An introduction to microlocal analysis with applications to inverse problems, summer 2016
Exercise Problems, all lectures
Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi.

In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:
e a= (041, ..., 0p) € N™is a multi-indes. |af :== Y7, oy
® 0, = 5 is the k" partial derivative with respect to Cartesian coordinates and D, = —10y,

¢ 0" = Hk 1 02 and D* = [T}y (=i0y, ) = (=) [T}, 0™
Problem 1. Let w € R", ||w|]| =1 and s € R. We denote the Hyperplane
Hys={zeR":z -w=s}.

Let dv = dy, Ndy, N\ ... ANdy, be the volume form of R™. Then hyperplane H, s has a natural volume
form dH given by formula
dH = (NJdz)|g,.,,

where N is a unit normal of Hy,, and 1 stands for interior multiplication. (See [6]).

Show that the equation
dr|mg,, =ds NdH

1s valid. Here ds should be considered to be the differential of the mapping x — x - w.
Solution 1. Let (s,w) € (R x S"7'). Notice that

Hep={sw+zeR":z -w=0}.

Therefore |s| =dist(Hs,,,{0}). Therefore by symmetry we can assume that s = 0 and thus the normal
vector N of Hy,, is w. Then
dH = (wadx)|g, , = de(w,-,...,")

_Z D)t dag (w)day A .. A dager Adag Adzg A ... A dz,.

Here notation dxk means that one form dx; is omitted. By changing the coordinates we may assume
that w = x1. Then
dH =dg, N ... Ndy,.

Consider mapping x — x1 and denote that by s. Then it holds that
ds NdH = dzx.

Problem 2. Recall that set U C (S™' x R) is open if and only if for every p € U there erists a set
€ (V x (a,b)) C U, where V_.C S"! is open.

Let f € C°(R™). We define the Radon transform of f by formula
Rf(w,s) :/ F(@)dH, (w,s) € (S x R).
Show that R : C§(R™) — C°(S™ x R) is well defined, linear and continuous.
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Solution 2. Let f € C°(R™). Let us first check that Rf has a compact support. Let R > 0 be such
that suppf C B(0, R). Let |s| > R. Then for any w € S"! we have dist(Hs,,,{0}) = |s| > R and thus

Rf(w,s) :/ f(z)dH = 0.
Thus supp(Rf) is contained in S™* x [R, R]. This proves that supp(Rf) is compact.

Notice that an equivalent way to compute the Radon transform is

Rf(w,s) = / . f(ws + z)dH.

Since f is compactly supported it is clear that Rf is smooth with respect to s. Since hyper planes H,,
transform smoothly with respect to w € S™' and since supp(f) is compact it holds that Rf is also
smooth with respect to w. Therefore R is well defined.

Clearly R is linear since integration is linear.

Recall that a sequence (f;)52, C C3°(R™) is said to converge to zero if
e there exists a compact set K C R"™ such that suppfi, C K for every k € N

e for every multi-index o
0°f; — 0 uniformly

Then it is enough to prove that for every sequence (f;)32, C Cg°(R") that converges to zero also (Rf;)52
converges to zero in Cg°(S"~' x R). Let (f;)32, C Cg°(R™) be a sequence that converges to zero. Then
there exists R > 0 such that supp(f;) C B(0, R) for every j € N. Let

¢n = Vol,—1(B(0,R) N {x € R" : z,, = 0}).

Then
R = [ 5@ < alfle =50

T W=Ss

Therefore ||Rfjllcc — 0 as j — oo.

Not to make things too difficult we consider from now on only the case n = 2. Write w = (cos(¢), sin(¢)).
Since suppf; C B(0, R) it holds that

|0,Rf;(¢,s) |/ f(ws + x)dH| < Z 102 fi| sy [ H

mkal

Jj—00
<c¢, sup |0y fj+ Oufi| — 0.
2€B(0,R)

Recall the following formula for integrating over moving regions

4 flz,t) de = f(z, t)v(x,t) - N dS +/ Oif(x,t) dx
dt Juw aU(#) u(t)

Here v(x,t) is the velocity of x € OU(t). Since suppf; C B(0, R) that is compact it holds that

|8¢Rfj( | - |/ ad’f SW + .T) dH| < ‘S|/ |ax1f‘|sw+z + |8w2f||sw+m dH
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j—00
< Rc, sup |0y fj+0unfil—0.
z€B(0,R)

Therefore we have showed that
fis Osfj, 0sf; —> 0 uniformly.

