going
up to Cambridge in the early decades of the nineteenth century would enter
one of its seventeen colleges. These controlled to a large extent the
instruction of students. Besides classics, college lectures concentrated
on mathematics, thereby maintaining a Cambridge tradition of mathematical
study [Winstanley]. The lectures, especially in the larger colleges,
covered such mathematical topics as Euclid, algebra, conic sections,
plane and spherical trigonometry, statics, dynamics, hydrostatics, plane
astronomy, fluxions, fluents, and Book I of the Principia [compare Airy,
Schneider, Wright, and Academicus]. A fairly good basic training in
mathematics was available to, and expected of, almost all Cambridge
students enrolled for a Bachelor of Arts degree.

While the average Cambridge student probably acquired a

rather low level of proficiency in mathematics, quite a few did much more
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than was demanded by the college lectures [Airy, Wright]. Part of the
reason for this was the few formal requirements of a Cambridge education
as well as the inclination of some students towards mathematics. But the
main motivation was undoubtedly the University examination, the Senate
House examination, most of which was devoted to mathematics. The examin-
ation was held at the end of the period of study for the Bachelor of Arts
degree, about 3 1/3 years, and was by far the most important and most
rigorous test in qualifying for that degree. Although a very little
knowledge might suffice for passing in the early nineteenth century, there
was no maximum for the competition to be a wrangler, that is, to be in

the first class of the honours list. Serious students, or "hard reading
men", soon outstripped the college lectures by private tuition and study.
This meant the working of problems in such periodicals as Thomas Leybourn's

Mathematical Repository, the study of advanced topics such as the remaining

books of the Principia, and increasingly in the early nineteenth century
the effort to study such French mathematical works as those by S.-F.
Lacroix (1765-1843), P.S. de Laplace {1749-1827) and J.L. Lagrange [Airy,
Wright]. Besides fame and glory the reward for the Cambridge wrangler
almost certainly included a valuable college fellowship, an important
career consideration especially for those with few prospects [Tanner].
The Senate House examination, therefore, served as an institutionalized
incentive for the study of quite high-level mathematics.
The University of Cambridge, like many other British institu-

tions of that time, was confronted by a general spirit of reform.

...just as the University in the eighteenth century reflected

the dislike of that age to violent change, so in the nine-

teenth century it responded to the prevailing sentiment that

institutions, however venerable, had duties to the present as

well as obligations to the past. [Winstanley, 1571

Much criticism from both within and outside of Cambridge was directed at
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the curriculum. There were some efforts, mostly ending in failure, to

make the course of studies more comprehensive [Winstanley, 66-68, 167;
Roach, 221]. Despite these attempts, mathematics continued to enjoy its
privileged position in the intellectual life of the University especially
in the acquiring of honors. This situation could not fail to be coupled
with the lament about the state of English mathematics, particularly in
that age of reform. The synthetic mathematics studied at Cambridge, the
few alumni who pursued mathematical research, and the superficial stimulus
to learning provided by the Senate House examination were all pointed to
as proof of English stagnation [e.g. Playfair or Brougham 1816]. Indeed,
the state of affairs at Cambridge was to rouse a number of individuals to
attempt reforms in the mathematical studies. And the agents of change were
mostly to be found among the students, not among the fellows.

Students were coming to Cambridge in the early nineteenth
century, according to Sheldon Rothblatt, in a questioning mood. They were
more independent than students of the eighteenth century and were "intro-
ducing into their university lives many of the social and intellectual
ideas of their time" [Rothblatt 1974, 301-303]. It is then, perhaps, less
surprizing, given the turmoil of this period of British history, that
there was much dissatisfaction among students with the content and system
of Cambridge studies. In particular, many students, reflecting the wide-
spread regret about British mathematics, were unhappy with the synthetic
mathematics of Cambridge. The structure of Cambridge was to foster this
dissatisfaction.

Students at our universities, fettered by no prejudices,
entangled by no habits, and excited by the ardour and emula-
tion of youth, had heard of the existence of masses of
knowledge, from which they were debarred by the mere accident
of position. They required no more. The prestige which
magnifies what is unknown, and the attraction inherent in

what is forbidden, coincided in their impulse.
[Herschel 1832, 545]
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The best example of a product of the forces mentioned above is
the Analytical Society (1812-1813). It was a short-lived association of a
small but remarkable group of Cambridge students, including John Herschel
(1792-1871), Charles Babbage (1791-1871), and George Peacock (1791-1858).
The Society was one of a large number of student associations at Cambridge
of varying degrees of formality and size. But its aim was a reflection of
the concern for the inferiority of English mathematics. Prompted by a
familiarity or a proficiency or simply an enthusiasm for Continental
mathematics, as well as by the widespread lament about the decline of
English mathematics and by a dissatisfaction with the system and content
of Cambridge mathematical studies, a number of students and one recent
graduate decided to organize themselves. They resolved to contribute to
English mathematical science by studying and advancing analytics. The
members pursued this goal by electing officers, renting a room, starting
a library, holding regular meetings, reading papers, and by publishing

some of their research, the Memoirs of the Analytical Society, for the

year 1813. The Analytical Society saw itself as a mathematical organization
participating in the revival of English mathematics by the creation of
analytical mathematics.

While Cambridge of the early nineteenth century could act as
a stimulus to revival movements in mathematics, it also certainly was an
obstacle to the study of analytics. Once again, the history of the Analy-
tical Society provides a good example. The members, nearly all of whom
graduated as high wranglers, were very concerned with the hurdle of the
Senate House examination. Preparation for the examination limited the time
that could be spent on the Society's activities. Furthermore, the Society's
pursuits had no bearing on the degree of success in the Senate House

because of the stress on synthetics there. By early 1814 nearly all of
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its members had graduated. They left Cambridge for various parts of Eng-
land often to pursue careers which did not involve mathematics. The
Analytical Society, therefore, was very much a child of Cambridge.

An informal mathematical revival movement emerged at Cambridge
in the 1810s out of the dissatisfaction and feelings of deficiency that
prevailed there, particularly among certain students and recent graduates.
Cambridge not only played a role as a stimulus to this activity, but also
molded its efforts. The University, through the structure of its studies,
was to influence the ways in which the attempts to "reform" Cambridge
mathematics expressed themselves.

Analytic mathematics found its way into Cambridge teaching
very early in the 1810s. Many recent graduates used the customary wrang-
lers' practice of private tuition, made possible (as noted above) by the
meagre college teaching at Cambridge, to diffuse their "true faith" of
analytics. George Peacock, John Herschel, Richard Gwatkin (1791- ?), and
John Whittaker (1790-1854), all taught their private pupils French mathe-
matics. Some graduates also went on to direct students' studies to
"better" mathematics through the position of college tutor or lecturer.
William Whewell (1794-1866), for example, became assistant tutor and
mathematical lecturer at Trinity College in 1818. Eager to promote analy-
tics at this time, he saw his new office as an opportunity to change the
mathematics taught at Trinity [Todhunter 2 1876, 30].

