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An object moves along a straight line.  Instead of continuing in one direction, it moves
back and forth, oscillating about a central point.  Call the central point x = () and
denote by v(7) the displacement of the objectattime 7. [fthe acceleration is a constant
negative multiple of the displacement,

alt) = —kx(r), k>0,

then the object is said to be in simple harmonic motion,
Since, by definition,

a(t)y = x"(y),
in simple harmonic motion, we have
Xy = — k(o).
which is the same as
X'ty + kx(r) = 0.

- x . 30 ' ] ”
F'o emphasize that £ is positive, we set k = w2, where @ = vk >0, The cquation of
motion then takes the form

(18.7.1)

Fhis is a second-order. linear differentia] cquation with constant coefficients. The
characteristic equation js

ot w? =0,
and the roots are + . Therefore, the general solution of Equation (18.7.1) is
X() = C cos wr + Gy sin wr.

\ routine calculation shows that the general solution can be written (Exercise 28,
Section 18.5)

(18.7.2) [ V() = sin(wr + (,/)(,).‘J

vhere A and &y are constants with . - Oand &, € [0, 27).
Now let's analyze the motion measuring 1 in seconds. By addin
flerease wt 4 oy, by 27

2T w0 1 we

o
(=

27
u)(f Tty = wr + Py + 2
3 0]

Fhis means that the motion is periodic with period T given by:

0 —
~ i

7‘,

(1)
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A complete oscillation takes 27/w seconds. The reciprocal of the period gives the
number of complete oscillations per second. This is called the fiequency f:

L w
/= 27

The number w is called the ungulur fiequency.  Since sin(wr + ¢h,) oscillates between
—1land 1,

X(1) = A sin(wt + dby)

oscillates between —4 and 4. The number A is called the umplitude of the motion.

In Figure 18.7.1 we have plotted x against 7. The oscillations along the x-axis are
now waves in the xt-plane.  The period ot the motion, 277/ w, is the  distance (the time
scparation) between consecutive wave crests.  The amplitude of the motion, 4. is the
height of the waves measured in x units from x = 0. The number ¢, is known as the
phase constant, or phase shifi.  The phase constant determines the initial displacement
(in the vz-plane the height of the wave at time ¢ = 0).  [f ¢, = 0, the object starts at the
center of the interval of motion (the wave starts at the origin of the xt-plane).

period

i | amplitude
Lsin 0g

N

simple harmonic motion

Figure 18.7.1

Example T Find an cquation for the oscillatory motion of an object, given that the
period is 277/3 and, at time 1 = 0, x(0) = 1, v(0) = x'(0) = 3.
SOLUTION  We begin by setting

X(1) = A sin(wr -+ By).

In general the period is 27/ w. so that here

and thus o = 3.

V(1) = 34 cos(3r + dy).
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The conditions at + = 0 give

I =x(0) = 4 sin ¢y,

(95}

=1(0) = 34 cos ¢,

and therefore

—

= A sin &,

= 4 cos ¢,.
Adding the squares. we have
2 = A% sin® ¢y + 42 cos? ¢y = A2,
Since 4 > 0, 4 = /2.
To find ¢, we note that
| = /2 sin ¢,. | = /2 cos ¢,.

. . < . 1 - . ~ .
These equations are satistied by setting ¢, = ¥ The cquation of motion can be
written

x(t) = \/E sin(3¢r + +). 2

Undamped Vibrations

A coil spring hangs naturally to a length /,. When a bob of mass m is attached to it.
the spring stretches /, inches.  The bob is later pulled down an additional X, Inches and
then released.  What is the resulting motion? Throughout we refer to Figure 18.7.2,
taking the downward direction as positive.

m

natural equitibrium release
length with mass m position later
! I I v

Figure 18.7.2

We begin by analyzing the forces acting on the bob at general position v (stage
V). First there s the weight.of the bob:

= mg.

B 1247
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This is a downward force, and by our choice of coordinate system, positive. Then
there is the restoring force of the spring. This force, by Hooke’s law, is proportional
to the total displacement /; + x and acts in the opposite direction:

Fy= —k(l, +x) with &£ > 0.

If we neglect resistance, then these are the only forces acting on the bob.  Under these
conditions the total force is

F=F +F =mg— kil +x),.
which we rewrite as
(h F=(mg— ki) — kx.

At stage Il (Figure 18.7.2) there was cquilibrium.  The force of gravity, mg, plus the
torce of the spring, —k/,, must have been 0:

mg — kl, = 0.