The rest follows with similar arguments.

Problem 3. Recall that the formal transpose R' of Radon transform is defined by L*—duality
(RS, 9)r2(sn-1xr) = (f, R'9)12&n), [ € C(R™) , g € Ce(S™ ! x R).
Then it holds that

R': C°(S" ' x R) — C=(R™), R'g(x)= / g(x - w,w)dw.
Sn—1

Compute the normal operator R'R and show that

(RtR)f =Cn ¢ * [,

where ¢, is a dimensional constant and ¢(x) = ﬁ

Solution 3. Let f € C3°(R™). Then
(RtR)f(x):/ Rf(z - w,w) dw = / (z - w)w + y)dH,dw.
Sn—1 Sn—1

Notice that
r=z— (z-ww+ (z-ww and (z — (- w)w) -w = 0.

/ / f(x +y)dH,dw.
Sn—1

/ / @+ y)dH,dw = Vol(S™2) | Iyl f(x + y)dy
Sn 1 Rn

Therefore

By (VIL.2.8 of [10] it holds that)

= Vol(S"?) | ==yl f(y)dy.

R
Thus the claim follows and c,, = Vol(S"™?) is the area of unit sphere ST~ C R"™1.

Problem 4. Show that

FRBA)(E) = en 1,
“Tel
Solution 4. Since for any v € D'(R™) and f € C§°(R") it holds that
uxf=1af.
By this and (1) it is enough to show that
1 1
(&) =
-1l €]



We start with simple observation that in R", n > 2 function x — ||z||~" is actually in D'(R™) since
chancing into polar coordinates yield

! 1 l n—1
/ ]|~ da = / / s71s" ! dwds = Vol(S”l)/ s 2ds — Vol(S )
||:L‘||§1 0 Sn—1 0 n — 1

We say that distribution u € D'(R™) is rotationally invariant if for all p € C§°(R™) and for all A € O(n)
holds

(u, 0 A) = (u, ).
Since for every A € O(n) holds det A = 1 and AT = A™' it is easy to show that the Fourier transform
of rotationally invariant distribution is also rotationally invariant.

Therefore in order to cumpute 1/|| - ||(€), it is enough to consider case & = (r,0,...,0) for some r > 0.
Then in polar coordinates this yields

s 1 . > .
1/” . ”(5) — Cn/ _6—zx~€d$ — Cn/ / Sn—26—zrscos(9)dwd8‘
rn || 0o Jsn-1

Since all the other angular variables are free this simplifies (See [10] VII.2 (2.2))

cn/ / s 2075 0sO0) s :chOZH_Q(S"_2)/ / s 27 cos®) ¢in"=2(9)dfds.
0o Jgn-1 o Jo

Do the change of variables rs = s’ to get

/ /S"_Qe_mcos(e) sin” () d@ds—
0 0

Thus we have proved the claim modulo a dimensional constant ¢ = ¢,V ol,,_o(

Problem 5. Find f € Cg°(R x S™') such that R'f is not compactly supported.

Solution 5. Let ¢ € C{°(R) be a such that p(t) =1 if |t| <1 and ¢ > 0. Define
ft,w) =), (t,w) e R x 5" 1.

Then f € C(R x S"71). Let v € R™ and A := {z}+ N S""1. By continuity of dot product there exists
an open neighborhood V-.C S™~! of A such that

1
)27 <osO) sin"2(9)dfds’ =: ——1I,.

rnfl

S?’L —2nnnnnnnnnnnnnnnnNNNNNNINNNINNNNN

lw-z| <1, weV.

Therefore

R = [ fa vy |

o(x - w)dw > / dw = Vol,_1(V) > 0.
Sn—1 Sn—1

vcsn—1

This proves the claim.