The Senate House examination was another aspect of the Uni-
versity which was important for the adoption of analytics. Although the
influence of the examination on the content of Cambridge studies had
served as an obstacle to the introduction of analytics, the fact that the
examination could exercise such an influence provided a means for altering

those studies. George Peacock, appointed a Moderator of the examination
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in 1817, attempted to use his position to make changes in both its con-
tent and conduct [Peacock 1816, 1817]. His efforts at that time largely
failed. However, he was once again Moderator in 1819 and this time, with
the support of the other Moderator, Richard Gwatkin, and of one of the
Examiners, Fearon Fallows (1789-1831), he was more successful [Peacock
1818, 1819]. The emphasis of 1819 was maintained in the 1820s by the
Moderators, most of whom were also college tutors and it appears, committed
to analytics. The control of the Senate House examination was a very
important element of the successful diffusion of analytical mathematics
in the Cambridge course of study [Herschel 1832, 545; Tanner].

Cambridge textbooks were of equal importance with teaching
and the Senate House examination as a vehicle for change. The analytical
movement supplanted, mainly in the 1820s, the o0ld standard textbooks con-
taining synthetic mathematics with new analytical ones or with translations
of French works. Robert Woodhouse's (1773-1827) various texts from 1803
did much to introduce English readers to continental developments in var-
ious branches of mathematics. Similarly the translation of Lacroix's

Traité élémentaire in 1816 and the compilation of the A Collection of

Examples (1820) by Babbage, Herschel and Peacock, were written to help
replace synthetics in the elementary course at Cambridge. The goal was to
revise the course of study with a concentration on pure mathematics and
with an eye to keeping pace with the general advancement of the field.
Many such analytical treatises appeared in the 1820s. As many of the
authors were also Moderators, the contents of those works quickly found
their way into the Senate House examination [Great Britain, 454].
Analytical mathematics was adopted at Cambridge very quickly
in the late 1810s and early 1820s due to activities within the University

of a new generation whose goal was to revive Cambridge mathematics. The
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University had served as both a stimulus and a vehicle for that revival,
but it was not merely a passive factor. The goals of the revival movement
at Cambridge had parallelled the concern over the condition of mathematics
in England. This anxiety, as noted above, involved not only a style of
mathematics (analytics) but also a promotion of research in mathematics.
The latter was also part of the outlook of the Cambridge movement. Herschel,
for example, wished that the University would develop the student's "relish
for mathematical speculation" and that it would encourage postgraduate
studies in mathematics [Herschel 1816]. But his views were nothing more
than wishful reflections of his own motivation. The research ideal did
not fare as well at Cambridge as had the transition to analytics. Cambridge
did not exist to promote mathematics and would not move in that direction,
at least in the first half of the nineteenth century. The educational goal
of Cambridge, a liberal education, was to temper the original impulses of
the revival movement.

Mathematics at Cambridge found its meaning in education, in
the ideal of a liberal education [Rothblatt 1976; McPherson 1959]. Both
the content and the system of studies were justified by this ideal. It
implied the molding of the character of a young man into that of a gentle-
man. Such an education stressed the transmission of the culture of man or
of the nation to the individual. A liberal education existed in sharp
contrast to any education devoted solely to specialized training for a
later career. While Cambridge students might receive a very good training
in mathematics, the purpose of the University was not to train mathemati-
cians nor to push back the frontiers of mathematics.

An appeal to the idea of a liberal education could have impli-
cations for analytic mathematics as well as for research. An important

facet of the distinction between analytics and synthetics was a commonly
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held opinion about the difference in their value. Probably due to the
great advances in mathematics of the seventeenth and eighteenth centuries,
analytics was highly regarded for its power of discovery. It was the best
example of the way in which reasoning was to be used [see "Analytics" in,
for example, Hutton 1795 or Barlow 1814]. Analytics was therefore firmly
linked with research mathematics in early nineteenth-century British
thought. By contrast, synthetics was prized for the clarity and rigor of
its explanations. Many persons had misgivings about the vagueness and im-
precision then associated with analytics. Synthetic mathematics was linked
to education because of its aptitude, which had been traditionally ac-
knowledged, for developing and strengthening the reasoning powers of the
mind. A liberal education, in itself, would therefore favor synthetics in
the curriculum at the expense of analytics.

Analytics at Cambridge did meet with some such criticism
although the censure did not prove to be strong enough to prevent the
adoption of the new mathematics. The London Magazine saw the triumph of
analytics over geometry as "one more proof how strongly the tide of opinion
at Cambridge sets in towards theAbelief, that men are congregated in those
Boeotian flats for the promotion of science, rather than of education"
[Anon, 303]. Similarly, Arthur Browne, a fellow of St. John's College,
argued that any superiority which analytics had over geometry was valuable
only to those who intended to devote their whole lives to mathematics.

But the object of a university, he thought, was not to expand science but
to diffuse religious knowledge and to supply men qualified for offices in
the Church and in the State [Browne, xiv-xv, xviii-xx].

Analytics, as had been the promotion of research, was to be

rejected by the circumstances of Cambridge and frustrated by the ideal of

a liberal education. It seems that increasing criticism of Cambridge,



146

particularly in the 1830s and 1840s, gave rise to a defensive reaction
within the University. This response manifested itself in mathematical
studies by an emphasis in the curriculum on geometry and elementary math-
ematics and by an assertion of the subservience of mathematics to the
goals of intellectual discipline. Henry P. Hamilton (1794-1880), for
instance, abandoned the reliance on analytics and the stress on advanced
mathematics in the fourth edition (1838) of his textbook An Analytical

System of Conic Sections because they were "too scientific" [iii]. By 1850

Whewell was able to rejoice in the successful checking of the "mischievous
tendency" of analytics [Great Britain, 500]. Thus the ideology of a Cam-
bridge education was finally to triumph over analytics as it had over
research.

The story of the adoption of analytics at Cambridge in the
early nineteenth century illustrates the importance of context for under-
standing developments in English mathematics. In this case, the University
was itself an important element of the process by which certain aspects
of Continental mathematics were transmitted and assimilated. Cambridge
was involved both through its system of studies and through its ideology.
These served to mediate the movement which aimed at reviving English math-~
ematics. The type of mathematics, as well as the role of mathematics,
which was accepted at Cambridge University underlines the way in which any
institution reflects society. Mathematics was used to educate gentlemen,
not to train mathematicians. It had not yet been accepted as a profession

in early nineteenth-century England.
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A SURVEY OF FACTORS AFFECTING THE TEACHING OF MATHEMATICS OUTSIDE THE

UNIVERSITIES IN BRITAIN IN THE NINETEENTH CENTURY

Leo Rogers

At the beginning of the nineteenth century, Britain was already well
into its Industrial Revolution. When we consider that in the space of
some hundred years the transport system alone developed from the use of
riding track and canal, through coach road to a complex railway network
and even the first motor cars and airships, we have an indication of
the rate of the change and the ease with which ideas flowed along the
communication network, ready to be utilised by those who saw their

potential and advantage.

The roots of the nineteenth century changes in, and eventual
institutionalisation of the means of education lie not only in the
increase in industrialisation but also in the gradually accelerating

view of the expectations of ordinary people.

Accompanying the industrial and social changes were deep changes in
attitude towards science - particularly applied science and
technology - which showed science as a benefactor and which

provided the patronage for pure science to flourish.

