
An introduction to microlocal analysis with applications to inverse problems, summer 2016

Exercise Problems, all lectures
Return your solutions to Teemu Saksala by 11th of Sebtember at 23:59 by e-mail teemu.saksala@helsinki.fi.
In order to get the one credit for the exercises, you should solve atleast 5 of the following problems.

Please let me know, if you find any mistakes etc.

Notations:

• α = (α1, . . . , αn) ∈ Nn is a multi-indes. |α| :=
∑n

k=1 αk

• ∂xk := ∂
∂xk

is the kth partial derivative with respect to Cartesian coordinates and Dk = −i∂xk

• ∂α =
∏n

k=1 ∂
αk
xk

and Dα =
∏n

k=1(−i∂xk)αk = (−i)|α|
∏n

k=1 ∂
αk

Problem 1. Let w ∈ Rn, ‖w‖ = 1 and s ∈ R. We denote the Hyperplane

Hw,s = {x ∈ Rn : x · w = s}.

Let dx = dx1 ∧ dx2 ∧ . . . ∧ dxn be the volume form of Rn. Then hyperplane Hw,s has a natural volume
form dH given by formula

dH = (Nydx)|Hw,s ,

where N is a unit normal of Hs,w and y stands for interior multiplication. (See [6]).

Show that the equation
dx|Hs,w = ds ∧ dH

is valid. Here ds should be considered to be the differential of the mapping x 7→ x · w.

Problem 2. Recall that set U ⊂ (Sn−1 × R) is open if and only if for every p ∈ U there exists a set
p ∈ (V × (a, b)) ⊂ U , where V ⊂ Sn−1 is open.

Let f ∈ C∞0 (Rn). We define the Radon transform of f by formula

Rf(w, s) =

∫
x·w=s

f(x)dH, (w, s) ∈ (Sn−1 × R).

Show that R : C∞0 (Rn)→ C∞0 (Sn−1 × R) is well defined, linear and continuous.

Problem 3. Recall that the formal transpose Rt of Radon transform is defined by L2−duality

(Rf, g)L2(Sn−1×R) = (f,Rtg)L2(Rn), f ∈ C∞0 (Rn) , g ∈ C∞0 (Sn−1 × R).

Then it holds that

Rt : C∞0 (Sn−1 × R)→ C∞(Rn), Rtg(x) =

∫
Sn−1

g(x · w,w)dw.

Compute the normal operator RtR and show that

(RtR)f = cn φ ∗ f,

where cn is a dimensional constant and φ(x) = 1
‖x‖ .
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Problem 4. Show that

F(RtRf)(ξ) = cn
f̂(ξ)

‖ξ‖n−1

Problem 5. Find f ∈ C∞0 (R×Sn−1) such that Rtf is not compactly supported.

Problem 6. Recall the Radon inversion formula (RIF) for test functions is

f = cn(−∆)
n−1
2 RtRf, f ∈ C∞0 (Rn),

where for α ∈ R such that −n < α we define

(−∆)α/2f =
1

(2π)n

∫
Rn

eix·ξ‖ξ‖αf̂(ξ)dξ.

Show that (RIF) is also valid for any compactly supported distribution. I.e. show

u = cn(−∆)
n−1
2 RtRu u ∈ E ′(Rn)

Problem 7. Recall that the wave front set of a distribution u ∈ D′(Rn) is defined by negation as
(x0, ξ0) ∈ Rn × (Rn\{0}) is not in WFu, if there exists a neighborhood (U × V ) ⊂ Rn × (Rn\{0}) of
(x0, ξ0) such that for all ϕ ∈ C∞0 (U), ξ ∈ V and k ∈ N holds

|F(ϕu)(tξ)| ≤ Cn|1 + t|−k, t > 0.

Let n = 2 and denote by χ the characteristic function of an open unit disc B(0, 1) ⊂ R2. Prove that

WFχ = {(x, ξ) ∈ R2 × (R2\{0}) : ‖x‖ = 1, ξ ‖ x}.

Problem 8. Let χ be the characteristic function of unit square Q := [0, 1]× [0, 1] ⊂ R2 prove that

WFχ = {(x, ξ) ∈ R2 × (R2\{0}) : x ∈ ∂Q, ξ ‖ x}
⋃
{(x, ξ) ∈ R2 × (R2\{0}) : xi = {0, 1}, ξ ∈ R2\{0}}.

I.e. at the corner points every direction is in the wavefront set.

Problem 9. Let F ⊂ Rn × (Rn\{0}) be closed and conic. Show that there exists u ∈ D′(Rn) such that

WFu = F.

