An introduction to microlocal analysis with applications to inverse problems, summer 2016

Exercise Problems, all lectures

Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi. In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:

- $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ is a multi-indes. $|\alpha| := \sum_{k=1}^n \alpha_k$
- $\partial_{x_k} := \frac{\partial}{\partial x_k}$ is the k^{th} partial derivative with respect to Cartesian coordinates and $D_k = -i\partial_{x_k}$
- $\partial^{\alpha} = \prod_{k=1}^{n} \partial_{x_k}^{\alpha_k}$ and $D^{\alpha} = \prod_{k=1}^{n} (-i\partial_{x_k})^{\alpha_k} = (-i)^{|\alpha|} \prod_{k=1}^{n} \partial^{\alpha_k}$

Problem 1. Let $w \in \mathbb{R}^n$, ||w|| = 1 and $s \in \mathbb{R}$. We denote the Hyperplane

$$H_{w,s} = \{ x \in \mathbb{R}^n : x \cdot w = s \}.$$

Let $dx = d_{x_1} \wedge d_{x_2} \wedge \ldots \wedge d_{x_n}$ be the volume form of \mathbb{R}^n . Then hyperplane $H_{w,s}$ has a natural volume form dH given by formula

$$dH = (N \lrcorner dx)|_{H_{w,s}}$$

where N is a unit normal of $H_{s,w}$ and \lrcorner stands for interior multiplication. (See [6]).

Show that the equation

$$dx|_{H_{s,w}} = ds \wedge dH$$

is valid. Here ds should be considered to be the differential of the mapping $x \mapsto x \cdot w$.

Problem 2. Recall that set $U \subset (S^{n-1} \times \mathbb{R})$ is open if and only if for every $p \in U$ there exists a set $p \in (V \times (a, b)) \subset U$, where $V \subset S^{n-1}$ is open.

Let $f \in C_0^{\infty}(\mathbb{R}^n)$. We define the Radon transform of f by formula

$$Rf(w,s) = \int_{x \cdot w = s} f(x)dH, \ (w,s) \in (S^{n-1} \times \mathbb{R}).$$

Show that $R: C_0^{\infty}(\mathbb{R}^n) \to C_0^{\infty}(S^{n-1} \times \mathbb{R})$ is well defined, linear and continuous.

Problem 3. Recall that the formal transpose R^t of Radon transform is defined by L^2 -duality

$$(Rf,g)_{L^{2}(S^{n-1}\times\mathbb{R})} = (f,R^{t}g)_{L^{2}(\mathbb{R}^{n})}, \ f \in C_{0}^{\infty}(\mathbb{R}^{n}), g \in C_{0}^{\infty}(S^{n-1}\times\mathbb{R}).$$

Then it holds that

$$R^t: C_0^{\infty}(S^{n-1} \times \mathbb{R}) \to C^{\infty}(\mathbb{R}^n), \ R^t g(x) = \int_{S^{n-1}} g(x \cdot w, w) dw.$$

Compute the normal operator $R^t R$ and show that

$$(R^t R)f = c_n \phi * f,$$

where c_n is a dimensional constant and $\phi(x) = \frac{1}{\|x\|}$.

Problem 4. Show that

$$\mathcal{F}(R^t R f)(\xi) = c_n \frac{f(\xi)}{\|\xi\|^{n-1}}$$

Problem 5. Find $f \in C_0^{\infty}(\mathbb{R}^{\times}S^{n-1})$ such that $R^t f$ is not compactly supported.