The encouragement of the study of science by the rising middle class
led to the establishment of a number of 'Literary and Philosophical'
Societies, the most famous of these being, perhaps, the Lunar Society,
who met originally at Mathew Boulton's Steam Engine Works in
Birmingham from 1766 for discussion and experiment on immediate
industrial problems and whose later interests developed into the

advancement of science and technology and the area of social and

149
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political education. Many famous names are associated with this
society, among them Watt, Keir, Galton, Priestly, Erasmus Darwin,
Edgeworth and Wedgewood, who deliberately educated their children to

be leaders of nineteenth century industry. The middle~class, forward-
looking industrialist was also often a scientist-innovator as well, with

a strong interest in practical applications.

Men like these came largely from non-conformist backgrounds. They had
been excluded from any Public Office and from taking degrees at Oxford
or Cambridge by their refusal to take the oath of allegiance to the
King as head of the Church of England and so went to Scottish
Universities or one of the Dissenting Academies. They were often
Rationalists, attracted to French philosophies of the enlightenment,
with their social and educational implications, supporting struggles
for liberty and exposing corruption. Their main contribution to
Education was to reject the values of eighteenth century aristocratic
society by adopting versions of materialist philosophy and psychology
and attempting to put forward new and relevant designs for social

living.

For example, the curriculum at Warrington Academy (1757-1786) which set
the model for many of the nineteenth century Academies and Colleges to
follow favoured scientific enquiry, was open to the influence of the
new needs of society, and included such revolutionary subjects as
history, politics, modern languages, commerce and the practical
applications of mathematics and science. The aim of such a curriculum
was to prepare young men for their future role in the development of

science and industry, and the people educated at Warrington and other
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places became the members of the numerous Literary and Philosophical
Societies that flourished in the nineteenth century and who directed a

decisive stage in the Industrial Revolution.

All the major centres of industry supported a society devoted to the
furtherance of useful arts for the improvement of local industry. A
typical example is the Manchester Literary and Philosophical Society.
Founded in 1781, it supported the Manchester College of Arts and
Sciences (1783) for part-time students where chemistry and mechanics
were taught and considered to be most relevant to local industry.

Other subjects already mentioned were included in the curriculum and
also classical languages, grammar and rhetoric, mathematics (including
trigonometry) and commercial and economic geography. Manchester
Academy (1786) was soon founded to cater for full-time students, and
both these institutions evolved later into Owens College (1853) and
eventually into Manchester University. The Academies were supported by
contributions from local industry, since the pay off - applicable
knowledge -~ was direct and obvious, and the long-established traditions
of craft-apprenticeship were fostered in the new technologies. Better
communications also assisted a number of serials to flourish; the well-
known Ladies Diary being one, and the readership of these and of
technical and mathematical articles and even regular columns in news-
papers, widened. The range of knowledge shown by correspondents to
such columns was quite wide; as well as the expected algebra, arithmetic
and trigonometry, we find, for example, mensuration, statics, dynamics,
probability, calculus and conic sections. Mathematical columns in
newspapers were dgenerally short-lived, starting as recreations for
interested 'philomaths® but often becoming academic and specialised,

for the enthusiast only.
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For the most part, the contributors were either self-taught in the
sense that they had the leisure and access to the well-established
'non-university' mathematics of writers like Bonnycastle and Hutton and
may well have had some training from one of the mathematical
practitioners still thriving at the beginning of the nineteenth century;
or they were already products of the Academies and Colleges exercising

their newly acquired practical knowledge.

The rise of technology required greater servicing from the reviving
University mathematics, and a number of interpreters and educators
flourished who transmitted portions of this university mathematics to
the common man. Such people as Olinthus Gregory, and Thomas Tate were
making mathematics more available, and Augustus De Morgan's work was
serialised by the Society for the Diffusion of Useful Knowledge and
apparently read as avidly as the serialised work of his contemporary,

Charles Dickens.

The work of Dickens and others prompted the social conscience of the
middle class and was one of the factors responsible for the
institutionalisation of social services and the gradual taking over of
this responsibility by the state. Radical philosophy thus slowly
helped to distribute the wealth created by the new technology, so that

by the end of the nineteenth century universal education was a reality.

As indicated, the mathematics taught and used was essentially practical,
as the samples below show - the criteria being the essential applicab-
ility to current problems in commerce, measurement of various kinds,

and industry. Thus, subsumed under the general heading of practical

mathematics may be a wide variety of skills - from instrument making to



153

determining the density of a chemical solution for tanning hides.

As the institutions developed, and the subjects studied themselves
became more complex, the necessary applications of mathematics were
gradually taken in and taught within a particular subject area, to
become part of 'physical chemistry' or 'mechanical engineering', etc.,
so that very often what once started as a good example of 'theoretical'
mathematics applied to a real problem, became an isolated and possibly
archaic rule of thumb. The applications of mathematics became too

numerous and too specialised to be taught by mathematicians.

The public discussion and dissemination of mathematics in the nine-
teenth century helped to breed a new class of teachers, socially aware
and devoted both to the teaching of mathematics and the educational
development of children and young people. While the content of the
elementary school curriculum was largely arithmetic and that of the
grammar and public schools included some Euclid and trigonometry, this
state of affairs had taken a century to come about, and was consider-
ably accelerated from 1863 onwards by a Royal Commission enquiry into
the curriculum of the public schools, and a number of subsequent
Government Reports. Teachers were being asked their opinions, and in
particular their voice was being raised against traditionalist
attitudes on the content of the curriculum. The Association for the
Improvement of Geometrical Teaching was formed, as a grass~roots 'anti
Euclid' movement, but not so much for banning Euclid as for making the
teaching of geometry more appropriate to the mental development of
children. From this beginning the Mathematical Association was to
develop the four-stage plan for the teaching of geometry, from

practical drawing, to proof.
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The evolution of the mathematics curriculum in the nineteenth century
is a highly complex affair. This brief summary suggests that the major
influence as to content came from the developing needs of industry, and
that of method from the growing social awareness and general level of
expectation of the teachers involved. How these two interacted and
exactly what influence British University mathematics had on the

schools, must be subject for continued examination.

SAMPLES FROM THE NINETEENTH CENTURY MATHEMATICS CURRICULUM

(i) Dilworth, Thos. The Schoolmasters Assistant. Being a Compendium

both Practical and Theoretical., Eleventh edition,

London 1780, (Various editions from c. 1740).
Typical of most basic arithmetic teaching throughout the nine-
teenth century both in content and implied methods.

Contents: 1. Arithmetic in whole numbers and the common rules,

(addition, subtraction, multiplication, division).
This simple heading contains a very large number of
examples of all kinds of 'applications' of
arithmetic, each categorised as a particular skill
or technique.

The start of each section is a kind of 'catechism'
or series of questions and answers (which the pupil
was clearly required to learn by heart) which
defined the skill about to be learnt and stressed
its relevance in theory or practice.

For example, from the Introduction (pp 1-2).
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"Q. What is Arithmetic?

A. Arithmetic is the art or science of computing by Numbers,
either Whole or in Fractions. - - = = = = =

Q. What is Theoretical Arithmetic?

A. Theoretical Arithmetic considers the Nature and Quality of

Numbers and demonstrates the Reason of Practical Operations.
And in this Sense Arithmetic is a Science.
Q. What is Practical Arithmetic?

A. Practical Arithmetic is that which shews the Method of working

by Numbers, so as may be most useful and expeditious for
Business. And in this Sense Arithmetic is an Art.
Q. Which are the Fundamental Rules in Arithmetic?