Equation (1) can therefore be simplified to

F = —kx.
Using Newton’s second law
F = mu (force = mass X acceleration)
we have
k
ma = —kyx and thus o« = ——x.
m
At any time ¢,
" k
X(t)y = ——x(1).
m

Since kfm > 0, we can set o = k/m and write
X1 = —wix(1).

The motion of the bob is simple harmonic motion with period 7' = 2m/w.

There is something remarkable about harmonic motion that we have not yct
specifically pointed out: namely, that the frequency (/= w27 is com-
pletely independent of the amplitude of the motion.  The oscillations of the bob occur
with frequency

Vkim i

fe= = =, (here w =  Am).
2T

By adjusting the spring constant & and the mass of the bob m, we can cali-
brate the spring -bob system so that the oscillations take place exactly once a
sccond (at least almost exactly).  We then have a primitive timepicce (a first
cousin of the windup clock).  With the passing of time, friction and air resis-
tance reduce the amplitude of the oscillations but not their frequency. By giving
the bob a little push or pull once in a while (by rewinding our clock), we can
restore  the amplitude ot the oscillations  and  thus  maintain  the  steady
“ticking. ™
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Damped Vibrations

We derived the equation of motion

" /\'
X"+ —=x=0
m

trom the force equation
F = —kx.

Unless the spring is frictionless and the motion takes place in a vacuum, there is a
resistance to the motion that tends to dampen the vibrations.  Experiment shows that
the resistance force R is approximately proportional to the velocity x':
R = —cx'. (¢ >0)
Taking this resistance term into account, the force cquation reads
F=—ky—cx',
Newton’s law F = ma = mx" then gives

mx" = —cx' — kx,

which we can write as

” ¢ ’ k
(18.7.3) X'+ —x"+—=x=0.
m m

This is the equation of motion in the presence of a dumping factor  To study the
motion we analyze this equation.
The characteristic equation

has roots

=

2m
Fhere are three possibilitics:
¢ — dkm <0, ¢ = dkm >0, ¢ = dkm = 0.
Case 1. ¢ — 4hkm <0

In this case the characteristic cquation has two complex conjugate roots:

[ - S

e ¢ , VAkm — ¢?

ry = =~ t+iw, Iy = e = where o = ——m,
2im 2m 2m

The general solution of (18.7.3),

o= e OIecos wf ¢, SN ol ),
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Case 2.

Case 3.

- /2mt

can be written

(18.7.4) x(t) = et sin(wt + by)s

where, as before, 4 and ¢, are constants, 4 >0, ¢é, € [0, 27). This is
called the underdamped case. The motion is similar to simple harmonic
motion, except that the damping term e~ ensures that x —> 0 as 1 — =,
The vibrations continue indefinitely with constant frequency w/27 but di-
minishing amplitude Aet~<2"7  As r— =, the amplitude of the vibrations
tends to zero; the vibrations die down. The motion is illustrated in Figure
18.7.3. 4

—

cf2mi

damped harmonic motion

Figure 18.7.3

¢ —4km >0
[n this case the characteristic equation has two distinct real roots:

—c + A2 — 4km i Je = 4km

. 5 =

o=

2m 2m

The general solution takes the form

(]875) X = (‘1()/'[/ -+ C‘lel';[_

This is called the overdamped case. The motion is nonoscillatory.
Since +¢2 — dkm < ¢? = ¢, both r; and r, are negative. As [

y—0. 1

2 —=dkm=0
In this case the characteristic equation has only one root
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and the general solution takes the form

(18.7.6) X=Cpe I Cype -ty

This is called the critically damped case. Once again the motion is nonoscil-
latory.  Morcover. as t— %, yx— (.

In both the overdamped and critically damped cases, the mass moves slowly back
to its equilibrium position (x — 0 as 1 — %), Depending upon the side conditions. the
mass may move through the equilibrium once, but only once: there is no oscillatory
motion.  Two typical examples of the motion are shown in Figure 18.7 4.

\A \'A

Figure 18.7.4

Forced Vibrations

I'he vibrations that we have been considering result from the interplay of three forces:
the force of gravity, the clastic force of the spring, and the retarding force of the
surrounding medium. - Such vibrations are called fiee vibrations.

The application of an external force to a freely vibrating system modifies the
vibrations and results in what are called forced vibrations.  In what follows we exam-
me the effect of a pulsating force £, cos yi. Without loss of generality we can take
both /7, and y as positive.

In-an undamped system the force equation reads

= —kx + F, cos yt

ind the equation of motion takes the form

‘ i k £y

(18.7.7) X T == 08 YL
m m

As usual we set w = Ak and write

, i 5 /41)

(18.7.8) X" F X = —¢os yt

mn
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As you’ll see, the nature of the vibrations depends on the relation between the applied
Sfrequency, /2, and the natural frequency of the system, w/27r.