Problem 6. Recall the Radon inversion formula (RIF) for test functions is

$$f = c_n (-\Delta)^{\frac{n-1}{2}} R^t R f, \ f \in C_0^{\infty}(\mathbb{R}^n),$$

where for $\alpha \in \mathbb{R}$ such that $-n < \alpha$ we define

$$(-\Delta)^{\alpha/2} f = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \|\xi\|^{\alpha} \widehat{f}(\xi) d\xi.$$

Show that (RIF) is also valid for any compactly supported distribution. I.e. show

$$u = c_n(-\Delta)^{\frac{n-1}{2}} R^t R u \ u \in \mathcal{E}'(\mathbb{R}^n)$$

Problem 7. Recall that the wave front set of a distribution $u \in \mathcal{D}'(\mathbb{R}^n)$ is defined by negation as $(x_0, \xi_0) \in \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ is not in WFu, if there exists a neighborhood $(U \times V) \subset \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ of (x_0, ξ_0) such that for all $\varphi \in C_0^{\infty}(U)$, $\xi \in V$ and $k \in \mathbb{N}$ holds

$$|\mathcal{F}(\varphi u)(t\xi)| \le C_n |1+t|^{-k}, \ t > 0.$$

Let n = 2 and denote by χ the characteristic function of an open unit disc $B(0,1) \subset \mathbb{R}^2$. Prove that

$$WF\chi = \{(x,\xi) \in \mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{0\}) : ||x|| = 1, \xi ||x\}$$

Problem 8. Let χ be the characteristic function of unit square $Q := [0,1] \times [0,1] \subset \mathbb{R}^2$ prove that

$$WF\chi = \{(x,\xi) \in \mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{0\}) : x \in \partial Q, \xi \parallel x\} \bigcup \{(x,\xi) \in \mathbb{R}^2 \times (\mathbb{R}^2 \setminus \{0\}) : x_i = \{0,1\}, \xi \in \mathbb{R}^2 \setminus \{0\}\}.$$

I.e. at the corner points every direction is in the wavefront set.

Problem 9. Let $F \subset \mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})$ be closed and conic. Show that there exists $u \in \mathcal{D}'(\mathbb{R}^n)$ such that

$$WFu = F.$$

Problem 10. Let $k \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. We define a linear operator.

$$K: C_0^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n), \ Kf(x) = \int_{\mathbb{R}^n} k(x,y)f(y)dy.$$

Then the adjoint of K with respect to L^2 innerproduct is

$$K^{t}f(y) = \int_{\mathbb{R}^{n}} k(x, y)f(x)dx, \ f \in C_{0}^{\infty}(\mathbb{R}^{n})$$

Prove that for any $u \in \mathcal{E}'(\mathbb{R}^n)$ and $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$\langle u, K^t \varphi \rangle = \int_{\mathbb{R}^n} \langle u, k(x, \cdot) \rangle \varphi(x) dx$$

Problem 11. Let $u \in \mathcal{E}'(\mathbb{R}^n)$ and $k \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$. Prove that

$$\langle u, k(x, \cdot) \rangle \in C^{\infty}(\mathbb{R}^n).$$

Problem 12. Recall the Schwartz kernel theorem. Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^k$ be open sets. Let $A: C_0^{\infty}(X) \to \mathcal{D}'(Y)$ be linear and continuous. Then there exists a unique $k_A \in \mathcal{D}'(X \times Y)$ such that

$$\langle A\varphi,\psi\rangle = k_A(\varphi\otimes\psi), \ \varphi\in C_0^\infty(X), \ \psi\in C_0^\infty(Y).$$

Here the tensor product $(\varphi \otimes \psi)(x,y) := \varphi(x)\psi(y)$.

If $a \in C^{\infty}(X \times Y)$, it determines naturally the operator $A: C_0^{\infty}(X) \to \mathcal{D}'(Y)$

$$A\varphi(\psi) = \int_X \int_Y a(x, y)\varphi(x)\overline{\psi(y)}dxdy$$

Let $X = Y \subset \mathbb{R}^n$. Consider a partial differential operator

$$A = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha}, \ a_{\alpha} \in C^{\infty}(X).$$

Show that the Schwartz kernel of operator A is

$$k_A(x,y) = \sum_{|\alpha| \le k} a_\alpha(x) D^\alpha \delta(x-y).$$

Problem 13. Let $m \in \mathbb{N}$ and $p \in S^m(\mathbb{R}^n \times \mathbb{R}^n)$. We define the Schwartz kernel k_p of p as

$$\langle k_p, \varphi \rangle := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} \frac{p(x,\xi)}{(1+|\xi|^2)^M} (I+\Delta_y)^M \varphi(y) \, dx dy d\xi, \ \varphi \in C_0^\infty(\mathbb{R}^n).$$
(1)