A. These five: Notation, Addition, Subtraction, Multiplication,

and Division.
Q. What is Notation?
A. Notation is the Art of Expressing Numbers by certain

Characters or Figures."

A curious reason is given for there being nine digits or nine
places, rather than eight or ten; namely that a number of nine
digits (say 123,456,789) was sufficiently large "to express most

ordinary concerns" (p2).

Addition is simple, that is the addition of numbers representing
the same type of object, pounds to pounds, yards to yards , etc.
and Compound, that is the addition of mixed quantities, like

shillings and pence. Similarly, we have simple and compound
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subtraction, multiplication and division. Note that because this
section deals only with the arithmetic of whole numbers, any
remainder of a division is not expressed as a fraction. Division
"shews how oft one number is contained in another, and what

remains”". (p.31).

These remarks indicate what we now would regard as a very complex
system in common use, where it is possible to conceive that a
person may be able to operate with simple calculations in his own
trade, but not be able to transfer his skill to another, because
they had been set up by teachers as conceptually distinct. I
have no firm evidence for this; it is a speculation from a modern
point of view and must be regarded in thc _ppropriate cultural

context.

The applications are given in many detailed examples of various
trades, where the quantities and measurements differ widely.
Almost every trade had its peculiar unit of measure, some of
which are clearly local, while others were regarded as rather
special applications, For example, "the Denominations of Motion in

the heavenly Bodies" was angular measure. (p.20).

12 signs or 360 Degrees make the circle of the Zodiac
30 Degrees make 1 sign
60 Minutes make 1 Degree

60 Seconds make 1 Minute
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Division subsumed reduction, (both descending and ascending) the
rule of three, direct and inverse proportion, and practice. 1In
fact, this section demonstrates the applications of multiplication
and division in the calculations of bills, quantities, etc. A
great deal of attention is paid to the setting out of calcul-
ations, as would be expected in book-keeping and examples are
given of interest, discount, equation of payments, exchange,

alligation, arithmetic and geometric progression and permutation.

This accounts for a good half of the contents and where the units
of measure are so varied and contain so many sub-units, it seems
unlikely in practice that traders ever required to manipulate
fractions extensively. As today, they no doubt had traditional

methods of allowing for left-overs or small deficits.

In this sense, the arithmetic taught here was much more relevant
to actual practice, than the arithmetic taught in our schools
today. Pupils knew if they got it wrong, they starved. The
other sections of the book contain:

2. Vulgar Fractions: Notation, Reduction and the four

Rules of Three, Direct and Inverse. (A short section of
only ten pages).

3. Decimal Fractions: Content as above with vulgar

fractions and then sections on powers and roots,
interest, annuities, rebate and the equation of payments.
4., The next section contains a large selection of questions

(and answers) for practice.
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5. The last section (of twelve pages) is a rather special-
ised piece on "Duodecimals" where the examples given are
of a joiner measuring wood in feet, inches, seconds
«twelfths of an inch), and so on. A short table giving
decimal equivalents to duodecimals is displayed and some

examples of its use given.

This last may seem a curiosity, but two aspects are significant.
In the first place, it represents a consistent base-twelve system:

"12 Fourths make 1 Third

12 Thirds make 1 Second

12 Seconds make 1 Inch

12 Inches make 1 Foot" (p.181)
and one could imagine that the system was chosen (or built up
purposely) to display convenient combinations of halves and
thirds. Of course, it is unlikely that carpenters ever needed to
measure to an accuracy of more than a second (twelfth), and in
actual practice most measurements are not taken with a ruler,

anyway.

Secondly, it is the only example in the book where a table is
used to demonstrate and calculate equivalences, in the manner of

a ready-reckoner.

As usual, in such a book, we have a fairly lengthy introduction,
containing an essay on the education of youth, notable for its
plea for the education of girls; for the woman who has had a

liberal education "--knows the Advantages that arise from a ready

Use of the Pen ---" (p.xiv) which give her some independence,
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particularly in widowhood. There is also a list of some fifty-
two Lecturers, School-masters, Writing-masters and Teachers, the
majority from near London, who recommend this book as the best
for the "--speedy improvement of YOUTH IN ARITHMETIC--"

(pp Xix-xx).

Crossley, J.T. and Martin, W.

The Intellectual Calculator, or Manual of Practical

Arithmetic --- London. 58th Edition. c.1870.
The contents, and even the examples are virtually the same as
Dilworth, while the "Duodecimals" appear, though not by name, as
part of an exercise of the "Fractograph" (a geometrical diagram
for demonstrating simple fractions) on the last two pages

(145-146) of the book.

Gone are the exhortations, recommendations and the detailed
examples of setting out; much is condensed into lists and tables
so that "... the rationale of the science should be demonstrated
in a manner calculated to draw forth the thinking powers of a
child." The authors have "... kept in view the market, the
counting-house, and the shop." (p.7) The book also includes a
"complete course of mental arithmetic" reduced to a regular
system which the student was supposed to be able to apply to any

situation.

Since the book was so popular, it would appear that memory was a

major criterion in the learning of arithmetic at this time.
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Davidson, J.

A System of Practical Mathematics: Edinburgh: 1832

(Third Edition)
Davidson's text was intended for use in Public Schools (i.e.
Private Schools and Academies where more advanced and specialised
mathematics was taught) and again is fairly typical of the style

of nineteenth century teaching.

I let the following extracts from Davidson's preface and contents
speak for himself.

(iii - xv): ".. it is still the general opinion of experienced
teachers, that a plain treatise, comprehending the best practical
rules, with examples of their use and application, accompanied,
where necessary, with explanatory notes and practical remarks, a
sufficient number of well-selected and accurately expressed
unsolved exercises adapted to each rule, and demonstrations so
elementary as to be intelligible to anyone who understands
Arithmetic and the Elements of Geometry and Algebra, is much
wanted: and such a course of instruction I have endeavoured, to

the best of my ability to supply ..."

The contents are as follows:

I. Algebra. This deals with all the rules and processes we have
previously seen in books for the elementary school (excluding
weights and measures) as 'generalised arithmetic' to display

the 'first principles'.
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III.

1v.

VI.

VII.
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Elements of Geometry. Contains some theorems of plane

Geometry with emphasis on proportion and construction, with
geometrical problems ".. by drawing which the learner will
acquire the use of his instruments ...". 1In this section also

we find procedures for determining the accuracy of "rhumbs,

chords, sines, tangents and secants" and for finding missing

values in tables.

Plane Trigonometry includes the construction of trigonometrical

tables and the construction and use of 'Gunter's scale' (a
version of the slide rule for use on trigonometrical calcul-
ations) and the 'sliding rule' (a specialised slide rule for
estimating quantities and prices in the measurement of timber
and other bulk products).

Mensuration of Heights and Distances includes "the distance of

an object by the motion of sound," (e.g. the time between
sighting an explosition and hearing it), heights and depths
using the barometer and the motion of heavy bodies.

This is followed by -

Mensuration of Surfaces

and a chapter on -
Conic Sections: the parabola, ellipse and hyperbola.
next comes -

Mensuration of Solids with a large number of examples of all

kinds of sections of various solids.
This concludes the more general part of the text (about a
third) and the following sections deal in greater detail with

a wide variety of practical skills, namely:
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VIII. Specific Gravity (including weight of cattle)

IX. Land Measuring (including the use of plane table and theodolite)

X. Artificers Measuring (timber, brickwork, etc.)

XI. Gauging (including residues left in casks)
XII. Gunnery (including the use of triangular numbers to count
piles of balls or shells).

