An introduction to microlocal analysis with applications to inverse problems, summer 2016

Exercise Problems, all lectures

Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi. In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:

- $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ is a multi-indes. $|\alpha|:=\sum_{k=1}^{n} \alpha_{k}$
- $\partial_{x_{k}}:=\frac{\partial}{\partial x_{k}}$ is the $k^{\text {th }}$ partial derivative with respect to Cartesian coordinates and $D_{k}=-i \partial_{x_{k}}$
- $\partial^{\alpha}=\prod_{k=1}^{n} \partial_{x_{k}}^{\alpha_{k}}$ and $D^{\alpha}=\prod_{k=1}^{n}\left(-i \partial_{x_{k}}\right)^{\alpha_{k}}=(-i)^{|\alpha|} \prod_{k=1}^{n} \partial^{\alpha_{k}}$

Problem 1. Let $w \in \mathbb{R}^{n},\|w\|=1$ and $s \in \mathbb{R}$. We denote the Hyperplane

$$
H_{w, s}=\left\{x \in \mathbb{R}^{n}: x \cdot w=s\right\} .
$$

Let $d x=d_{x_{1}} \wedge d_{x_{2}} \wedge \ldots \wedge d_{x_{n}}$ be the volume form of \mathbb{R}^{n}. Then hyperplane $H_{w, s}$ has a natural volume form $d H$ given by formula

$$
d H=(N\lrcorner d x)\left.\right|_{H_{w, s}},
$$

where N is a unit normal of $H_{s, w}$ and \lrcorner stands for interior multiplication. (See [6]).
Show that the equation

$$
\left.d x\right|_{H_{s, w}}=d s \wedge d H
$$

is valid. Here ds should be considered to be the differential of the mapping $x \mapsto x \cdot w$.
Problem 2. Recall that set $U \subset\left(S^{n-1} \times \mathbb{R}\right)$ is open if and only if for every $p \in U$ there exists a set $p \in(V \times(a, b)) \subset U$, where $V \subset S^{n-1}$ is open.

Let $f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$. We define the Radon transform of f by formula

$$
R f(w, s)=\int_{x \cdot w=s} f(x) d H,(w, s) \in\left(S^{n-1} \times \mathbb{R}\right)
$$

Show that $R: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right)$ is well defined, linear and continuous.
Problem 3. Recall that the formal transpose R^{t} of Radon transform is defined by $L^{2}-d u a l i t y$

$$
(R f, g)_{L^{2}\left(S^{n-1} \times \mathbb{R}\right)}=\left(f, R^{t} g\right)_{L^{2}\left(\mathbb{R}^{n}\right)}, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), g \in C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right)
$$

Then it holds that

$$
R^{t}: C_{0}^{\infty}\left(S^{n-1} \times \mathbb{R}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), \quad R^{t} g(x)=\int_{S^{n-1}} g(x \cdot w, w) d w
$$

Compute the normal operator $R^{t} R$ and show that

$$
\left(R^{t} R\right) f=c_{n} \phi * f
$$

where c_{n} is a dimensional constant and $\phi(x)=\frac{1}{\|x\|}$.

Problem 4. Show that

$$
\mathcal{F}\left(R^{t} R f\right)(\xi)=c_{n} \frac{\widehat{f}(\xi)}{\|\xi\|^{n-1}}
$$

Problem 5. Find $f \in C_{0}^{\infty}\left(\mathbb{R}^{\times} S^{n-1}\right)$ such that $R^{t} f$ is not compactly supported.
Problem 6. Recall the Radon inversion formula (RIF) for test functions is

$$
f=c_{n}(-\Delta)^{\frac{n-1}{2}} R^{t} R f, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

where for $\alpha \in \mathbb{R}$ such that $-n<\alpha$ we define

$$
(-\Delta)^{\alpha / 2} f=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}\|\xi\|^{\alpha} \widehat{f}(\xi) d \xi
$$

Show that (RIF) is also valid for any compactly supported distribution. I.e. show

$$
u=c_{n}(-\Delta)^{\frac{n-1}{2}} R^{t} R u \quad u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Problem 7. Recall that the wave front set of a distribution $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by negation as $\left(x_{0}, \xi_{0}\right) \in \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ is not in WFu, if there exists a neighborhood $(U \times V) \subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ of $\left(x_{0}, \xi_{0}\right)$ such that for all $\varphi \in C_{0}^{\infty}(U), \xi \in V$ and $k \in \mathbb{N}$ holds

$$
|\mathcal{F}(\varphi u)(t \xi)| \leq C_{n}|1+t|^{-k}, t>0
$$

Let $n=2$ and denote by χ the characteristic function of an open unit disc $B(0,1) \subset \mathbb{R}^{2}$. Prove that

$$
W F \chi=\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right):\|x\|=1, \xi \| x\right\}
$$

Problem 8. Let χ be the characteristic function of unit square $Q:=[0,1] \times[0,1] \subset \mathbb{R}^{2}$ prove that
$W F \chi=\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right): x \in \partial Q, \xi \| x\right\} \bigcup\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash\{0\}\right): x_{i}=\{0,1\}, \xi \in \mathbb{R}^{2} \backslash\{0\}\right\}$.
I.e. at the corner points every direction is in the wavefront set.