Casel. y# w
In this case the method of undetermined coefficients gives the particular
solution
__Fy/m
X, = ———5 COs Yl
w? — y?

The general equation of motion can thus be written

Foim

18.7.9) X =dsin(wt + dy) + — = COS YI.

[f w/y is rational, the vibrations are periodic. If, on the other hand. w/vy is not
rational, then the vibrations are not periodic and the motion, though bounded

by
o Fylm
4]+ |2,
w- — Y-
can be highly irregular. 2
Case 2. y= w
In this case the method of undetermined cocfficients gives
ke
x, = tsin wt
2win

and the general solution takes the form

.
(18.7.10) X =4 sin(wr + ¢y) + —=—1 sin wt.

Zm

The undamped system is said to be in resonance.  The motion is oscillatory.
but, because of the extra ¢ present in the sccond summand, it is far from
periodic.  As r— =, the amplitude of vibration increases without bound.
The motion is illustrated in Figure 18.7.5. 4

Undamped systems and unbounded vibrations are mathematical fictions.  No real
mechanical system is totally undamped, and unbounded vibrations do not oceur in
nature. Nevertheless a form of resonance can occur in a real mechanical system. (See
Exercises 24-28.) A periodic external force applied to a mechanical system that 1
msufficiently damped can sct up vibrations of very large amplitude.  Such vibrations
have caused the destruction of some formidable man-made structures.  [n 1830 the
suspension bridge at Angers, France, was destroved by vibrations set up by the unified
step of a column of marching soldiers. More than two hundred French soldiers were
killed in that catastrophe.  (Soldiers today are told to break ranks before crossing 4



bridge.) The collapse of the bridge at Tacoma, Washington,

Figure 18.7.5

Slender in construction and graceful in design, the T

tratfic on July I, 1940. The third longest sus
span of 2800 feet, the bridge attracted many admirers. On Nov
year, after less than five months of service. the m
from its cables and crashed into the water below. (
bridge at the time, and he was
vibrations in resonance with the natural vibrations of the
girders of the bridge had not provided sufficient d

reaching destructive magnitude.

EXERCISES 18.7

able to crawl to safety.)
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IS a more recent event,
acoma bridge was opened to
pension bridge in the world, with a main
ember | of that same
ain span of the bridge broke loose
Luckily only one person was on the
A driving wind had set up
roadway, and the stiffening
amping to keep the vibrations from

1

~
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- An object is in simple harmonic motion.

- An object is in simple harmonic motion. Find an equa-

tion for the motion given that the period is 57 and, at time
t=0,x=landv = 0. Whatis the amplitude? What is
the frequency?

Find an cqua-
tion for the motion given that the frequency is 1/ 77 and, at
time /=0,y =0and v = —2 What is the amplitude?
What is the period?

Anobject is in simple harmonic motion with period 7 and
amplitude 4. What is the velocity at the central point

v=()?
An object is in simple harmonic motion with period 7.
Find the amplitude given that v = Evgaty = .

An object in simple harmonic motion passes through the
central point v =0 at time ¢ = 0 and every 3 seconds
thereafter.  Find the cquation ot motion given that
v(0) = 3.

[sin(wt + o))
- (b)

Show that simple harmonic motion v(7) —
can just as well be written: (a) v(7) = A cos(ar

v(7) Bsin wr + C cos wr.

12 are concerned with the motion of the bhob

spicted in Figure 18.7.2.

7.
8.

N=J

10.

. Given  that

What is x(7) for the bob of mass "

Find the positions of the bob where the bob attains: (a)
maximum speed: (b) zero speed; (¢) maximum accelera-
tion: (d) zero acceleration.

Where does the bob take on half of its maximum speed?

Find the maximal kinetic cnergy obtained by the bob.
5

I Bl 1 . A
(Remember: KE = $mp2 where m is the mass of the ob-
ject and vis the speed.)

Find the time average of the kinetic energy of the bob

during one period 7.

Express the velocity of the bob in terms of kom, x,. and
V(7).

VO =9 = dv(r) with v(0) =0 and
X(0) =0, show that the motion is simple harmonic mo-
tion centered at v = 2. Find the amplitude and the pe-
riod.

he figure shows a pendulum of mass m swinging on an
arm ot length L. The angle 6 is measured counterclock-
wise. Neglecting friction and the w cight of the arm. we
can describe the motion by the cquation

mLO"(y = —mg sin (1)

e e