XIII. Spherical Trigonometry

XIV. Geographical and Astronomical Problems

XV. Methods of Ascertaining Time

XVI. Methods of finding the Lattitude

XVII. Methods of finding the Longitude

and finally,

XVIII. Navigation (both plane and globular)

The last section of the book (some 200 pages) is taken up with various
tables of weights and measures, and a range of logarithmic, trigono-
metrical and astronomical tables, together with methods for their
calculation. These tables "... were collated with the tables of
Hutton, Callet, Taylor, Briggs, etc., by which means, many errors,
especially in the last decimal figures, which had escaped former

editors, were discovered and corrected."

Given the comprehensive nature of this text, and the straight forward
practical attitude of its author, it is no surprise to see a note of
guidance for the reader: "... that though the different parts of the
work are so arranged that they may properly be taken in succession,
yet they are in general so distinct, that a learner who has not
leisure to go over the whole, may select and study any particular

branch, which is more the object of his pursuit than the rest".
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These selections from the 'mathematics of the common man' of the nine-
teenth century show a marked contrast with the academic university
studies of the same period. We know the state of university mathemat-
ics in England at the beginning of the century was poor indeed, and by
the end of the century a considerable amount of 'catching up' had been
done, with mathematicians from the British Isles making some outstand-
ing contributions to the general body of knowledge. During the
century we also have attempts at popularisation, for example by De
Morgan in the Penny Cyclopaedia - a weekly pamphlet which serialised

his Calculus and other expository mathematical writing from 1837.

In spite of the growing influence of England in mathematics, and the
attempts at popularisation, very little change occurred in the
content of the mathematics taught in schools, colleges and academies.
Elementary schools taught arithmetic, the Public Schools set the
model for the secondary sector with Euclid, Algebra and Trigonometry
for those who aspired to university entrance, and the colleges and
academies taught the specialised and fundamentally practical

mathematics required for commerce and technology.
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MATHEMATICS IN A UNIFIED ITALY

Umberto Bottazzini

1., "The Risorgimento, the national rebirth of Italy,
also meant the rebirth of Italian mathematics" (Struik,
1967,179) or, in Volterra's words, "the scientific exi-
stence of a nation" (Volterra, 1900,43). An idea of the
difficulties - political and otherwise - met by Italian
mathematicians before the unification of Italy may be de-
rived from the fact that Mossotti, physicist and mathema-
tician, and Betti's mentor in Pisa, upon his return to I-
taly after a long exile in England and the Argentie, was
refused a chair in the Lombardo-Veneto and in the Papal
State because of his patriotic ideas. Another instance:
travelling from Austrian-ruled Pavia, where Brioschi was
teaching, to Rome in the Papal State, where Tortolini's

Annali di Scienze Matematiche e Fisiche were published,
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required crossing no less than four state borders. This
situation made the direct exchange of ideas among mathe-—
maticians from the various states very difficult, or al-
together impossible. Not even the few meeting of the I~
talian Scientific Society (called "Societad dei XL") were
of any help; in fact, this association was looked upon su-
spiciously by the police of the various states and gave a
number of informers, probably present even among the ma-
thematicians, the opportunity to report on the conspira-
torial and patriotic activity of the scientists. Little
wonder then that only in 1858 men such as Brioschi and
Betti, Tardy and Genocchi were able to meet in person -
personal contacts being so meaningful for mathematical de-
velopment, This meeting occurred on the occasion of the

founding of the new Annali di Matematica Pura e Applicata

modelled after the German (Crelle's Journal) and the Fren-
ch (Liouville's Journal). Nor does it appear to be a ca-
sual circumstance that this new journal first appeared in
1859, when the movement towards the political unification
of Italy started with the annexation of Lombardo-Veneto

to Piedmont (the nucleus of the Italian nation, as Prus-—
sia was to the German) and with the first awakening of a
national political conscience., Proof of the latter is fo-

und in the editors' opening statement in the first issue
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of the Annali:

"The editors' trust (nor would they otherwise have under-
taken this publication) that the Italian geometricians
will do their utmost in order to make sure that a journal
aiming to represent our science is able to continuously
attract the attention of the learned of other countries ,
thus putting an end to the complaint that our work is un-
known abroad" .

This trust was confirmed when the Annali - edited by
Brioschi and Cremona from 1867 - grew to be one of the
most authoritative European journals,

In the Risorgimento years the young Italian mathemati-
cians took aﬂ active part in political life; first in the
independence war and later in building a new country.
"Several of the founders of modern mathematics in Italy
participated in the struggles which liberated their coun-
try from Austria and unified it", wrote D.J.Struik (1967,
179) and, elsewhere: "The relationship between scientific
selfconsciousness and the struggle for independence is
personified in the young mathematicians Betti and Cremona,
who were soldiers in the wars for political freedom"(Struik
1979). Actually, the former was a volunteer in the Pisa
student battalion led by Mossotti, while the latter fought

against Austrians in Venice. The Austrian police also kept
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their eyes on Casorati and Brioschi.

With the foundation of the new state, the situation, as
concerns mathematics, changed thoroughly. Among the intel-
lectuals who took part in the country's political leader—
ship, after unification 1861, the scientists, and especial-
ly the mathematicians, played an important role. Betti's
friend, the Pisan physicist Matteucci became made Minister
of Education in 1862, with Brioschi as General Secretary.
From the inception of the new state, Brioschi and Betti,
first as members of parliament and later as senators, as
many a mathematician later on: Beltrami, Cremona, Dini,
Volterra, etc., were appointed to the High Council for Pu-
blic Education. On the institutional level Casati's law
(1859) favoured the establishment of new chairs: the first
chair of Higher Geometry at Bologna University (1860) was
given to Cremona, and teachers and student could now move
freely from one university to another: for instance, Bel=-
trami first taught in Pavia then in Bologna and Pisa.

"The first, enlightened decision of the national govern—
ment was the institution of special chairs for the teach~
ing of higher mathematics, and the appointment to these

chairs of the famous men whom we mentioned, who were then
followed by other, no less famous personalities. Thus a

new environment was suddendly formed and a new era began"
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(Volterra 1908,58).

To the names mentioned so far Genocchi and Battaglini sho-
uld be added, the former left his home-city, Piacenza, in
1848 before the Austrians returned victorious and, after
settling in Turin, began teaching higher analysis at the
university in 1860, while in the same year Battaglini be-
gan his course of higher geometry at the university in Na-
ples. A significant indication of the changes brought a-~
bout by national unification, for instance, is the fact,
also recorded by Volterra, that "Battaglini was not entru-
sted with public teaching before 1860: he had failed an
examination because he had dealt with the problem accor-
ding to the new, fruitful ideas of Salmon instead of using

Newton's older methods" (Volterra 1908,57) .

2. In connection with the most advanced currents of Eu-
ropean research, the Italian mathematicians of this period
are the protagonists of a strong, thorough renewal of the
national mathematical tradition.

