

Subject: Introduction to Numerical Methods

Place/Institution: Helsinki (Finland)/University of Helsinki

Date: June 4,5; 2012

Exercises

- 1. Find the absolute error we make by computing $y = x_1 x_2^2$, being $x_1 = 2,0 \mp 0,1$ and $x_2 = 3,0 \mp 0,2$. Which is the relative error?
- 2. Let us consider the following system

$$\begin{cases} x + ay = 5, \\ bx + 2y = d, \end{cases}$$

being $a = 1,000 \mp 0,002$, $b = a^{-1}$ and d = b - a. Which is the absolute error of the product xy?

3. The law of the conjugate points (used in the optical system) establishes that

$$\frac{1}{f} = \frac{1}{p} + \frac{1}{q}.\tag{1}$$

This relationship determines the location of the images given a particular focal length (f) and the object distance (p); q is the distance associated with the image. Find:

- a) the expression of the absolute error of f in terms of the absolute errors of p and q;
- b) the value of the absolute error of f, if $p = (3,7 \pm 0,2)$ cm and $q = (2,3 \pm 0,3)$ cm.

Successively, let us put X = pq and Y = q + p, and let us express the relationship (1) by beans of X and Y:

- c) find the expression of the absolute error of f in terms of the absolute errors of X and Y;
- d) by using item c), find the value of the absolute error of f, if $p = (3,7 \pm 0,2) \ cm$ and $q = (2,3 \pm 0,3) \ cm$;

ERASMUS PROGRAMME

- e) analyze the behavior of the error with relation to the results obtained in b) and d).
- 4. Let us consider the following nodes $x_i = -1 + hi$ (being i = 0, 1, ..., 6 and h = 0, 3) and the following interpolating table (obtaining by approximation of $f(x) = e^{x^2}$ in the same nodes):

x_i	-1	-0.7	-0.4	-0.1	0.2	0.5	0.8
$f(x_i)$	2.7182	1.6323	1.1735	1.0100	1.0408	1.2840	1.8964

- a) Find the interpolating polynomial $p_3(x)$ of f in $x_0, x_1, x_2 \neq x_3$;
- b) find the error we make if we approximate f(-0,21) with $p_3(-0,21)$;
- c) find the interpolating polynomial $p_2(x)$ of f in x_4 , x_5 y x_6 ;
- d) find the error we make if we approximate f(0,43) with $p_2(0,43)$;
- e) analyze the behavior of the interpolation in terms of the results obtained in b) and d).
- 5. Let f be defined in [0, 1]; the Bernstein polynomial of degree n for f is $B_n(f;x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$. In particular, the functions $\beta_k^n(x) := \binom{n}{k} x^k (1-x)^{n-k}$ are called the elementary polynomials of Bernstein.
 - a. Find the elementary polynomials of Bernstein of degree 2;
 - b. find the polynomial of Bernstein of degree 2 for $f(x) = e^{x^2}$;
 - c. compare the graphs of f(x) and $B_2(f;x)$;
 - d. develop the previous items for the degree 3 and 4, comparing the graphs of f(x), $B_2(f;x)$, $B_3(f;x)$ and $B_4(f;x)$;
 - e. analyze the obtained results in terms of the classical Weierstrass approximation theorem.
- 6. Let us consider in I = [-1, 1] the function $f(x) = \log\left(\frac{1}{1+x^2}\right)$; let $\{x_0 = -1, x_1, x_2, ..., x_{21} = 1\}$ be 22 equispaced nodes of I.
 - a. Find the interpolating polynomial of f(x) by means of a polynomial $p_{21}(x)$, of degree at the most 21;
 - b. compare the graphs of f(x) and $p_{21}(x)$.

Now let us slightly change the values of $f(x_0)$, $f(x_1)$, $f(x_{20})$ and $f(x_{21})$ of a quantity equal to 9.3×10^{-2} , without changing the value of f on the remaining nodes:

$$\begin{cases} \widetilde{f}(x_i) = f(x_i) + 9.3 \times 10^{-2}, & \text{if } i = 0, 1, 20, 21, \\ \widetilde{f}(x_i) = f(x_i) & \text{if, } i = 2, 3, ..., 19. \end{cases}$$

c. Find the interpolating polynomial $\tilde{p}_{21}(x)$, of degree at the most 21, on the nodes x_i ;

ERASMUS PROGRAMME

- d. compute $||\widetilde{p}_{21}(x) p_{21}(x)||_{\infty};$
- e. compare the graphs of f(x), $p_{21}(x)$ and $\tilde{p}_{21}(x)$;
- f. is the problem stable or instable with respect to the perturbation of the initial data?
- 7. Let $\{x_0, x_1, ..., x_n\} \subset \mathbb{R}$ with $x_i \neq x_j$ if $i \neq j$ and $f(x) = x^{n+1}$. Find the interpolating polynomial of f in those points by using the error formula for interpolation.
- 8. Let $f(x) = \frac{20}{1+x^2} 5e^x$ be a function defined only in the interval I = [0, 1]; find the only polynomial of degree $p_2(x) = a_0 + a_1x + a_2x^2$ such that

$$p_2(0) = f(0), \ p_2(1) = f(1), \ \int_0^1 p_2(x) dx = \int_0^1 f(x) dx,$$

and compare the graphs of f(x) and $p_2(x)$. Moreover, find a point $x^* \in I$ such that the interpolating polynomial of f in 0, x^* and 1 is equal to $p_2(x)$, previously computed. Finally, write down the interpolation error bound.

- 9. Let $f, g : [a, b] \mapsto \mathbb{R}$ and $\{x_0, x_1, \ldots, x_n\}$ be two functions and different points of the interval [a, b]. Moreover, let p_n and q_n be the interpolating polynomials of f and g in these points, respectively.
 - a) Is $\alpha p_n + \beta q_n$, with $\alpha, \beta \in \mathbb{R}$, the interpolating polynomial of $\alpha f + \beta g$ in the points $\{x_0, \ldots, x_n\}$?
 - b) Is p_nq_n the interpolating polynomial of fg in these same points?
- 10. Let us consider the so called *Tchebycehev polynomials* $\{T_n(x)\}_{n=0}^{\infty}$ recursively defined by

$$\begin{cases} T_0(x) = 1, \ T_1(x) = x \\ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \ n \in \mathbb{N} \end{cases}$$

Show that the degree of $T_n(x)$ is n and that its director coefficient is 2^{n-1} .

It is also known that for each $n \in \mathbb{N}$ the *n* roots of $T_n(x)$ belong to the interval [-1, 1] in the points

$$x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right), \quad k = 0, 1, 2, ..., n-1.$$

By using a suitable mapping of I = [-1, 1] into J = [a, b], find the roots in J.