
An introduction to microlocal analysis with applications to inverse problems, summer 2016

Exercise Problems, all lectures
Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi.
In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:

• α = (α1, . . . , αn) ∈ Nn is a multi-indes. |α| :=
∑n

k=1 αk

• ∂xk := ∂
∂xk

is the kth partial derivative with respect to Cartesian coordinates and Dk = −i∂xk

• ∂α =
∏n

k=1 ∂
αk
xk

and Dα =
∏n

k=1(−i∂xk)αk = (−i)|α|
∏n

k=1 ∂
αk

Problem 1. Let w ∈ Rn, ‖w‖ = 1 and s ∈ R. We denote the Hyperplane

Hw,s = {x ∈ Rn : x · w = s}.

Let dx = dx1 ∧ dx2 ∧ . . . ∧ dxn be the volume form of Rn. Then hyperplane Hw,s has a natural volume
form dH given by formula

dH = (Nydx)|Hw,s ,

where N is a unit normal of Hs,w and y stands for interior multiplication. (See [6]).

Show that the equation
dx|Hs,w = ds ∧ dH

is valid. Here ds should be considered to be the differential of the mapping x 7→ x · w.

Solution 1. Let (s, w) ∈ (R× Sn−1). Notice that

Hs,w = {sw + x ∈ Rn : x · w = 0}.

Therefore |s| =dist(Hs,w, {0}). Therefore by symmetry we can assume that s = 0 and thus the normal
vector N of H0,w is w. Then

dH = (wydx)|Hw,s = dx(w, ·, . . . , ·)

=
n∑
k=1

(−1)k−1dxk(w)dx1 ∧ . . . ∧ dxk+1 ∧ d̂xk ∧ dxk+1 ∧ . . . ∧ dxn.

Here notation d̂xk means that one form dxk is omitted. By changing the coordinates we may assume
that w = x1. Then

dH = dx2 ∧ . . . ∧ dxn .
Consider mapping x 7→ x1 and denote that by s. Then it holds that

ds ∧ dH = dx.

Problem 2. Recall that set U ⊂ (Sn−1 × R) is open if and only if for every p ∈ U there exists a set
p ∈ (V × (a, b)) ⊂ U , where V ⊂ Sn−1 is open.

Let f ∈ C∞0 (Rn). We define the Radon transform of f by formula

Rf(w, s) =

∫
x·w=s

f(x)dH, (w, s) ∈ (Sn−1 × R).

Show that R : C∞0 (Rn)→ C∞0 (Sn−1 × R) is well defined, linear and continuous.
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Solution 2. Let f ∈ C∞0 (Rn). Let us first check that Rf has a compact support. Let R > 0 be such
that suppf ⊂ B(0, R). Let |s| ≥ R. Then for any w ∈ Sn−1 we have dist(Hs,w, {0}) = |s| ≥ R and thus

Rf(w, s) =

∫
x·w=s

f(x)dH = 0.

Thus supp(Rf) is contained in Sn−1 × [R,R]. This proves that supp(Rf) is compact.

Notice that an equivalent way to compute the Radon transform is

Rf(w, s) =

∫
x·w=0

f(ws+ x)dH.

Since f is compactly supported it is clear that Rf is smooth with respect to s. Since hyper planes Hw,0

transform smoothly with respect to w ∈ Sn−1 and since supp(f) is compact it holds that Rf is also
smooth with respect to w. Therefore R is well defined.

Clearly R is linear since integration is linear.

Recall that a sequence (fj)
∞
j=1 ⊂ C∞0 (Rn) is said to converge to zero if

• there exists a compact set K ⊂ Rn such that suppfk ⊂ K for every k ∈ N

• for every multi-index α
∂αfj −→ 0 uniformly

Then it is enough to prove that for every sequence (fj)
∞
j=1 ⊂ C∞0 (Rn) that converges to zero also (Rfj)

∞
j=1

converges to zero in C∞0 (Sn−1 × R). Let (fj)
∞
j=1 ⊂ C∞0 (Rn) be a sequence that converges to zero. Then

there exists R > 0 such that supp(fj) ⊂ B(0, R) for every j ∈ N. Let

cn = Voln−1(B(0, R) ∩ {x ∈ Rn : xn = 0}).

Then
|Rfj(w, s)| =

∫
x·w=s

|fj(x)|dH ≤ cn‖fj‖∞
j→∞−→ 0.

Therefore ‖Rfj‖∞ −→ 0 as j →∞.

