An introduction to microlocal analysis with applications to inverse problems, summer 2016

Exercise Problems, all lectures

Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi. In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:

- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ is a multi-indes. $|\alpha|:=\sum_{k=1}^{n} \alpha_{k}$
- $\partial_{x_{k}}:=\frac{\partial}{\partial x_{k}}$ is the $k^{t h}$ partial derivative with respect to Cartesian coordinates and $D_{k}=-i \partial_{x_{k}}$
- $\partial^{\alpha}=\prod_{k=1}^{n} \partial_{x_{k}}^{\alpha_{k}}$ and $D^{\alpha}=\prod_{k=1}^{n}\left(-i \partial_{x_{k}}\right)^{\alpha_{k}}=(-i)^{|\alpha|} \prod_{k=1}^{n} \partial^{\alpha_{k}}$

Problem 1. Let $w \in \mathbb{R}^{n},\|w\|=1$ and $s \in \mathbb{R}$. We denote the Hyperplane

$$
H_{w, s}=\left\{x \in \mathbb{R}^{n}: x \cdot w=s\right\} .
$$

Let $d x=d_{x_{1}} \wedge d_{x_{2}} \wedge \ldots \wedge d_{x_{n}}$ be the volume form of \mathbb{R}^{n}. Then hyperplane $H_{w, s}$ has a natural volume form $d H$ given by formula

$$
d H=(N\lrcorner d x)\left.\right|_{H_{w, s}},
$$

where N is a unit normal of $H_{s, w}$ and \lrcorner stands for interior multiplication. (See [6]).
Show that the equation

$$
\left.d x\right|_{H_{s, w}}=d s \wedge d H
$$

is valid. Here ds should be considered to be the differential of the mapping $x \mapsto x \cdot w$.
Solution 1. Let $(s, w) \in\left(\mathbb{R} \times S^{n-1}\right)$. Notice that

$$
H_{s, w}=\left\{s w+x \in \mathbb{R}^{n}: x \cdot w=0\right\} .
$$

Therefore $|s|=\operatorname{dist}\left(H_{s, w},\{0\}\right)$. Therefore by symmetry we can assume that $s=0$ and thus the normal vector N of $H_{0, w}$ is w. Then

$$
\begin{gathered}
d H=(w\lrcorner d x)\left.\right|_{H_{w, s}}=d x(w, \cdot, \ldots, \cdot) \\
=\sum_{k=1}^{n}(-1)^{k-1} d x_{k}(w) d x_{1} \wedge \ldots \wedge d x_{k+1} \wedge \widehat{d x_{k}} \wedge d x_{k+1} \wedge \ldots \wedge d x_{n} .
\end{gathered}
$$

Here notation $\widehat{d x_{k}}$ means that one form $d x_{k}$ is omitted. By changing the coordinates we may assume that $w=x_{1}$. Then

$$
d H=d_{x_{2}} \wedge \ldots \wedge d_{x_{n}}
$$

Consider mapping $x \mapsto x_{1}$ and denote that by s. Then it holds that

$$
d s \wedge d H=d x
$$

Problem 2. Recall that set $U \subset\left(S^{n-1} \times \mathbb{R}\right)$ is open if and only if for every $p \in U$ there exists a set $p \in(V \times(a, b)) \subset U$, where $V \subset S^{n-1}$ is open.

Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. We define the Radon transform of f by formula

$$
R f(w, s)=\int_{x \cdot w=s} f(x) d H,(w, s) \in\left(S^{n-1} \times \mathbb{R}\right)
$$

Show that $R: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right)$ is well defined, linear and continuous.

Solution 2. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Let us first check that $R f$ has a compact support. Let $R>0$ be such that supp $f \subset B(0, R)$. Let $|s| \geq R$. Then for any $w \in S^{n-1}$ we have $\operatorname{dist}\left(H_{s, w},\{0\}\right)=|s| \geq R$ and thus

$$
R f(w, s)=\int_{x \cdot w=s} f(x) d H=0 .
$$

Thus supp $(R f)$ is contained in $S^{n-1} \times[R, R]$. This proves that $\operatorname{supp}(R f)$ is compact.
Notice that an equivalent way to compute the Radon transform is

$$
R f(w, s)=\int_{x \cdot w=0} f(w s+x) d H
$$

Since f is compactly supported it is clear that $R f$ is smooth with respect to s. Since hyper planes $H_{w, 0}$ transform smoothly with respect to $w \in S^{n-1}$ and since supp (f) is compact it holds that $R f$ is also smooth with respect to w. Therefore R is well defined.