Problem 9. Let $F \subset \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right)$ be closed and conic. Show that there exists $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ such that

$$
W F u=F .
$$

Problem 10. Let $k \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We define a linear operator.

$$
K: C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{n}\right), K f(x)=\int_{\mathbb{R}^{n}} k(x, y) f(y) d y
$$

Then the adjoint of K with respect to L^{2} innerproduct is

$$
K^{t} f(y)=\int_{\mathbb{R}^{n}} k(x, y) f(x) d x, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

Prove that for any $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\left\langle u, K^{t} \varphi\right\rangle=\int_{\mathbb{R}^{n}}\langle u, k(x, \cdot)\rangle \varphi(x) d x
$$

Problem 11. Let $u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ and $k \in C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Prove that

$$
\langle u, k(x, \cdot)\rangle \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

Problem 12. Recall the Schwartz kernel theorem. Let $X \subset \mathbb{R}^{n}$ and $Y \subset \mathbb{R}^{k}$ be open sets. Let $A: C_{0}^{\infty}(X) \rightarrow \mathcal{D}^{\prime}(Y)$ be linear and continuous. Then there exists a unique $k_{A} \in \mathcal{D}^{\prime}(X \times Y)$ such that

$$
\langle A \varphi, \psi\rangle=k_{A}(\varphi \otimes \psi), \varphi \in C_{0}^{\infty}(X), \psi \in C_{0}^{\infty}(Y)
$$

Here the tensor product $(\varphi \otimes \psi)(x, y):=\varphi(x) \psi(y)$.
If $a \in C^{\infty}(X \times Y)$, it determines naturally the operator $A: C_{0}^{\infty}(X) \rightarrow \mathcal{D}^{\prime}(Y)$

$$
A \varphi(\psi)=\int_{X} \int_{Y} a(x, y) \varphi(x) \overline{\psi(y)} d x d y
$$

Let $X=Y \subset \mathbb{R}^{n}$. Consider a partial differential operator

$$
A=\sum_{|\alpha| \leq k} a_{\alpha} D^{\alpha}, a_{\alpha} \in C^{\infty}(X)
$$

Show that the Schwartz kernel of operator A is

$$
k_{A}(x, y)=\sum_{|\alpha| \leq k} a_{\alpha}(x) D^{\alpha} \delta(x-y) .
$$

Problem 13. Let $m \in \mathbb{N}$ and $p \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. We define the Schwartz kernel k_{p} of p as

$$
\begin{equation*}
\left\langle k_{p}, \varphi\right\rangle:=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \frac{p(x, \xi)}{\left(1+|\xi|^{2}\right)^{M}}\left(I+\Delta_{y}\right)^{M} \varphi(y) d x d y d \xi, \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) . \tag{1}
\end{equation*}
$$

Show that k_{p} is well defined and independent of M, if $M \geq \frac{m+n}{2}$
Problem 14. Let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be s.t. $\eta(x) 1$ when $\|x\| \leq 1$. Show that

$$
k_{p}=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{n}} \eta(\epsilon \xi) e^{i(x-y) \cdot \xi} p(x, \xi), d \xi
$$

where $k_{p} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is defined by equation (1).
Problem 15. Let $A, B \in \Psi^{m}\left(\mathbb{R}^{n}\right)$. show that the Schwartz kernel $k_{A B}$ of composition operator $A B$ satisfies

$$
k_{A B}(x, y)=\int_{\mathbb{R}^{n}} k_{A}(x, z) k_{B}(z, y) d z
$$

when ever right hand side is well defined.
Problem 16. Let $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be such that $\chi(x)=1$, if $\|x\| \leq 1$. Let $p \in S^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$. Show that function

$$
F(x, y)=\int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \frac{1-\chi(x-y)}{\|x-y\|^{2 M}} \Delta_{\xi}^{M} p(x, \xi) d \xi \in C^{k}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)
$$

for all $k \in \mathbb{N}$ and is independent of M, if M is large enough.
Show that

$$
k_{\widetilde{A}}(x, y):=\int_{\mathbb{R}^{n}} e^{i(x-y) \cdot \xi} \chi(x-y) p(x, \xi) d \xi
$$

is a Schwartz kernel of some $\widetilde{A} \in \Psi^{m}\left(\mathbb{R}^{n}\right)$.

Problem 17. Let $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$. Show that there is a extension

$$
\widetilde{A}: \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

of A that is linear and continuous.
Suppose that $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$ is properly supported. Show that there is a linear and continuous extension

$$
B: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

of \widetilde{A}.
Recall that pseudo differential operator A is properly supported, if the Schwartz kernel k_{A} is properly supported in $\mathbb{R}^{n} \times \mathbb{R}^{n}$ i.e.

$$
\operatorname{supp}_{A} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

is proper. A set $X \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is proper, if for all compact $K \subset \mathbb{R}^{n}$ the sets

$$
\pi_{x}\left(\pi_{y}^{-1} K \cap X\right) \text { and } \pi_{y}\left(\pi_{x}^{-1} K \cap X\right)
$$

are compact in \mathbb{R}^{n}. Here $\pi_{y}(x, y)=y$ and $\pi_{x}(x, y)=x$.
Problem 18. Show that for any $A \in \Psi^{m}\left(\mathbb{R}^{n}\right)$ holds

$$
W F(A u) \subset W F u, \text { for any } u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

You can use the fact

$$
\operatorname{singsupp}(A u) \subset \operatorname{singsupp}(u), \text { for any } u \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)
$$

References

[1] Melrose R \& Uhlmann G, An Introduction to Microlocal Analysis
[2] Grigis A \& Sjöstrand J, Microlocal Analysis for Differential Operators An Introduction
[3] Saint Raymond X, Elementary Introduction to the Theory of Pseudodiferential Operators
[4] Wong M, An Introduction to Pseudo-Differential Operators
[5] Friedlander F \& Joshi M, Introduction to theory of distributions
[6] Lee J, Introduction to smooth manifolds
[7] Helgason S, Radon Transform
[8] Markoe A, Analytic Tomography
[9] Hörmander L, The Analysis of Linear Partial Differential Operators I
[10] Natterer F, Mathematics of computerized tomography