Not to make things too difficult we consider from now on only the case n = 2. Write w = (cos(φ), sin(φ)).
Since suppfj ⊂ B(0, R) it holds that

|∂sRfj(φ, s)| = |
∫
x·w=0

∂sf(ws+ x)dH| ≤
∫
x·w=0

2∑
k=1

|∂xkfj
∣∣
(sw+x)

|dH

≤ cn sup
x∈B(0,R)

|∂x1fj + ∂x2fj|
j→∞
−→ 0 .

Recall the following formula for integrating over moving regions

d

dt

∫
U(t)

f(x, t) dx =

∫
∂U(t)

f(x, t)v(x, t) ·N dS +

∫
U(t)

∂tf(x, t) dx

Here v(x, t) is the velocity of x ∈ ∂U(t). Since suppfj ⊂ B(0, R) that is compact it holds that

|∂φRfj(φ, s)| = |
∫
w·x

∂φf(sw + x) dH| ≤ |s|
∫
w·x
|∂x1f ||sw+x + |∂x2f ||sw+x dH
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≤ Rcn sup
x∈B(0,R)

|∂x1fj + ∂x2fj|
j→∞
−→ 0 .

Therefore we have showed that
fj, ∂sfj, ∂φfj −→ 0 uniformly.

The rest follows with similar arguments.

Problem 3. Recall that the formal transpose Rt of Radon transform is defined by L2−duality

(Rf, g)L2(Sn−1×R) = (f,Rtg)L2(Rn), f ∈ C∞0 (Rn) , g ∈ C∞0 (Sn−1 × R).

Then it holds that

Rt : C∞0 (Sn−1 × R)→ C∞(Rn), Rtg(x) =

∫
Sn−1

g(x · w,w)dw.

Compute the normal operator RtR and show that

(RtR)f = cn φ ∗ f, (1)

where cn is a dimensional constant and φ(x) = 1
‖x‖ .

Solution 3. Let f ∈ C∞0 (Rn). Then

(RtR)f(x) =

∫
Sn−1

Rf(x · w,w) dw =

∫
Sn−1

∫
y·w=0

f((x · w)w + y)dHydw.

Notice that
x = x− (x · w)w + (x · w)w and (x− (x · w)w) · w = 0.

Therefore

(RtR)f(x) =

∫
Sn−1

∫
y·w=0

f(x+ y)dHydw.

By (VII.2.8 of [10] it holds that)∫
Sn−1

∫
y·w=0

f(x+ y)dHydw = Vol(Sn−2)
∫
Rn

‖y‖−1f(x+ y)dy

= Vol(Sn−2)
∫
Rn

‖x− y‖−1f(y)dy.

Thus the claim follows and cn = Vol(Sn−2) is the area of unit sphere Sn−2 ⊂ Rn−1.

Problem 4. Show that

F(RtRf)(ξ) = cn
f̂(ξ)

‖ξ‖n−1

Solution 4. Since for any u ∈ D′(Rn) and f ∈ C∞0 (Rn) it holds that

û ∗ f = ûf̂ .

By this and (1) it is enough to show that

1̂

‖ · ‖
(ξ) =

1

‖ξ‖n−1
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We start with simple observation that in Rn, n ≥ 2 function x 7→ ‖x‖−1 is actually in D′(Rn) since
chancing into polar coordinates yield∫

‖x‖≤1
‖x‖−1dx =

∫ 1

0

∫
Sn−1

s−1sn−1 dwds = Vol(Sn−1)
∫ 1

0

sn−2ds =
Vol(Sn−1)
n− 1

.

We say that distribution u ∈ D′(Rn) is rotationally invariant if for all ϕ ∈ C∞0 (Rn) and for all A ∈ O(n)
holds

〈u, ϕ ◦ A〉 = 〈u, ϕ〉.
Since for every A ∈ O(n) holds detA = 1 and AT = A−1 it is easy to show that the Fourier transform
of rotationally invariant distribution is also rotationally invariant.

Therefore in order to cumpute 1̂/‖ · ‖(ξ), it is enough to consider case ξ = (r, 0, . . . , 0) for some r > 0.
Then in polar coordinates this yields

1̂/‖ · ‖(ξ) = cn

∫
Rn

1

|x|
e−ix·ξdx = cn

∫ ∞
0

∫
Sn−1

sn−2e−irs cos(θ)dωds.