Problem 6. Recall the Radon inversion formula (RIF) for test functions is
f=cu(=A)"T R'Rf. f € CF(R"),
where for a € R such that —n < a we define
(A1 = s [ el Flerae
Show that (RIF) is also valid for any compactly supported distribution. I.e. show
u=cy(—A)"z R'Ru u € &'(R")
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Solution 6. Let u € £'(R™) and ¢ € CP(R™). Then
((—A)*F R'Ru,¢) = (u, ((—A)"F R'R)'¢).
On the other hand

n—1 n—1

(—A)7 R'R)'¢ = (R'R)'((-A)"7)'o = R'R((-A)"7 )’

Notice that by Parseval identity

n—

(—A)7) 0, $)rany = (=A)"2)6,9) 2wy = el F (|- "' F(9), ) ran)

= (&, FHI - 1" F(9) 2y
Therefore

By previous exercises it holds that
n 1 n—1

FRR((—A)7)'9) = cuF (7= * (=) 7 )'9)) = call - I "FF (|| - "' F(9)) = Fl).

The clairm follows from inverse Fourier transform.

Problem 7. Recall that the wave front set of a distribution u € D'(R™) is defined by negation as
(x0,&) € R™ x (R"\{0}) is not in WFu, if there exists ¢ € C(U) such that ¢(xo) # 0, and a
neighborhood V' of & such that for all £ € V and k € N holds

| F(pu)(t€)| < Oyl + 7%, ¢t > 0. (2)
Let n = 2 and denote by x the characteristic function of an open unit disc B(0,1) C R?. Prove that
WEFx = {(z,€) € R x (R*\{0}) : [|z| = 1, & || «}.

Solution 7. Notice first that for any ¢ € C°(R"™) and u € D'(R") the distribution pu is compactly
supported. Therefore F(pu) € C®(R™) (see [5]) and thus inequality (2) makes sense.

We start with computing the wave front set of the characteristic function x, of the right half plane
{z € C: Rez > 0}. Let ¢ € C°(R). We define

O(z) = ¢(w1)P(x2).
Then ® € C°(R?) and

2x,(6) :/ O(w)e " du = ¢(sc1)e"51‘“d961/ P(m2)e " day
r1>0 _

0 e’}

o0

= 0(&) o(x1)e " duy.

0
Since

/ gb(xl)e_iglxldxl
0

it holds that 5}2,(&) is rapidly decreasing if & # 0. Suppose that ¢(0) = 1.

< ¢llzr(m),

Integrating by parts twice yields

[ ot = o] g e

0 t?

> 1 Oo " —its
_ﬁ/o ¢"(s)e "*ds

0
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(-3 (00+ [Toeea).

Therefore
o1 1 00
i+360) - {1 low) =1

£, (1,0) > |5(0)](

This proves that t — (I;;p(ty 0) is not rapidly decaying. Thus we have proved that
WEy, ={((0,1);(s,0)) ERxR:t,s € R, 5% 0}.

Consider a mapping
1+2
f(Z> - 1 o Z’

Clearly f is a diffeomorphism from open unit disc onto open half plane {z € C : Rez > 0}. By
Proposition 11.2.2 of [5] it holds that

WEFx ={(2,Df(2)'€) : (f(2),€) € WFx,},

here D f(z)! is the transpose of the Jacobian of f at z. Since

z € C\{1},

1— 2% —q? w 2y
N R ) R

f(z) = flz +iy) =

it holds that

Since f(i) =i and Df(:)'(1,0) = (0,1), we conclude that ((0,1);(0,1)) € WFx. By symmetry we have
proved the claim.

An other way to solve this problem is to use the method of stationary phase. See [9].

Notice that in general it holds that the wave front set of a delta function on a smooth hyper surface
S is the normal bundle of S.

Problem 8. Let x be the characteristic function of unit square Q := [0,1] x [0,1] C R? prove that

WEY = {(2,6) € R x (R\{0}) : v € 9Q,¢ || a} [ J{(x,€) € R x (R*\{0}) : i = {0, 1}, € € R*\{0}}.
L.e. at the corner points every direction is in the wavefront set.

