Exercises for the course "Szemerédi's Theorem"

If you would like to get credit for this course, please give your solutions to Hans-Olav Tylli by 31 July 2012.

The cardinality of a set A is denoted by $|A|$. Suppose that N is an integer with $N \geq 2$. As usual, \mathbb{Z}_{N} denotes the integers modulo N. Let $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ be a function. Write $\omega=\exp (2 \pi i / N)$. We define the Fourier transform $\hat{f}: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ as follows:

$$
\hat{f}(n)=\sum_{j=1}^{N} f(j) \omega^{-j n} .
$$

Then the inverse transform is given by

$$
f(n)=\frac{1}{N} \sum_{j=1}^{N} \hat{f}(j) \omega^{j n} .
$$

We define $\|f\|_{2}$ by

$$
\|f\|_{2}^{2}=\sum_{j=1}^{N}|f(j)|^{2} .
$$

Let f, g be complex-valued functions on \mathbb{Z}_{N}. We define

$$
(f * g)(s)=\sum_{\substack{t \in \mathbb{Z}_{N} \\ 1}} f(t) \overline{g(t-s)}
$$

for all $s \in \mathbb{Z}_{N}$. In the term $t-s$, we are naturally using addition modulo N.

1. We write $h=f * g$. Prove that

$$
\hat{h}(r)=\hat{f}(r) \overline{\hat{g}(r)}
$$

for all $r \in \mathbb{Z}_{N}$.

2. Prove that

$$
\sum_{r \in \mathbb{Z}_{N}} \hat{f}(r) \overline{\hat{g}(r)}=N \sum_{s \in \mathbb{Z}_{N}} f(s) \overline{g(s)}
$$

If $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ is a function, $d \in \mathbb{N}=\{1,2,3, \ldots\}$, and $a_{1}, a_{2}, \ldots, a_{d}, s, k \in \mathbb{Z}_{N}$, we define

$$
\Delta(f ; k)(s)=f(s) \overline{f(s-k)}
$$

and
$\Delta\left(f ; a_{1}, a_{2}, \ldots, a_{d}\right)(s)=\Delta\left(\Delta\left(f ; a_{1}, a_{2}, \ldots, a_{d-1}\right) ; a_{d}\right)(s)$.
We define, for any $n \geq 1$, the complex conjugation operator $C: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ by $C\left(z_{1}, \ldots, z_{n}\right)=$ $\left(\overline{z_{1}}, \ldots, \overline{z_{n}}\right)$. The composition of C with itself m times is denoted by C^{m}.
3. Write $E(d)=\{0,1\}^{d}$, where $d \geq 1$. Prove that

$$
\begin{aligned}
& \Delta\left(f ; a_{1}, a_{2}, \ldots, a_{d}\right)(s)= \\
& \prod_{\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{d}\right) \in E(d)}\left(C^{\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{d}} f\right)\left(s-\sum_{i=1}^{d} \varepsilon_{i} a_{i}\right)
\end{aligned}
$$

We write $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ for the closed unit disk in the complex plane \mathbb{C}. (Note that this is somewhat non-standard notation since usually \mathbb{D} denotes the open unit disk.)
We assume that $f: \mathbb{Z}_{N} \rightarrow \mathbb{D}$ is a function. Suppose that $0<\alpha \leq 1$ and $d \in \mathbb{N}$. We say that f is α-uniform of degree d if

$$
\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{Z}_{N}^{d}}\left|\sum_{s \in \mathbb{Z}_{N}} \Delta\left(f ; a_{1}, \ldots, a_{d}\right)(s)\right|^{2} \leq \alpha N^{d+2}
$$

For $d=0$, we define f to be α-uniform of degree 0 if

$$
\left|\sum_{s \in \mathbb{Z}_{N}} f(s)\right|^{2} \leq \alpha N^{2}
$$

4
4. Prove that f is α-uniform of degree d if, and only if,

$$
\begin{align*}
& \sum_{s \in \mathbb{Z}_{N}} \sum_{\left(a_{1}, \ldots, a_{d}, a_{d+1}\right) \in \mathbb{Z}_{N}^{d+1}} \Delta\left(f ; a_{1}, \ldots, a_{d}, a_{d+1}\right)(s) \\
& \leq \alpha N^{d+2} \tag{0.1}
\end{align*}
$$