"These mathematicians, like Cavour in politics, turned
their eyes toward Germany, a country that was emerging

out of a maze of smaller and larger states into a strong
empire with an equally strong mathematical establishment.
They studied Gauss, Riemann, Clebsch and later Klein, with-—

out neglecting the French. By the time that Italy had a-



170

chieved its unity with Rome as its capital, it could be
proud of a group of mathematicians, Beltrami, Betti, Brio-
schi, Codazzi, Cremona and others, with an international
reputation. For mathematics the Risorgimento was a Rina-
scimento" (Struik, 1979).

This Rinascimento had, of course, roots in the mathema-
tics of the early nineteenth century, although the histo-
rians have often forgotten them, emphasising the work of
Betti, Brioschi, Cremona, Dini and so on. In the early de-
cades of the past century a large group of italian mathe~
maticians was working in mathematical physics: even if
little known nowadays, they were then, as a group, a very
important one. People such as Bordoni, Mossotti, Plana,
Piola, Chid and others were influential and esteemed at
home and abroad. The true novelty was in the field of re-
search of the young mathematicians: they abandoned the
prevailing french tradition in applied mathematics and
studied algebra and group theory, invariant theory, elli-
ptic functions and complex analysis, projective and alge-
braic geometry.

Besides research, the outstanding Italian mathematicians
also dedicated their energies to teaching both at secon-
dary schools and university level., This in my opinion is

an important factor for understanding the development of
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Italian mathematics in the second half of the last centu-
ry, when the formation of "schools" around the most pre—
stigious teachers played a significant part.

Along with pure research, an effort was made to train
qualified technicians and engineers, needed by the coun—
try for its industrial take off. Thus, in 1863, with the
financial help of the Lombardy industrialists, Brioschi
founded an engineering school in Milan (the present Poly-
technic Institute) to turn out the engineers required for
the industrial transformation of Northern Italy which chi-
efly needed an efficient railway network. Among the tea-
chers at the engineering schocl there were Brioschi, Ca-
sorati and Cremona. A similar school was founded by Cre-
mona in Rome.

At this time, the essential problem in teaching was the
drawing up of adequate manuals and treatises, based on the
latest research: this problem was enthusiastically tack-
led by the young mathematicians.,

Cremona and Casorati were thinking of a treatise on hi-
gher algebra when they learned from Novi that the first
volume of his own treatise (Novi, 1863) - based on the
lectures delivered by Betti a few years earlier - was be-
ing printed. Novi, instead, suggested that they consider

a manual on analytic geometry. He wrote to Casorati:"Did
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you never think about a treatise on analytical geometry?
Tardy is working on his book on differential and integral
calculus. Let's see if we can apply rigour to our studies
in Italy". And, when the project seemed to be abandoned,
Novi again exhorted them to carry on and added: "Thus, if
I succeed in making Tardy publish his treatise on diffe-
rential and integral calculus which has kept him busy for
several years, we shall have a complete Italian course on
higher mathematics'", However, neither Tardy's work (Bot-—
tazzini 1980,85) nor the vaguely outlined book by Casora-
ti and Cremona ever appeared., Casorati taught analysis at
Pavia and wrote a treatise on complex analysis (Casorati,
1868) while Cremona issued, a few years later, a projecti-~
ve geometry handbook (Cremona, 1873).

However, the leading Italian mathematicians were very
busy translating foreign books, treatises and papers; this
tradition would continue without interruption until the
end of the century.

Again, the scientific imprint given to the reform of se-
condary education (1867) was due to the mathematicians who
were members of the governing bodies of the Ministry of
Education; this reform concurred with the contemporary law
on the "suppression of ecclesiastical bodies" (1867) and

marked a turning point in the secularisation of the Ita-
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lian state. In fact, the still open "Roman Question' - Ro-
me, the Papal seat, was still severed from the rest of the
nation - represented the main political problem of the new—
ly born nation at the time. The attitude of the young Ita-
lian mathematicians is apparent from certain letters of
theirs: faced with Tortolini's ambiguity concerning the

issuing of the Annali di Matematica Pura e Applicata (1858)

Brioschi did not hesitate to remind him and his Cardinals
that the time of Galilei's trial was long past; while Ca-
sorati wrote to Betti in 1860 and wished Rome to be ''freed
of papal tyranny" as soon as possible; Cremona was similar-
ly firm who invited Betti and Brioschi, members of the Hi-
gher Council for Education, to put and end to the shameful
requirement that, to be admitted to the universities of
the new Kingdom, students should take an examination on
"the mysteries of the Catholic faith",

This anticlerical, scientific attitude was one of the
basic elements of Italian culture in the second half of
the 19th century; an attitude which would last until the
1920s when the Catholics were readmitted to political 1i-
fe and while, at the same time, philosophic idealism ru-
led Italian culture,

Beside teaching at university level, the Italian mathe-

maticians also took great interest in the problem of se—
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condary education. In fact, as Loria said: '"au moment ol
1'Italie devenue enfin libre put jouir, d'un bout & 1l'au-
tre, d'un gouvernement national, elle conservait encore
dans son organisation scolaire des traces déplorables et
évidentes de son séculaire servage. Dans l'ancien Piemont
p. ex., certainement 3 cause de 1l'influence francaise, on
préferait la méthode demi-arithmétique de Legendre aux ri-
goureux procédés géométriques d'Euclide: tandis que dans
les provinces qui venaient de secouer le joug autrichien
se trouvaient répandus des manuels écrits avec le seul but
évident de spéculation commerciale" (Loria 1904, 595).

A few years earlier (1856) Betti translated Bertrand's
handbook of elementary algebra and in 1861 with Brioschi
edited a new edition of Euclid's Elements. From 1862 they
both worked at establishing a company whose main aim, as
Betti writes to Casorati, "is to supply textbooks for se-
condary schools and to spread useful knowledge'. On the
other hand, Cremona, a member of the ministry's teaching
programmes committee (1867), suggested that the classical
secondary schools adopt Euclid's text as a basis for tea-
ching geometry. "Si cette mesure, que le gouvernement s'em-
pressa d'adopter, peut paraftre aujourd'hui un peu trop
draconienne, lorsqu'on tient compte du but qu'elle se pro-

posait (et qu'elle atteint en effet), c'est—-a-dire d'extir-
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per de nos écoles les mauvaises habitudes introduites par
certains livres, elle doit &tre considérée comme un des
actes du grand mathématicien qui le signalent & reconnais-~
sance éternelle de ses concitoyens" (Loria 1904, 595).

At the time, however, this decision met with strong op-—

position. The Giornale di Matematiche, a new journal "for

the use of Italian university students" founded in 1863

by Battaglini, a staunch supporter of non-Euclidean theo-
ries, published in 1868 an anonymous translation of a spe-
ech delivered by J.M.Wilson in London, where Euclid's text
is said to be "antiquated, artificial, unscientific and
ill-adapted for a text book'" and the theory of parallels
"faulty" (wilson 1868, 361-70) .