Clearly R is linear since integration is linear.
Recall that a sequence $\left(f_{j}\right)_{j=1}^{\infty} \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is said to converge to zero if

- there exists a compact set $K \subset \mathbb{R}^{n}$ such that $\operatorname{supp}_{k} \subset K$ for every $k \in \mathbb{N}$
- for every multi-index α

$$
\partial^{\alpha} f_{j} \longrightarrow 0 \text { uniformly }
$$

Then it is enough to prove that for every sequence $\left(f_{j}\right)_{j=1}^{\infty} \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ that converges to zero also $\left(R f_{j}\right)_{j=1}^{\infty}$ converges to zero in $C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right)$. Let $\left(f_{j}\right)_{j=1}^{\infty} \subset C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be a sequence that converges to zero. Then there exists $R>0$ such that $\operatorname{supp}\left(f_{j}\right) \subset B(0, R)$ for every $j \in \mathbb{N}$. Let

$$
c_{n}=\operatorname{Vol}_{n-1}\left(B(0, R) \cap\left\{x \in \mathbb{R}^{n}: x_{n}=0\right\}\right) .
$$

Then

$$
\left|R f_{j}(w, s)\right|=\int_{x \cdot w=s}\left|f_{j}(x)\right| d H \leq c_{n}\left\|f_{j}\right\|_{\infty} \xrightarrow{j \rightarrow \infty} 0 .
$$

Therefore $\left\|R f_{j}\right\|_{\infty} \longrightarrow 0$ as $j \rightarrow \infty$.
Not to make things too difficult we consider from now on only the case $n=2$. Write $w=(\cos (\phi), \sin (\phi))$. Since supp $f_{j} \subset B(0, R)$ it holds that

$$
\begin{aligned}
\left|\partial_{s} R f_{j}(\phi, s)\right|=\mid & \left.\int_{x \cdot w=0} \partial_{s} f(w s+x) d H\left|\leq \int_{x \cdot w=0} \sum_{k=1}^{2}\right| \partial_{x_{k}} f_{j}\right|_{(s w+x)} \mid d H \\
& \leq c_{n} \sup _{x \in B(0, R)}\left|\partial_{x_{1}} f_{j}+\partial_{x_{2}} f_{j}\right| \xrightarrow{j \rightarrow \infty} 0 .
\end{aligned}
$$

Recall the following formula for integrating over moving regions

$$
\frac{d}{d t} \int_{U(t)} f(x, t) d x=\int_{\partial U(t)} f(x, t) v(x, t) \cdot N d S+\int_{U(t)} \partial_{t} f(x, t) d x
$$

Here $v(x, t)$ is the velocity of $x \in \partial U(t)$. Since supp $f_{j} \subset B(0, R)$ that is compact it holds that

$$
\left|\partial_{\phi} R f_{j}(\phi, s)\right|=\left|\int_{w \cdot x} \partial_{\phi} f(s w+x) d H\right| \leq|s| \int_{w \cdot x}\left|\partial_{x_{1}} f\left\|_{s w+x}+\mid \partial_{x_{2}} f\right\|_{s w+x} d H\right.
$$

$$
\leq R c_{n} \sup _{x \in B(0, R)}\left|\partial_{x_{1}} f_{j}+\partial_{x_{2}} f_{j}\right| \xrightarrow{j \rightarrow \infty} 0 .
$$

Therefore we have showed that

$$
f_{j}, \partial_{s} f_{j}, \partial_{\phi} f_{j} \longrightarrow 0 \text { uniformly. }
$$

The rest follows with similar arguments.
Problem 3. Recall that the formal transpose R^{t} of Radon transform is defined by L^{2}-duality

$$
(R f, g)_{L^{2}\left(S^{n-1} \times \mathbb{R}\right)}=\left(f, R^{t} g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), g \in C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right) .
$$

Then it holds that

$$
R^{t}: C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), \quad R^{t} g(x)=\int_{S^{n-1}} g(x \cdot w, w) d w
$$