Solution 8. Let us first consider the corner point (0,0) case. Then x looks like x — H(x1)H ((z2) near
origin where H is the Heaviside function. Let ¢ and ® be as in the previous problem. Then

B3O = [ ol ds [ olsee i

and by computations done in the previous problem this is not rapidly decaying in €. Therefore (0,z) €
WFx for all x € R"\{0}.

The rest follows by symmetry of corner points and from computations done in Problem 7.

Problem 9. Let FF C R™ x (R"\{0}) be closed and conic. Show that there exists u € D'(R™) such that

WFu=F.



Solution 9. See Theorem 8.1.4. of [9].
Problem 10. Let k € C(R™ x R"™). We define a linear operator.

K OR(R) = O, K@) = [ M)Wy
Then the adjoint of K with respect to L? innerproduct is
K'$(0) = [ Ko.w)f(a)ds, f € CFR)

Prove that for any u € £'(R") and ¢ € C{°(R")

(K%)= [ (ke o)t
Solution 10.
Problem 11. Let u € &'(R™) and k € C*(R™ x R™). Prove that
(u, k(x,-)) € C(R").
Solution 11.

Problem 12. Recall the Schwartz kernel theorem. Let X C R™ and Y C RF be open sets. Let
A:CR(X) = DY) be linear and continuous. Then there exists a unique ks € D'(X X Y') such that

(Ap,¥) = kalp @ 9), ¢ € G (X), ¢ € G (Y).
Here the tensor product (¢ ® ¥)(x,y) = w(z)Y(y).

If a € C®(X xY), it determines naturally the operator A : C°(X) — D'(Y)

0= [ [ atwa)e@iitdey

Let X =Y C R". Consider a partial differential operator

A= Z an D%, a, € C(X).
lal<k
Show that the Schwartz kernel of operator A is
ka(z,y) = ) aa(x)D(z —y).
lal<k

Solution 12. Let p, ¢ € C§°(R™). By definition

(Ag. ) = / (AP dr= [ @) Y aule)D () dr

G(x) Y aale / 3y — )e(y) dy dx

la|<k

// { ) D%y — )so(y)]zb(x) dy da.

|o| <K

This proves the claim.



Problem 13. Let m € N and p € S™(R" x R"). We define the Schwartz kernel k, of p as

/// e, ngf)) (I + )Y o(y) dadyds, ¢ € C5*(R"). (3)

Show that k, is well defined and independent of M, if M > mTJ“"
Problem 14. Let n € C§°(R") be s.t. n(z) =1 when ||z|| < 1. Show that

k = lim n(eg)ei(xiy)fp(xv é)? dé

e—0 R
where k, € D'(R" x R") is defined by equation (3).

Problem 15. Let A, B € V™ (R"). show that the Schwartz kernel kap of composition operator AB
satisfies

]‘CAB(JJ,y) = / kA(x7z)kB(Zvy)dza
when ever right hand side is well defined.

Problem 16. Let x € C3°(R™) be such that x(x) = 1, if ||z|| < 1. Let p € S™(R" x R"). Show that
function

i(z—y)- 1— X\& n n
F(%?J)Z/ e'l y)gwﬁéﬁp(w £) d¢ € C*(R" x R™),
for all k € N and is independent of M, if M is large enough.

Show that
k(e y) = / N (@ — y)p(, €) dE

is a Schwartz kernel of some A € U™(R™).
Problem 17. Let A € V™ (R™). Show that there is a extension

A:&'(R™ — D'(RY)
of A that is linear and continuous.
Suppose that A € W™ (R"™) is properly supported. Show that there is a linear and continuous exten-
ston

B:D'(R") — D'(R")
of A.
Recall that pseudo differential operator A is properly supported, if the Schwartz kernel ka is properly

supported in R™ x R™ i.e.
suppks C R" x R"™

1s proper. A set X C R™ x R"™ is proper, if for all compact K C R"™ the sets
mo(m, ' K N X) and m,(n;' K N X)
are compact in R™. Here my(x,y) =y and m,(z,y) = x.
Problem 18. Show that for any A € ¥"™(R™) holds
WF(Au) C WFu, for any u € E'(R™).
You can use the fact

singsupp(Au) C singsupp(u), for any u € E'(R™).
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