This question is dealt with in the same Giornale by Hirst
and Hollel, Brioschi and Cremona (the last with a long let-
ter) and by a short reply by R.Rubini, Wilson's anonymous
translator,

Brioschi and Cremona pointed out that Wilson's arguments
"are not formidable or essentially new: they are the same
ones brought forward in the past centuries by those who
were looking for the 'via regia' to learn the elements"
and again: the problem of parallels is not solved by ha-
ving recourse to the concept of direction, as stated by

Wilson, but in the sense of non-Euclidean geometry (here
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the authors mention Beltrami's essay (1868) published in
the same journal, where "any obscurity is removed from
this argument" 1). Finally the authors concluded: "in ag-
reement with our learned friend Prof. Hirst according to
what he told us during his last visit to Milan, we shall

accept Euclid revised, provided it is not Euclid disfigu-

red, and provided it be real geometry and not arithmetic"
(Brioschi~Cremona 1869, 52)., This line was pursued some
time later, when Euclid's text was replaced in the schools
by valid books by Italian geometrists (Sanna,.D'Ovidio,

Faifofer etc.) .

3, Italian unification shared many common elements with
the German unification process; mention was made earlier
of the close relationships between the two countries in
the mathematical field., In Italy however, as opposed to

Germany, scientific progress was outstanding virtually on-

1 Beltrami's essay did not succeed in convincing certain
mathematicians, such as Genocchi and Bellavitis, who
remained staunch and obstinate opponents of the new
geometries to their deaths.
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ly in mathematics. In the field of physics, for instance,
research dealt mainly with mathematical rather than expe-
rimental physics, true to a tradition going back to the
beginning of the century and strengthened by Beltrami's
and Betti's work.

The development of mathematics was certainly favoured
by the "schools'" which gathered around famous names such
as Betti and Cremona; but it was alsc due to strictly eco-
nomical influences, because, for a country with limited
natural resources and having financial difficulties - such
as unified Italy had - the fostering of mathematics, as
against other sciences, "offered (...) the advantage of
not requiring very expensive equipment" (Candeloro 1978,

VI, 295) .
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THE EMPLOYMENT OF MATHEMATICIANS IN INSURANCE COMPANIES
IN THE 19TH CENTURY

Horst-Eckart Gross

One important social function of the universities, not only

in the Federal Republic of Germany, is the training of highly

qualified workers who are actively engaged in practically eve-
ry part of society. This task has been accomplished to a cer-

tain degree by the universities of the 19th century: lawyers,

doctors, theologians have already been prepared at the uni-

versities for their professional practice at that stage.

The training of highly qualified workers at universities has
been remarkably intensified at the 20th century. Towards the
end of the 19th century one half per thousand of the population
(1) were university students in Germany, and nowadays 20 % of
an age graoup are studying at universities in the Federal
Republic of Germany. The prognosis for 1990 is that 11% of
the workers of all kinds will hold a university degree (2).
This quantity indicates an important characteristic of the
proportion of science and society in the 20th century: the
direct engagement of science and scientists in industrial
enterprises. In the 19th century university graduates have
mainly been employed by governmental and ecclesiastical
institutions resp. had a so called free-lancing profession
like medical doctors and lawvers. In the 20th century ten
thousands of scientists are employed in private enterprises
(3).
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The connection between development of science, training of
highly qualified workers and their subsequent employment in
industrial enterprises has so far been investigated only in

a superficial manner. Individual aspects like difficulties of
adaption when changing from university to profession, the con-
nection between "pure" and "applied" research or the activity
of scientists in research departments were in the limelight
(4) . The analysis of the working process of scientists could
be of importance in clearing up a certain number of problems,
e.g. the relationship between science and production in
general, the reaction of science on practical demands, but
also questions as an adequate practical interconnection

between curricula and the strategy of educational planning.

Especially concerning mathematics, in the Federal Republic of
Germany we have the following situation. In 1961 about 2.000
mathematicians out of 9.000 worked in industrial enterprises,
in 1970 already 4.000 of altogether 16.000 mathematicians
were employed outside schools and universities (5). Judging
by the number of students, in the future one third of all
mathematicians will be employed in industrial enterprises (6).
One can see from this that this quantity - even in the

quantitative aspect - can no longer be neglected.

The "scientific community" of mathematicians which is mainly
working at universities in the Federal Republic of Germany
has three main functions: a) research, b) training of
mathematics teachers and c¢) training of mathematicians for
industrial enterprises. The "scientific community" of
mathematicians in Germany and later in the Federal Republic
of Germany is able to score an enourmous growth which is
nevertheless caused by the formal allocation of training
functions. In 1864, there had been 42 mathematicians at the
universities of the subsequent German Reich and in 1900 their
number had already increased to 82. In 1976, the teaching
staff at the universities of the Federal Republic of Germany
comprised 1.243 mathematicians, they were joined by 1.497
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scientific assistants with contracts for a limited time (7).
With this development, an extensive personal basis for the

development of mathematics as science was given.

In the 19th century, the training function was allocated to
the mathematicians at universities. The introduction of
mathematics classes at Grammar Schools as well as the legal
standardization of school training by the Prussian state were
the basis. In the 18th century one was hardly talking about
mathematics classes in a real sense. They were developed not
before the end of the century. In the Prussian regulation of
the year 1735, no mathematical knowledge had been required of
graduates of a Secondary School (8). Nevertheless, classes of
mathematics developed in schools so that on the basis of the
effective development of the profession "teacher of mathematics"
the formal introduction of that profession was achieved. This
was due to the Prussian edict of July 12th, 1810, by which a
special examination for the teaching profession at Secondary
Schools given by universities was introduced. By the introduct-
ion of this state examination "the subject mathematics was
put on the same level with other subjects, ..." (9). The
importance of the subject mathematics was emphasized in 1834:
those who did not pass the examination were not allowed to
enter university, and in the A-level examination mathematics
was indispensable (10). The formalization of the training and
the intensification of the conditions of access to the
universities had considerable effects on the students of
mathematics courses at universities. Paulsen wrote the
following about mathematics courses and their more and more
specialized character: "In the 18th century, universities
were open to all students but up to now, they have narrowed
their circles more and more, and they have excluded nearly
everybody who does not devote himself to special study. The
students of the university become nearly exclusively applicants
for the facultas docendi, whether for academic classes or for

the classes at a 'Gymnasium' " (11).
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The reasons for this procedure of the Prussian state can
hardly be directly and immediatly deduced from the requirements
of the productive forces, as the industrial development of
Prussia was beginning not before the thirties of the 19th
century, and agriculture as well as manufacture and trade had
no need of mathematicians at that time (12). The reform of
education, however, had been a success of the rising civil

powers facing the feudal aristocracy.

Thanks to the reform in education the number of the students
of mathematics rose. There are hardly any statistical data,
but according to estimations, the number of state examinations
in the third decade of the 19th century can be assessed at

20 per year. By the end of the century, the number rose to
nearly 300 (13). On the basis of the reform of education, the
number of students of mathematics developed without any new

regulation.