Compute the normal operator $R^{t} R$ and show that

$$
\begin{equation*}
\left(R^{t} R\right) f=c_{n} \phi * f, \tag{1}
\end{equation*}
$$

where c_{n} is a dimensional constant and $\phi(x)=\frac{1}{\|x\|}$.
Solution 3. Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\left(R^{t} R\right) f(x)=\int_{S^{n-1}} R f(x \cdot w, w) d w=\int_{S^{n-1}} \int_{y \cdot w=0} f((x \cdot w) w+y) d H_{y} d w
$$

Notice that

$$
x=x-(x \cdot w) w+(x \cdot w) w \text { and }(x-(x \cdot w) w) \cdot w=0
$$

Therefore

$$
\left(R^{t} R\right) f(x)=\int_{S^{n-1}} \int_{y \cdot w=0} f(x+y) d H_{y} d w .
$$

By (VII.2.8 of [10] it holds that)

$$
\begin{gathered}
\int_{S^{n-1}} \int_{y \cdot w=0} f(x+y) d H_{y} d w=\operatorname{Vol}\left(S^{n-2}\right) \int_{\mathbb{R}^{n}}\|y\|^{-1} f(x+y) d y \\
=\operatorname{Vol}\left(S^{n-2}\right) \int_{\mathbb{R}^{n}}\|x-y\|^{-1} f(y) d y
\end{gathered}
$$

Thus the claim follows and $c_{n}=\operatorname{Vol}\left(S^{n-2}\right)$ is the area of unit sphere $S^{n-2} \subset \mathbb{R}^{n-1}$.
Problem 4. Show that

$$
\mathcal{F}\left(R^{t} R f\right)(\xi)=c_{n} \frac{\widehat{f}(\xi)}{\|\xi\|^{n-1}}
$$

Solution 4. Since for any $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $f \in C_{0}^{\infty}\left(R^{n}\right)$ it holds that

$$
\widehat{u * f}=\widehat{u} \widehat{f}
$$

By this and (1) it is enough to show that

$$
\frac{\widehat{1}}{\|\cdot\|}(\xi)=\frac{1}{\|\xi\|^{n-1}}
$$

We start with simple observation that in $\mathbb{R}^{n}, n \geq 2$ function $x \mapsto\|x\|^{-1}$ is actually in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ since chancing into polar coordinates yield

$$
\int_{\|x\| \leq 1}\|x\|^{-1} d x=\int_{0}^{1} \int_{S^{n-1}} s^{-1} s^{n-1} d w d s=\operatorname{Vol}\left(S^{n-1}\right) \int_{0}^{1} s^{n-2} d s=\frac{\operatorname{Vol}\left(S^{n-1}\right)}{n-1} .
$$

We say that distribution $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is rotationally invariant if for all $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and for all $A \in O(n)$ holds

$$
\langle u, \varphi \circ A\rangle=\langle u, \varphi\rangle .
$$

Since for every $A \in O(n)$ holds $\operatorname{det} A=1$ and $A^{T}=A^{-1}$ it is easy to show that the Fourier transform of rotationally invariant distribution is also rotationally invariant.

Therefore in order to cumpute $\widehat{1 /\|\cdot\|}(\xi)$, it is enough to consider case $\xi=(r, 0, \ldots, 0)$ for some $r>0$. Then in polar coordinates this yields

$$
\widehat{1 /\|\cdot\|}(\xi)=c_{n} \int_{\mathbb{R}^{n}} \frac{1}{|x|} e^{-i x \cdot \xi} d x=c_{n} \int_{0}^{\infty} \int_{S^{n-1}} s^{n-2} e^{-i r s \cos (\theta)} d \omega d s
$$

Since all the other angular variables are free this simplifies (See [10] VII.2 (2.2))

$$
c_{n} \int_{0}^{\infty} \int_{S^{n-1}} s^{n-2} e^{-i r s \cos (\theta)} d \omega d s=c_{n} V o l_{n-2}\left(S^{n-2}\right) \int_{0}^{\infty} \int_{0}^{\pi} s^{n-2} e^{-i r s \cos (\theta)} \sin ^{n-2}(\theta) d \theta d s .
$$

Do the change of variables $r s=s^{\prime}$ to get

$$
\int_{0}^{\infty} \int_{0}^{\pi} s^{n-2} e^{-i r s \cos (\theta)} \sin ^{n-2}(\theta) d \theta d s=\frac{1}{r^{n-1}} \int_{0}^{\infty} \int_{0}^{\pi}\left(s^{\prime}\right)^{n-2} e^{-i s^{\prime} \cos (\theta)} \sin ^{n-2}(\theta) d \theta d s^{\prime}=: \frac{1}{r^{n-1}} I_{n} .
$$