Since all the other angular variables are free this simplifies (See [10] VII.2 (2.2))

cn

∫ ∞
0

∫
Sn−1

sn−2e−irs cos(θ)dωds = cnV oln−2(S
n−2)

∫ ∞
0

∫ π

0

sn−2e−irs cos(θ) sinn−2(θ)dθds.

Do the change of variables rs = s′ to get∫ ∞
0

∫ π

0

sn−2e−irs cos(θ) sinn−2(θ)dθds =
1

rn−1

∫ ∞
0

∫ π

0

(s′)n−2e−is
′ cos(θ) sinn−2(θ)dθds′ =:

1

rn−1
In.

Thus we have proved the claim modulo a dimensional constant c = cnV oln−2(S
n−2nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn)In.

Problem 5. Find f ∈ C∞0 (R× Sn−1) such that Rtf is not compactly supported.

Solution 5. Let ϕ ∈ C∞0 (R) be a such that ϕ(t) = 1 if |t| ≤ 1 and ϕ ≥ 0. Define

f(t, w) = ϕ(t), (t, w) ∈ R× Sn−1.

Then f ∈ C∞0 (R× Sn−1). Let x ∈ Rn and A := {x}⊥ ∩ Sn−1. By continuity of dot product there exists
an open neighborhood V ⊂ Sn−1 of A such that

|w · x| < 1, w ∈ V.

Therefore

Rtf(x) =

∫
Sn−1

f(x · w,w)dw =

∫
Sn−1

ϕ(x · w)dw ≥
∫
V⊂Sn−1

dw = V oln−1(V ) > 0.

This proves the claim.

Problem 6. Recall the Radon inversion formula (RIF) for test functions is

f = cn(−∆)
n−1
2 RtRf, f ∈ C∞0 (Rn),

where for α ∈ R such that −n < α we define

(−∆)α/2f =
1

(2π)n

∫
Rn

eix·ξ‖ξ‖αf̂(ξ)dξ.

Show that (RIF) is also valid for any compactly supported distribution. I.e. show

u = cn(−∆)
n−1
2 RtRu u ∈ E ′(Rn)
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Solution 6. Let u ∈ E ′(Rn) and ϕ ∈ C∞0 (Rn). Then

〈(−∆)
n−1
2 RtRu, ϕ〉 = 〈u, ((−∆)

n−1
2 RtR)tϕ〉.

On the other hand

(−∆)
n−1
2 RtR)tϕ = (RtR)t((−∆)

n−1
2 )tϕ = RtR((−∆)

n−1
2 )tϕ

Notice that by Parseval identity

((−∆)
n−1
2 )tϕ, φ)L2(Rn) = ((−∆)

n−1
2 )φ, ϕ)L2(Rn) = cn(F−1(‖ · ‖n−1F(φ), ϕ)L2(Rn)

= cn(φ,F−1(‖ · ‖n−1F(ϕ)L2(Rn).

Therefore
((−∆)

n−1
2 )t = (−∆)

n−1
2

By previous exercises it holds that

F(RtR((−∆)
n−1
2 )tϕ) = cnF((

1

‖ · ‖
∗ (−∆)

n−1
2 )tϕ)) = cn‖ · ‖1−nF(F−1(‖ · ‖n−1F(ϕ))) = F(ϕ).

The claim follows from inverse Fourier transform.

Problem 7. Recall that the wave front set of a distribution u ∈ D′(Rn) is defined by negation as
(x0, ξ0) ∈ Rn × (Rn\{0}) is not in WFu, if there exists ϕ ∈ C∞0 (U) such that φ(x0) 6= 0, and a
neighborhood V of ξ0 such that for all ξ ∈ V and k ∈ N holds

|F(ϕu)(tξ)| ≤ Ck|1 + t|−k, t > 0. (2)

Let n = 2 and denote by χ the characteristic function of an open unit disc B(0, 1) ⊂ R2. Prove that

WFχ = {(x, ξ) ∈ R2 × (R2\{0}) : ‖x‖ = 1, ξ ‖ x}.

Solution 7. Notice first that for any ϕ ∈ C∞0 (Rn) and u ∈ D′(Rn) the distribution ϕu is compactly
supported. Therefore F(ϕu) ∈ C∞(Rn) (see [5]) and thus inequality (2) makes sense.

We start with computing the wave front set of the characteristic function χp of the right half plane
{z ∈ C : Rez > 0}. Let φ ∈ C∞0 (R). We define

Φ(x) := φ(x1)φ(x2).