The situation of mathematicians working in all branches of
industry today - certainly not equally distributed but with
considerable focal points in the electrotechnical industry

and ir. the insurance (14) - is somewhat different. This
situation of today is the result of a historical process in
which formal arrangements and the introduction of a special
diploma in 1942 have a certain importance, but the actual
stimula in this process are much more manifold and complicated
and they have hardly been inquired yet. The employment of
mathematicians in enterprises began in the insurance in the
19th century. For a long time this remained the only region

of employment besides school, approximately up to the end of
World War I. During this period, an immense unemployment of
teachers had to be recorded, the result of which was that
unemployed mathematicians looked for work in other economic
branches - and were successful in some cases. Thus a process
of diffusion took place although one could not speak of direct
demands of mathematical qualifications by the enterprises in

most cases. Reports on this process of diffusion were published
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e.g. by WeiB (15). They show that already in the thirties
mathematical qualifications were necessary in different
domains. At the beginning of this process of diffusion, how-
ever, mathematicians were regarded as academically trained
specialists in the first place, and only in the second place
their mathematical qualifications were of importance. The
development, especially that of the fascist armaments industry
required more and more the use of mathematical methods and
procedures which the engineers didn't know or were not able

to apply, and thus, one arrived at the employment of mathe-
maticians especially in this domain. This is clearly reflected
in Kamke's report "To which professions, beyond the school
system, mathematicians pass over and what has to be done for
them at universities?" (16). The order chosen by him probably
corresponds to the distribution of mathematicians to the
specific domains in that time. As domains of employment he
states: "In the first place, mathematicians in the army,
secondly mathematicians in the field of probability and
statistics in economy and industry, statistics, finances and
insurance, furthermore shortly called economy-mathematicians,
in the third place, mathematicians in technique &and industry"
(17). In 1942, the conditions for the increasing employment

of mathematicians in economic enterprises are taken into
account by the creation of a special course of study and a
special examination. In the sixties of this century, the
employment of mathematicians in economic enterprises has
reached large quantities due to the electronic data-processing

systems and the use of operations-research-methods.

In some essential aspects, the employment of mathematicians
in insurance companies in the 19th century antecipates the
later employment of mathematicians in other domains. Hence,
this is not an isolated and untypical occurrence, and there-
fore, it seems to be sensible to deal more precisely with this
working process. But first some general remarks on the

development of the insurance (18):

Already in the Roman Empire there had been predecessors of the
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the insurance, to be more exact, there had been predecessors
of life insurance. There had also been insurance-like systems
in the guilds and corporations af the Middle Age. "As insurance
organizations, all of these organizations remained in their
starting points. They did not lead to a life insurance in
today's sense. Instead of them, other developments were
substantial, developments which are connected with the
beginnings of the capitalism in the Middle Age." (19). In
Germany the insurance, especially the life insurance as the
form of insurance with an explicit use of mathematical
methods and procedures as well as with the employment of
mathematicians started with the development of capitalism in
the 19th century. Towards the end of the twenties the first
foundations took place and from 1852 to 1857, new life
insurance companies were founded within the scope of the
general economic impetus. All companies were touched by the
economic crisis of 1857 and 1866. They led to centralization
and concentration. Another foundation wave - with a strong
speculative character - took place in the so-called "foundation
years" from 1871 to 1873. Altogether, the growth of the
insurance companies from their foundations up to the end of
the 19th century is obvious by the development of the number
of insurance policies and the insurance capacity represented
by them (20):

Policies Insurance capacity
1852 46.980 58 Mio Tlr
1860 129.589 138 Mio Tlr
1865 200.627 623 Mio M
1870 348.930 1.008 Mio M
1896 1.181.958 5.122 Mio M
1900 1.475.529 6.404 Mio M

When presenting the development of the insurance companies
and especially that of life insurance, the importance of

mathematicians in respective enterprises is often being
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pointed out. But it is seldom dealt with formal qualifications
which can hardly be found out for a greater number of mathe-
maticians. In 1894 Kiever stated already that the question,

to what degree "managers of insurance companies are pretrained
is hard to be answered, and that self-instruction must often
have been of great importance" (21). Lorey points out that in
the 19th century already, there were qualified mathematicians
among the mathematical managers of insurance companies. These
mathematicians had incidentally adquired knowledge of the
insurance science on their own. To exemplify this he mentions
some biographies (22). But at the same time he points out
"that you can develop to an eminent actuary even without

having completed the studies of mathematics ..." (23).

Another hint is given by Manes by referring to Lorey (though
without giving further details): "In Germany there are 59
life insurance companies including the small reciprocal
enterprises. If these employed more and more qualified
mathematicians instead of other assistants in their account
offices, the number of positions will always amount to some
hundreds only." (24). And additionally Lexis explains: "Up to
the most modern times, insurance companies have always taken
their scientifically trained workers from among those wo had
originally begun their study with a different aim e.g. who
wanted to devote themselves to the mathematical subject or
to law." (25).

Without being able to make more detailed and gquantitative
specifications, one can assume - according to existing
specifications - that already in the 19th century mathe-
maticians with a university education had been employed by

a considerable number of insurance companies - not accidently
caused. This estimation is underlined by the fact that already
since 1838, and considerably more intensively since 1895,
specific courses concerning actuarial theory have been
offered at German universities (26), and that in 1895 the

Royal Seminar for Insurance Sciences was established at the
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university of GOttingen with the active cooperation of Felix
Klein. The seminar was established with the aim "to give the
opportunity of an adequate scientifical training to those who
want to be employed as mathematicians or higher administrative
officials in public or private insurance business."(27). Thus,
mathematical theory of insurance required a considerable part,
there even existed courses exclusively for mathematicians.

But it must emphasized that a relatively small number of
mathematicians was studying at this seminar; in 1895 only 2
out of 13 students were mathematicians, in 1900, only 13 out

of 56 students were mathematicians (28).

The question now is which importance did and does mathematics
have in the insurance and which tasks did and do mathematicians
have. It should be clear that these are two different kinds

of questions: other persons apart from qualified mathematicians
are working by using mathematical methods and techniques, and
mathematicians do not only have the function of dealing

exclusively or even mainly with mathematical problems.

The mathematical basis for the insurance has already been
founded in earlier centuries. The first compound interest
tables were published by Stevin in 1585. Halley was using
systematically the calculation of compound interest with the
help of algebraic formula. This work was continued by Jakob
Bernoulli among others. The development of the theory of
probability was of great importance, and contributions to

this have been made by Leibniz, Wallis, Pascal and Fermat.
Concepts of great value forthe insurance as "medium life-span"
and "average life-span" were specified and defined by Huygens.
On this basis the lawyer de Witt in cooperation with the
mathematician Hudde wrote the first mathematically well-found-
ed pension calculation. In 1693 Halley published the first
mortality table on the basis of which de Moivre put up the
calculation of the life annuity. The pension calculation was
further developed by Simpson among others (29). Thus, the

development of the mathematical theory of insurance was in
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those days closely connected with the development of mathe-

matics as a whole.

Only in the middle of the 18th century the technique of life-
insurance as a separte and special scientific branch, the
further growth of which was pushed ahead by the experts of
insurance companies, mainly developed in England. In the
middle of the 18th century, the "Equitable" was founded, the
first life insurance company with a mathematically founded
basis. In England, the science of actuarial theory was
developed and was given special impulses by the work of Price.
We must also stress the works of Euler who wrote 14 papers

on probability calculation and its applications. In four
papers he especially wrote about mathematical and particularly
statistical foundations of life insurance - an indication for
the fact that even in the 18th century excellent mathematicians

still dealt with the problems of actuarial theory.

In spite of the creation and further development of mathema-
tical foundations, the activities of insurance companies on
this basis were not at all self-evident - the insurance of
that time often were deceiving enterprises, often connected
with bet-communities. An adventurer like Tonti invented the
so-called "Tontine", which has for a long time found propaga-
tion as a mixture of insurance and bet. Only towards the end
of the 19th century, the insurance companies in Germany became
"serious" enterprises so that a short-time interest in profit
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