Problem 10. Let k ∈ C∞(Rn × Rn). We define a linear operator.

K : C∞0 (Rn)→ C∞(Rn), Kf(x) =

∫
Rn

k(x, y)f(y)dy.

Then the adjoint of K with respect to L2 innerproduct is

Ktf(y) =

∫
Rn

k(x, y)f(x)dx, f ∈ C∞0 (Rn)

Prove that for any u ∈ E ′(Rn) and ϕ ∈ C∞0 (Rn)

〈u,Ktϕ〉 =

∫
Rn

〈u, k(x, ·)〉ϕ(x)dx

Problem 11. Let u ∈ E ′(Rn) and k ∈ C∞(Rn × Rn). Prove that

〈u, k(x, ·)〉 ∈ C∞(Rn).
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Problem 12. Recall the Schwartz kernel theorem. Let X ⊂ Rn and Y ⊂ Rk be open sets. Let
A : C∞0 (X)→ D′(Y ) be linear and continuous. Then there exists a unique kA ∈ D′(X × Y ) such that

〈Aϕ,ψ〉 = kA(ϕ⊗ ψ), ϕ ∈ C∞0 (X), ψ ∈ C∞0 (Y ).

Here the tensor product (ϕ⊗ ψ)(x, y) := ϕ(x)ψ(y).

If a ∈ C∞(X × Y ), it determines naturally the operator A : C∞0 (X)→ D′(Y )

Aϕ(ψ) =

∫
X

∫
Y

a(x, y)ϕ(x)ψ(y)dxdy

Let X = Y ⊂ Rn. Consider a partial differential operator

A =
∑
|α|≤k

aαD
α, aα ∈ C∞(X).

Show that the Schwartz kernel of operator A is

kA(x, y) =
∑
|α|≤k

aα(x)Dαδ(x− y).

Problem 13. Let m ∈ N and p ∈ Sm(Rn × Rn). We define the Schwartz kernel kp of p as

〈kp, ϕ〉 :=

∫
Rn

∫
Rn

∫
Rn

ei(x−y)·ξ
p(x, ξ)

(1 + |ξ|2)M
(I + ∆y)

Mϕ(y) dxdydξ, ϕ ∈ C∞0 (Rn). (1)

Show that kp is well defined and independent of M , if M ≥ m+n
2

Problem 14. Let η ∈ C∞0 (Rn) be s.t. η(x)1 when ‖x‖ ≤ 1. Show that

kp = lim
ε→0

∫
Rn

η(εξ)ei(x−y)·ξp(x, ξ), dξ

where kp ∈ D′(Rn × Rn) is defined by equation (1).

Problem 15. Let A,B ∈ Ψm(Rn). show that the Schwartz kernel kAB of composition operator AB
satisfies

kAB(x, y) =

∫
Rn

kA(x, z)kB(z, y)dz,

when ever right hand side is well defined.

Problem 16. Let χ ∈ C∞0 (Rn) be such that χ(x) = 1, if ‖x‖ ≤ 1. Let p ∈ Sm(Rn × Rn). Show that
function

F (x, y) =

∫
Rn

ei(x−y)·ξ
1− χ(x− y)

‖x− y‖2M
∆M
ξ p(x, ξ) dξ ∈ Ck(Rn × Rn),

for all k ∈ N and is independent of M , if M is large enough.

Show that
kÃ(x, y) :=

∫
Rn

ei(x−y)·ξχ(x− y)p(x, ξ) dξ

is a Schwartz kernel of some Ã ∈ Ψm(Rn).
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Problem 17. Let A ∈ Ψm(Rn). Show that there is a extension

Ã : E ′(Rn)→ D′(Rn)

of A that is linear and continuous.

Suppose that A ∈ Ψm(Rn) is properly supported. Show that there is a linear and continuous exten-
sion

B : D′(Rn)→ D′(Rn)

of Ã.

Recall that pseudo differential operator A is properly supported, if the Schwartz kernel kA is properly
supported in Rn × Rn i.e.

suppkA ⊂ Rn × Rn

is proper. A set X ⊂ Rn × Rn is proper, if for all compact K ⊂ Rn the sets

πx(π
−1
y K ∩X) and πy(π−1x K ∩X)

are compact in Rn. Here πy(x, y) = y and πx(x, y) = x.

Problem 18. Show that for any A ∈ Ψm(Rn) holds

WF (Au) ⊂ WFu, for any u ∈ E ′(Rn).

You can use the fact
singsupp(Au) ⊂ singsupp(u), for any u ∈ E ′(Rn).
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