Thus we have proved the claim modulo a dimensional constant $c=c_{n} V_{n-2}\left(S^{n-2 n m n n n n n n n ~}\right.$
Problem 5. Find $f \in C_{0}^{\infty}\left(\mathbb{R} \times S^{n-1}\right)$ such that $R^{t} f$ is not compactly supported.
Solution 5. Let $\varphi \in C_{0}^{\infty}(\mathbb{R})$ be a such that $\varphi(t)=1$ if $|t| \leq 1$ and $\varphi \geq 0$. Define

$$
f(t, w)=\varphi(t),(t, w) \in \mathbb{R} \times S^{n-1}
$$

Then $f \in C_{0}^{\infty}\left(\mathbb{R} \times S^{n-1}\right)$. Let $x \in \mathbb{R}^{n}$ and $A:=\{x\}^{\perp} \cap S^{n-1}$. By continuity of dot product there exists an open neighborhood $V \subset S^{n-1}$ of A such that

$$
|w \cdot x|<1, w \in V .
$$

Therefore

$$
R^{t} f(x)=\int_{S^{n-1}} f(x \cdot w, w) d w=\int_{S^{n-1}} \varphi(x \cdot w) d w \geq \int_{V \subset S^{n-1}} d w=V o l_{n-1}(V)>0 .
$$

This proves the claim.
Problem 6. Recall the Radon inversion formula (RIF) for test functions is

$$
f=c_{n}(-\Delta)^{\frac{n-1}{2}} R^{t} R f, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

where for $\alpha \in \mathbb{R}$ such that $-n<\alpha$ we define

$$
(-\Delta)^{\alpha / 2} f=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}\|\xi\|^{\alpha} \widehat{f}(\xi) d \xi
$$

Show that (RIF) is also valid for any compactly supported distribution. I.e. show

$$
u=c_{n}(-\Delta)^{\frac{n-1}{2}} R^{t} R u \quad u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Solution 6. Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. Then

$$
\left\langle(-\Delta)^{\frac{n-1}{2}} R^{t} R u, \varphi\right\rangle=\left\langle u,\left((-\Delta)^{\frac{n-1}{2}} R^{t} R\right)^{t} \varphi\right\rangle .
$$

On the other hand

$$
\left.(-\Delta)^{\frac{n-1}{2}} R^{t} R\right)^{t} \varphi=\left(R^{t} R\right)^{t}\left((-\Delta)^{\frac{n-1}{2}}\right)^{t} \varphi=R^{t} R\left((-\Delta)^{\frac{n-1}{2}}\right)^{t} \varphi
$$

Notice that by Parseval identity

$$
\begin{aligned}
\left.\left((-\Delta)^{\frac{n-1}{2}}\right)^{t} \varphi, \phi\right)_{L^{2}\left(\mathbb{R}^{n}\right)} & \left.=\left((-\Delta)^{\frac{n-1}{2}}\right) \phi, \varphi\right)_{L^{2}\left(\mathbb{R}^{n}\right)}=c_{n}\left(\mathcal{F}^{-1}\left(\|\cdot\|^{n-1} \mathcal{F}(\phi), \varphi\right)_{L^{2}\left(\mathbb{R}^{n}\right)}\right. \\
& =c_{n}\left(\phi, \mathcal{F}^{-1}\left(\|\cdot\|^{n-1} \mathcal{F}(\varphi)_{L^{2}\left(\mathbb{R}^{n}\right)} .\right.\right.
\end{aligned}
$$

Therefore

$$
\left((-\Delta)^{\frac{n-1}{2}}\right)^{t}=(-\Delta)^{\frac{n-1}{2}}
$$

By previous exercises it holds that

$$
\left.\mathcal{F}\left(R^{t} R\left((-\Delta)^{\frac{n-1}{2}}\right)^{t} \varphi\right)=c_{n} \mathcal{F}\left(\left(\frac{1}{\|\cdot\|} *(-\Delta)^{\frac{n-1}{2}}\right)^{t} \varphi\right)\right)=c_{n}\|\cdot\|^{1-n} \mathcal{F}\left(\mathcal{F}^{-1}\left(\|\cdot\|^{n-1} \mathcal{F}(\varphi)\right)\right)=\mathcal{F}(\varphi)
$$