In particular, this requires one to prove that the left hand side of (0.1) is a real number even in f is complex-valued but not necessarily real-valued.
5. Suppose that $d \geq 1$ and that f is α-uniform of degree d. Prove that f is $\sqrt{\alpha}$-uniform of degree $d-1$, and hence $\alpha^{1 / 2^{d-1}}$-uniform of degree 1.
Hint. Use the Cauchy-Schwarz inequality.

Let X and Y be additively written abelian groups. Let Z be a subset of X, and let W be a subset of $Y(Z, W \neq \emptyset)$. Let ϕ be a function of Z into W. Suppose that $k \geq 2$ and that whenever

$$
a_{1}, a_{2}, \ldots, a_{2 k} \in Z, \quad \sum_{i=1}^{k} a_{i}=\sum_{i=k+1}^{2 k} a_{i}
$$

we have

$$
\sum_{i=1}^{k} \phi\left(a_{i}\right)=\sum_{i=k+1}^{2 k} \phi\left(a_{i}\right) .
$$

Then we say that ϕ is a Freiman homomorphism of order k. Note that Z, W are arbitrary subsets, not necessarily subgroups or closed under addition. Thus, while $\sum_{i=1}^{k} a_{i}$ is a well-defined element of X, it need not lie in Z, and similarly for $\sum_{i=1}^{k} \phi\left(a_{i}\right)$. Also, note that the numbers $a_{1}, a_{2}, \ldots, a_{2 k}$ need not be distinct.
6. Suppose that $k \geq 3$ and that $\phi: Z \rightarrow W$ is a Freiman homomorphism of order k. Prove that ϕ is also a Freiman homomorphism of order $k-1$.

If $Z_{1}, Z_{2} \subset X$, we define

$$
\begin{aligned}
& Z_{1}+Z_{2}=\left\{a+b: a \in Z_{1}, b \in Z_{2}\right\}, \\
& Z_{1}-Z_{2}=\left\{a-b: a \in Z_{1}, b \in Z_{2}\right\} .
\end{aligned}
$$

If $m \in \mathbb{N}$, we write $m Z_{1}$ for

$$
Z_{1}+Z_{1}+\cdots Z_{1}
$$

where Z_{1} appears m times as a summand.
7. Let $\phi: Z \rightarrow W$ be a Freiman homomorphism of order $2 k$. Prove that ϕ induces a well-defined function ψ of $k Z-k Z$ into $k W-k W$. How is ψ defined?

Suppose that $A \subset \mathbb{Z}_{N}$, and denote the characteristic function of A also by A. If $k \in \mathbb{Z}_{N}$, we write $A+k=\{a+k: a \in A\}$, where the addition is taken modulo N. Recall that the notation $f * g$ was defined earlier.
8. Prove that

$$
\begin{aligned}
& \|A * A\|_{2}^{2}=\sum_{k \in \mathbb{Z}_{N}}|A \cap(A+k)|^{2} \\
& =\left|\left\{(a, b, c, d) \in A^{4}: a-b=c-d\right\}\right|
\end{aligned}
$$

9. If $A \subset \mathbb{Z}_{N}$ is also a genuine arithmetic progression of length $m \geq 1$ as a subset of $\{1,2, \ldots, \ell\} \subset \mathbb{N}$, where $1 \leq \ell<N / 2$, prove that
$\|A * A\|_{2}^{2} \leq m^{2}+2\left(1^{2}+2^{2}+\cdots+(m-1)^{2}\right)=\frac{m\left(2 m^{2}+1\right)}{3}$.
10. Suppose that $A \subset \mathbb{N}$ and $|A|=m \geq 1$. We use ordinary addition in \mathbb{N} to define $A+A$. Prove that

$$
2 m-1 \leq|A+A| \leq \frac{m(m+1)}{2}
$$

and give examples to show that each of the upper and lower bounds is best possible.