Show that k_p is well defined and independent of M, if $M \geq \frac{m+n}{2}$

Problem 14. Let $\eta \in C_0^{\infty}(\mathbb{R}^n)$ be s.t. $\eta(x)$ 1 when $||x|| \leq 1$. Show that

$$k_p = \lim_{\epsilon \to 0} \int_{\mathbb{R}^n} \eta(\epsilon \xi) e^{i(x-y) \cdot \xi} p(x,\xi), d\xi$$

where $k_p \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ is defined by equation (1).

Problem 15. Let $A, B \in \Psi^m(\mathbb{R}^n)$. show that the Schwartz kernel k_{AB} of composition operator AB satisfies

$$k_{AB}(x,y) = \int_{\mathbb{R}^n} k_A(x,z) k_B(z,y) dz$$

when ever right hand side is well defined.

Problem 16. Let $\chi \in C_0^{\infty}(\mathbb{R}^n)$ be such that $\chi(x) = 1$, if $||x|| \leq 1$. Let $p \in S^m(\mathbb{R}^n \times \mathbb{R}^n)$. Show that function

$$F(x,y) = \int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} \frac{1-\chi(x-y)}{\|x-y\|^{2M}} \Delta^M_{\xi} p(x,\xi) \ d\xi \in C^k(\mathbb{R}^n \times \mathbb{R}^n),$$

for all $k \in \mathbb{N}$ and is independent of M, if M is large enough.

Show that

$$k_{\widetilde{A}}(x,y) := \int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} \chi(x-y) p(x,\xi) \ d\xi$$

is a Schwartz kernel of some $\widetilde{A} \in \Psi^m(\mathbb{R}^n)$.

Problem 17. Let $A \in \Psi^m(\mathbb{R}^n)$. Show that there is a extension

$$A: \mathcal{E}'(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$$

of A that is linear and continuous.

Suppose that $A \in \Psi^m(\mathbb{R}^n)$ is properly supported. Show that there is a linear and continuous extension

$$B: \mathcal{D}'(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$$

of \widetilde{A} .

Recall that pseudo differential operator A is properly supported, if the Schwartz kernel k_A is properly supported in $\mathbb{R}^n \times \mathbb{R}^n$ i.e.

$$suppk_A \subset \mathbb{R}^n \times \mathbb{R}^n$$

is proper. A set $X \subset \mathbb{R}^n \times \mathbb{R}^n$ is proper, if for all compact $K \subset \mathbb{R}^n$ the sets

 $\pi_x(\pi_y^{-1}K \cap X)$ and $\pi_y(\pi_x^{-1}K \cap X)$

are compact in \mathbb{R}^n . Here $\pi_y(x, y) = y$ and $\pi_x(x, y) = x$.

Problem 18. Show that for any $A \in \Psi^m(\mathbb{R}^n)$ holds

 $WF(Au) \subset WFu$, for any $u \in \mathcal{E}'(\mathbb{R}^n)$.

You can use the fact

 $singsupp(Au) \subset singsupp(u), \text{ for any } u \in \mathcal{E}'(\mathbb{R}^n).$

References

- [1] Melrose R & Uhlmann G, An Introduction to Microlocal Analysis
- [2] Grigis A & Sjöstrand J, Microlocal Analysis for Differential Operators An Introduction
- [3] Saint Raymond X, Elementary Introduction to the Theory of Pseudodiferential Operators
- [4] Wong M, An Introduction to Pseudo-Differential Operators
- [5] Friedlander F & Joshi M, Introduction to theory of distributions
- [6] Lee J, Introduction to smooth manifolds
- [7] Helgason S, Radon Transform
- [8] Markoe A, Analytic Tomography
- [9] Hörmander L, The Analysis of Linear Partial Differential Operators I
- [10] Natterer F, Mathematics of computerized tomography