The claim follows from inverse Fourier transform.
Problem 7. Recall that the wave front set of a distribution $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by negation as $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is not in WFu, if there exists $\varphi \in C_{0}^{\infty}(U)$ such that $\phi\left(x_{0}\right) \neq 0$, and a neighborhood V of ξ_{0} such that for all $\xi \in V$ and $k \in \mathbb{N}$ holds

$$
\begin{equation*}
|\mathcal{F}(\varphi u)(t \xi)| \leq C_{k}|1+t|^{-k}, t>0 \tag{2}
\end{equation*}
$$

Let $n=2$ and denote by χ the characteristic function of an open unit disc $B(0,1) \subset \mathbb{R}^{2}$. Prove that

$$
W F \chi=\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right):\|x\|=1, \xi \| x\right\}
$$

Solution 7. Notice first that for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ the distribution φu is compactly supported. Therefore $\mathcal{F}(\varphi u) \in C^{\infty}\left(\mathbb{R}^{n}\right)$ (see [5]) and thus inequality (2) makes sense.

We start with computing the wave front set of the characteristic function χ_{p} of the right half plane $\{z \in \mathbb{C}: \operatorname{Re} z>0\}$. Let $\phi \in C_{0}^{\infty}(\mathbb{R})$. We define

$$
\Phi(x):=\phi\left(x_{1}\right) \phi\left(x_{2}\right)
$$

Then $\Phi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ and

$$
\begin{gathered}
\widehat{\Phi \chi_{p}}(\xi)=\int_{x_{1} \geq 0} \Phi(x) e^{-i \xi \cdot x} d x=\int_{0}^{\infty} \phi\left(x_{1}\right) e^{-i \xi_{1} x_{1}} d x_{1} \int_{-\infty}^{\infty} \phi\left(x_{2}\right) e^{-i \xi_{2} x_{2}} d x_{2} \\
=\widehat{\phi}\left(\xi_{2}\right) \int_{0}^{\infty} \phi\left(x_{1}\right) e^{-i \xi_{1} x_{1}} d x_{1}
\end{gathered}
$$

Since

$$
\left|\int_{0}^{\infty} \phi\left(x_{1}\right) e^{-i \xi_{1} x_{1}} d x_{1}\right| \leq\|\phi\|_{L^{1}(\mathbb{R})}
$$

it holds that $\widehat{\Phi \chi_{p}}(\xi)$ is rapidly decreasing if $\xi_{2} \neq 0$. Suppose that $\phi(0)=1$.
Integrating by parts twice yields

$$
\int_{0}^{\infty} \phi(s) e^{-i t s} d s=\frac{i}{t}\left[\phi(s) e^{-i t s}\right]_{0}^{\infty}+\frac{1}{t^{2}}\left[\phi^{\prime}(s) e^{-i t s}\right]_{0}^{\infty}-\frac{1}{t^{2}} \int_{0}^{\infty} \phi^{\prime \prime}(s) e^{-i t s} d s
$$

$$
=\frac{1}{t}\left(-i-\frac{1}{t}\left(\phi^{\prime}(0)+\int_{0}^{\infty} \phi^{\prime \prime}(s) e^{-i t s} d s\right)\right) .
$$

Therefore

$$
t\left|\widehat{\Phi \chi_{p}}(t, 0)\right| \geq|\widehat{\phi}(0)|\left(\left|i+\frac{1}{t} \phi^{\prime}(0)\right|-\frac{1}{t}\left\|\phi^{\prime \prime}\right\|_{L^{1}(\mathbb{R})} \xrightarrow{t \rightarrow \infty} 1 .\right.
$$

This proves that $t \mapsto \widehat{\Phi \chi_{p}}(t, 0)$ is not rapidly decaying. Thus we have proved that

$$
W F \chi_{p}=\{((0, t) ;(s, 0)) \in \mathbb{R} \times \mathbb{R}: t, s \in \mathbb{R}, s \neq 0\}
$$