Then Φ ∈ C∞0 (R2) and

Φ̂χp(ξ) =

∫
x1≥0

Φ(x)e−iξ·xdx =

∫ ∞
0

φ(x1)e
−iξ1x1dx1

∫ ∞
−∞

φ(x2)e
−iξ2x2dx2

= φ̂(ξ2)

∫ ∞
0

φ(x1)e
−iξ1x1dx1.

Since ∣∣∣∣ ∫ ∞
0

φ(x1)e
−iξ1x1dx1

∣∣∣∣ ≤ ‖φ‖L1(R),

it holds that Φ̂χp(ξ) is rapidly decreasing if ξ2 6= 0. Suppose that φ(0) = 1.

Integrating by parts twice yields∫ ∞
0

φ(s)e−itsds =
i

t

[
φ(s)e−its

]∞
0

+
1

t2

[
φ′(s)e−its

]∞
0

− 1

t2

∫ ∞
0

φ′′(s)e−itsds
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=
1

t

(
− i− 1

t

(
φ′(0) +

∫ ∞
0

φ′′(s)e−itsds

))
.

Therefore

t|Φ̂χp(t, 0)| ≥ |φ̂(0)|(
∣∣∣∣i+

1

t
φ′(0)

∣∣∣∣− 1

t
‖φ′′‖L1(R))

t→∞−→ 1.

This proves that t 7→ Φ̂χp(t, 0) is not rapidly decaying. Thus we have proved that

WFχp = {((0, t); (s, 0)) ∈ R× R : t, s ∈ R, s 6= 0}.

Consider a mapping

f(z) =
1 + z

1− z
, z ∈ C\{1},

Clearly f is a diffeomorphism from open unit disc onto open half plane {z ∈ C : Rez > 0}. By
Proposition 11.2.2 of [5] it holds that

WFχ = {(z,Df(z)tξ) : (f(z), ξ) ∈ WFχp},

here Df(z)t is the transpose of the Jacobian of f at z. Since

f(z) = f(x+ iy) =
1− x2 − y2

(x− 1)2 + y2
+ i

2y

(x− 1)2 + y2

it holds that
Df(i)t =

(
0 −1
1 0

)
.

Since f(i) = i and Df(i)t(1, 0) = (0, 1), we conclude that ((0, 1); (0, 1)) ∈ WFχ. By symmetry we have
proved the claim.

An other way to solve this problem is to use the method of stationary phase. See [9].

Notice that in general it holds that the wave front set of a delta function on a smooth hyper surface
S is the normal bundle of S.

Problem 8. Let χ be the characteristic function of unit square Q := [0, 1]× [0, 1] ⊂ R2 prove that

WFχ = {(x, ξ) ∈ R2 × (R2\{0}) : x ∈ ∂Q, ξ ‖ x}
⋃
{(x, ξ) ∈ R2 × (R2\{0}) : xi = {0, 1}, ξ ∈ R2\{0}}.

I.e. at the corner points every direction is in the wavefront set.

Solution 8. Let us first consider the corner point (0, 0) case. Then χ looks like x 7→ H(x1)H((x2) near
origin where H is the Heaviside function. Let φ and Φ be as in the previous problem. Then

Φ̂χ(ξ) =

∫ ∞
0

φ(s)e−isξ1 ds

∫ ∞
0

φ(s)e−isξ2 ds

and by computations done in the previous problem this is not rapidly decaying in ξ. Therefore (0, x) ∈
WFχ for all x ∈ Rn\{0}.

The rest follows by symmetry of corner points and from computations done in Problem 7.

Problem 9. Let F ⊂ Rn × (Rn\{0}) be closed and conic. Show that there exists u ∈ D′(Rn) such that

WFu = F.
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Solution 9. See Theorem 8.1.4. of [9].

Problem 10. Let k ∈ C∞(Rn × Rn). We define a linear operator.

K : C∞0 (Rn)→ C∞(Rn), Kf(x) =

∫
Rn

k(x, y)f(y)dy.

Then the adjoint of K with respect to L2 innerproduct is

Ktf(y) =

∫
Rn

k(x, y)f(x)dx, f ∈ C∞0 (Rn)

Prove that for any u ∈ E ′(Rn) and ϕ ∈ C∞0 (Rn)

〈u,Ktϕ〉 =

∫
Rn

〈u, k(x, ·)〉ϕ(x)dx

Solution 10.

Problem 11. Let u ∈ E ′(Rn) and k ∈ C∞(Rn × Rn). Prove that

〈u, k(x, ·)〉 ∈ C∞(Rn).