Consider a mapping

$$
f(z)=\frac{1+z}{1-z}, z \in \mathbb{C} \backslash\{1\},
$$

Clearly f is a diffeomorphism from open unit disc onto open half plane $\{z \in \mathbb{C}: \operatorname{Rez}>0\}$. By Proposition 11.2.2 of [5] it holds that

$$
W F \chi=\left\{\left(z, D f(z)^{t} \xi\right):(f(z), \xi) \in W F \chi_{p}\right\}
$$

here $D f(z)^{t}$ is the transpose of the Jacobian of f at z. Since

$$
f(z)=f(x+i y)=\frac{1-x^{2}-y^{2}}{(x-1)^{2}+y^{2}}+i \frac{2 y}{(x-1)^{2}+y^{2}}
$$

it holds that

$$
D f(i)^{t}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Since $f(i)=i$ and $D f(i)^{t}(1,0)=(0,1)$, we conclude that $((0,1) ;(0,1)) \in W F \chi$. By symmetry we have proved the claim.

An other way to solve this problem is to use the method of stationary phase. See [9].
Notice that in general it holds that the wave front set of a delta function on a smooth hyper surface S is the normal bundle of S.

Problem 8. Let χ be the characteristic function of unit square $Q:=[0,1] \times[0,1] \subset \mathbb{R}^{2}$ prove that
$W F \chi=\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right): x \in \partial Q, \xi \| x\right\} \bigcup\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right): x_{i}=\{0,1\}, \xi \in \mathbb{R}^{2} \backslash\{0\}\right\}$.
I.e. at the corner points every direction is in the wavefront set.

Solution 8. Let us first consider the corner point $(0,0)$ case. Then χ looks like $x \mapsto H\left(x_{1}\right) H\left(\left(x_{2}\right)\right.$ near origin where H is the Heaviside function. Let ϕ and Φ be as in the previous problem. Then

$$
\widehat{\Phi \chi}(\xi)=\int_{0}^{\infty} \phi(s) e^{-i s \xi_{1}} d s \int_{0}^{\infty} \phi(s) e^{-i s \xi_{2}} d s
$$

and by computations done in the previous problem this is not rapidly decaying in ξ. Therefore $(\overline{0}, x) \in$ $W F \chi$ for all $x \in \mathbb{R}^{n} \backslash\{\overline{0}\}$.

The rest follows by symmetry of corner points and from computations done in Problem 7.
Problem 9. Let $F \subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be closed and conic. Show that there exists $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
W F u=F .
$$

Solution 9. See Theorem 8.1.4. of [9].
Problem 10. Let $k \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We define a linear operator.

$$
K: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), K f(x)=\int_{\mathbb{R}^{n}} k(x, y) f(y) d y
$$

Then the adjoint of K with respect to L^{2} innerproduct is

$$
K^{t} f(y)=\int_{\mathbb{R}^{n}} k(x, y) f(x) d x, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Prove that for any $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\left\langle u, K^{t} \varphi\right\rangle=\int_{\mathbb{R}^{n}}\langle u, k(x, \cdot)\rangle \varphi(x) d x
$$

Solution 10.

Problem 11. Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $k \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Prove that

$$
\langle u, k(x, \cdot)\rangle \in C^{\infty}\left(\mathbb{R}^{n}\right) .
$$

Solution 11.

Problem 12. Recall the Schwartz kernel theorem. Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{k}$ be open sets. Let $A: C_{0}^{\infty}(X) \rightarrow \mathcal{D}^{\prime}(Y)$ be linear and continuous. Then there exists a unique $k_{A} \in \mathcal{D}^{\prime}(X \times Y)$ such that

$$
\langle A \varphi, \psi\rangle=k_{A}(\varphi \otimes \psi), \varphi \in C_{0}^{\infty}(X), \psi \in C_{0}^{\infty}(Y)
$$

Here the tensor product $(\varphi \otimes \psi)(x, y):=\varphi(x) \psi(y)$.
If $a \in C^{\infty}(X \times Y)$, it determines naturally the operator $A: C_{0}^{\infty}(X) \rightarrow \mathcal{D}^{\prime}(Y)$

$$
A \varphi(\psi)=\int_{X} \int_{Y} a(x, y) \varphi(x) \overline{\psi(y)} d x d y
$$

Let $X=Y \subset \mathbb{R}^{n}$. Consider a partial differential operator

$$
A=\sum_{|\alpha| \leq k} a_{\alpha} D^{\alpha}, a_{\alpha} \in C^{\infty}(X)
$$

Show that the Schwartz kernel of operator A is

$$
k_{A}(x, y)=\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} \delta(x-y) .
$$