Solution 11.

Problem 12. Recall the Schwartz kernel theorem. Let X ⊂ Rn and Y ⊂ Rk be open sets. Let
A : C∞0 (X)→ D′(Y ) be linear and continuous. Then there exists a unique kA ∈ D′(X × Y ) such that

〈Aϕ,ψ〉 = kA(ϕ⊗ ψ), ϕ ∈ C∞0 (X), ψ ∈ C∞0 (Y ).

Here the tensor product (ϕ⊗ ψ)(x, y) := ϕ(x)ψ(y).

If a ∈ C∞(X × Y ), it determines naturally the operator A : C∞0 (X)→ D′(Y )

Aϕ(ψ) =

∫
X

∫
Y

a(x, y)ϕ(x)ψ(y)dxdy

Let X = Y ⊂ Rn. Consider a partial differential operator

A =
∑
|α|≤k

aαD
α, aα ∈ C∞(X).

Show that the Schwartz kernel of operator A is

kA(x, y) =
∑
|α|≤k

aα(x)Dαδ(x− y).

Solution 12. Let ϕ, ψ ∈ C∞0 (Rn). By definition

〈Aϕ,ψ〉 =

∫
Rn

(Aϕ)(x)ψ(x) dx =

∫
Rn

ψ(x)
∑
|α|≤k

aα(x)Dαϕ(x) dx

=

∫
Rn

ψ(x)
∑
|α|≤k

aα(x)Dα

∫
Rn

δ(y − x)ϕ(y) dy dx

=

∫
Rn

∫
Rn

[ ∑
|α|≤k

aα(x)Dαδ(y − x)ϕ(y)

]
ψ(x) dy dx.

This proves the claim.

7



Problem 13. Let m ∈ N and p ∈ Sm(Rn × Rn). We define the Schwartz kernel kp of p as

〈kp, ϕ〉 :=

∫
Rn

∫
Rn

∫
Rn

ei(x−y)·ξ
p(x, ξ)

(1 + |ξ|2)M
(I + ∆y)

Mϕ(y) dxdydξ, ϕ ∈ C∞0 (Rn). (3)

Show that kp is well defined and independent of M , if M ≥ m+n
2

Problem 14. Let η ∈ C∞0 (Rn) be s.t. η(x) = 1 when ‖x‖ ≤ 1. Show that

kp = lim
ε→0

∫
Rn

η(εξ)ei(x−y)·ξp(x, ξ), dξ

where kp ∈ D′(Rn × Rn) is defined by equation (3).

Problem 15. Let A,B ∈ Ψm(Rn). show that the Schwartz kernel kAB of composition operator AB
satisfies

kAB(x, y) =

∫
Rn

kA(x, z)kB(z, y)dz,

when ever right hand side is well defined.

Problem 16. Let χ ∈ C∞0 (Rn) be such that χ(x) = 1, if ‖x‖ ≤ 1. Let p ∈ Sm(Rn × Rn). Show that
function

F (x, y) =

∫
Rn

ei(x−y)·ξ
1− χ(x− y)

‖x− y‖2M
∆M
ξ p(x, ξ) dξ ∈ Ck(Rn × Rn),

for all k ∈ N and is independent of M , if M is large enough.

Show that
kÃ(x, y) :=

∫
Rn

ei(x−y)·ξχ(x− y)p(x, ξ) dξ

is a Schwartz kernel of some Ã ∈ Ψm(Rn).

Problem 17. Let A ∈ Ψm(Rn). Show that there is a extension

Ã : E ′(Rn)→ D′(Rn)

of A that is linear and continuous.

Suppose that A ∈ Ψm(Rn) is properly supported. Show that there is a linear and continuous exten-
sion

B : D′(Rn)→ D′(Rn)

of Ã.

Recall that pseudo differential operator A is properly supported, if the Schwartz kernel kA is properly
supported in Rn × Rn i.e.

suppkA ⊂ Rn × Rn

is proper. A set X ⊂ Rn × Rn is proper, if for all compact K ⊂ Rn the sets

πx(π
−1
y K ∩X) and πy(π−1x K ∩X)

are compact in Rn. Here πy(x, y) = y and πx(x, y) = x.

Problem 18. Show that for any A ∈ Ψm(Rn) holds

WF (Au) ⊂ WFu, for any u ∈ E ′(Rn).

You can use the fact
singsupp(Au) ⊂ singsupp(u), for any u ∈ E ′(Rn).
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