Solution 12. Let $\varphi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. By definition

$$
\begin{aligned}
\langle A \varphi, \psi\rangle & =\int_{\mathbb{R}^{n}}(A \varphi)(x) \overline{\psi(x)} d x=\int_{\mathbb{R}^{n}} \overline{\psi(x)} \sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} \varphi(x) d x \\
& =\int_{\mathbb{R}^{n}} \overline{\psi(x)} \sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} \int_{\mathbb{R}^{n}} \delta(y-x) \varphi(y) d y d x \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}\left[\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} \delta(y-x) \varphi(y)\right] \overline{\psi(x)} d y d x .
\end{aligned}
$$

This proves the claim.

Problem 13. Let $m \in \mathbb{N}$ and $p \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We define the Schwartz kernel k_{p} of p as

$$
\begin{equation*}
\left\langle k_{p}, \varphi\right\rangle:=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \frac{p(x, \xi)}{\left(1+|\xi|^{2}\right)^{M}}\left(I+\Delta_{y}\right)^{M} \varphi(y) d x d y d \xi, \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) . \tag{3}
\end{equation*}
$$

Show that k_{p} is well defined and independent of M, if $M \geq \frac{m+n}{2}$
Problem 14. Let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be s.t. $\eta(x)=1$ when $\|x\| \leq 1$. Show that

$$
k_{p}=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} \eta(\epsilon \xi) e^{i(x-y) \cdot \xi} p(x, \xi), d \xi
$$

where $k_{p} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is defined by equation (3).
Problem 15. Let $A, B \in \Psi^{m}\left(\mathbb{R}^{n}\right)$. show that the Schwartz kernel $k_{A B}$ of composition operator $A B$ satisfies

$$
k_{A B}(x, y)=\int_{\mathbb{R}^{n}} k_{A}(x, z) k_{B}(z, y) d z
$$

when ever right hand side is well defined.
Problem 16. Let $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\chi(x)=1$, if $\|x\| \leq 1$. Let $p \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Show that function

$$
F(x, y)=\int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \frac{1-\chi(x-y)}{\|x-y\|^{2 M}} \Delta_{\xi}^{M} p(x, \xi) d \xi \in C^{k}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

for all $k \in \mathbb{N}$ and is independent of M, if M is large enough.
Show that

$$
k_{\widetilde{A}}(x, y):=\int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \chi(x-y) p(x, \xi) d \xi
$$

is a Schwartz kernel of some $\widetilde{A} \in \Psi^{m}\left(\mathbb{R}^{n}\right)$.
Problem 17. Let $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$. Show that there is a extension

$$
\widetilde{A}: \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

of A that is linear and continuous.
Suppose that $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$ is properly supported. Show that there is a linear and continuous extension

$$
B: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

of \widetilde{A}.
Recall that pseudo differential operator A is properly supported, if the $S c h w a r t z ~ k e r n e l ~ k_{A}$ is properly supported in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ i.e.

$$
\operatorname{supp}_{A} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

is proper. A set $X \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is proper, if for all compact $K \subset \mathbb{R}^{n}$ the sets

$$
\pi_{x}\left(\pi_{y}^{-1} K \cap X\right) \text { and } \pi_{y}\left(\pi_{x}^{-1} K \cap X\right)
$$

are compact in \mathbb{R}^{n}. Here $\pi_{y}(x, y)=y$ and $\pi_{x}(x, y)=x$.
Problem 18. Show that for any $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$ holds

$$
W F(A u) \subset W F u, \text { for any } u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

You can use the fact

$$
\operatorname{singsupp}(A u) \subset \operatorname{singsupp}(u), \text { for any } u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

References

[1] Melrose R \& Uhlmann G, An Introduction to Microlocal Analysis
[2] Grigis A \& Sjöstrand J, Microlocal Analysis for Differential Operators An Introduction
[3] Saint Raymond X, Elementary Introduction to the Theory of Pseudodiferential Operators
[4] Wong M, An Introduction to Pseudo-Differential Operators
[5] Friedlander F \& Joshi M, Introduction to theory of distributions
[6] Lee J, Introduction to smooth manifolds
[7] Helgason S, Radon Transform
[8] Markoe A, Analytic Tomography
[9] Hörmander L, The Analysis of Linear Partial Differential Operators I
[10] Natterer F, Mathematics of computerized tomography

