Helsingin yliopisto

Subject: Introduction to Numerical Methods
Place/Institution: Helsinki (Finland)/University of Helsinki
Date: June 4,5; 2012

Exercises

1. Find the absolute error we make by computing $y=x_{1} x_{2}^{2}$, being $x_{1}=2,0 \mp 0,1$ and $x_{2}=3,0 \mp 0,2$. Which is the relative error?
2. Let us consider the following system

$$
\left\{\begin{array}{l}
x+a y=5 \\
b x+2 y=d
\end{array}\right.
$$

being $a=1,000 \mp 0,002, b=a^{-1}$ and $d=b-a$. Which is the absolute error of the product $x y$?
3. The law of the conjugate points (used in the optical system) establishes that

$$
\begin{equation*}
\frac{1}{f}=\frac{1}{p}+\frac{1}{q} \tag{1}
\end{equation*}
$$

This relationship determines the location of the images given a particular focal length (f) and the object distance $(p) ; q$ is the distance associated with the image. Find:
a) the expression of the absolute error of f in terms of the absolute errors of p and q;
b) the value of the absolute error of f, if $p=(3,7 \mp 0,2) \mathrm{cm}$ and $q=(2,3 \mp 0,3) \mathrm{cm}$.

Successively, let us put $X=p q$ and $Y=q+p$, and let us express the relationship (11) by beanos of X and Y :
c) find the expression of the absolute error of f in terms of the absolute errors of X and Y;
d) by using item c), find the value of the absolute error of f, if $p=(3,7 \mp 0,2) \mathrm{cm}$ and $q=(2,3 \mp 0,3) \mathrm{cm}$;
e) analyze the behavior of the error with relation to the results obtained in b) and d).
4. Let us consider the following nodes $x_{i}=-1+h i$ (being $i=0,1, \ldots, 6$ and $h=0,3$) and the following interpolating table (obtaining by approximation of $f(x)=e^{x^{2}}$ in the same nodes):

x_{i}	-1	-0.7	-0.4	-0.1	0.2	0.5	0.8
$f\left(x_{i}\right)$	2.7182	1.6323	1.1735	1.0100	1.0408	1.2840	1.8964

a) Find the interpolating polynomial $p_{3}(x)$ of f in x_{0}, x_{1}, x_{2} y x_{3};
b) find the error we make if we approximate $f(-0,21)$ with $p_{3}(-0,21)$;
c) find the interpolating polynomial $p_{2}(x)$ of f in x_{4}, x_{5} y x_{6};
d) find the error we make if we approximate $f(0,43)$ with $p_{2}(0,43)$;
e) analyze the behavior of the interpolation in terms of the results obtained in b) and d).
5. Let f be defined in $[0,1]$; the Bernstein polynomial of degree n for f is $B_{n}(f ; x)=$ $\sum_{k=0}^{n} f\left(\begin{array}{l}\frac{k}{n}\end{array}\right)\binom{n}{k} x^{k}(1-x)^{n-k}$. In particular, the functions $\beta_{k}^{n}(x):=\binom{n}{k} x^{k}(1-$ $x)^{n-k}$ are called the elementary polynomials of Bernstein.
a. Find the elementary polynomials of Bernstein of degree 2;
b. find the polynomial of Bernstein of degree 2 for $f(x)=e^{x^{2}}$;
c. compare the graphs of $f(x)$ and $B_{2}(f ; x)$;
d. develop the previous items for the degree 3 and 4, comparing the graphs of $f(x), B_{2}(f ; x), B_{3}(f ; x)$ and $B_{4}(f ; x)$;
e. analyze the obtained results in terms of the classical Weierstrass approximation theorem.
6. Let us consider in $I=[-1,1]$ the function $f(x)=\log \left(\frac{1}{1+x^{2}}\right)$; let $\left\{x_{0}=-1, x_{1}, x_{2}, \ldots, x_{21}=\right.$ $1\}$ be 22 equispaced nodes of I.
a. Find the interpolating polynomial of $f(x)$ by means of a polynomial $p_{21}(x)$, of degree at the most 21 ;
b. compare the graphs of $f(x)$ and $p_{21}(x)$.

Now let us slightly change the values of $f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{20}\right)$ and $f\left(x_{21}\right)$ of a quantity equal to $9,3 \times 10^{-2}$, without changing the value of f on the remaining nodes:

$$
\left\{\begin{array}{l}
\widetilde{f}\left(x_{i}\right)=f\left(x_{i}\right)+9,3 \times 10^{-2}, \quad \text { if } i=0,1,20,21 \\
\widetilde{f}\left(x_{i}\right)=f\left(x_{i}\right) \quad \text { if, } \quad i=2,3, . ., 19
\end{array}\right.
$$

c. Find the interpolating polynomial $\widetilde{p}_{21}(x)$, of degree at the most 21 , on the nodes x_{i};

Helsingin yliopisto
d. compute $\left\|\widetilde{p}_{21}(x)-p_{21}(x)\right\|_{\infty}$;
e. compare the graphs of $f(x), p_{21}(x)$ and $\widetilde{p}_{21}(x)$;
f. is the problem stable or instable with respect to the perturbation of the initial data?
7. Let $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}$ with $x_{i} \neq x_{j}$ if $i \neq j$ and $f(x)=x^{n+1}$. Find the interpolating polynomial of f in those points by using the error formula for interpolation.
8. Let $f(x)=\frac{20}{1+x^{2}}-5 e^{x}$ be a function defined only in the interval $I=[0,1]$; find the only polynomial of degree $p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ such that

$$
p_{2}(0)=f(0), p_{2}(1)=f(1), \int_{0}^{1} p_{2}(x) d x=\int_{0}^{1} f(x) d x
$$

and compare the graphs of $f(x)$ and $p_{2}(x)$. Moreover, find a point $x^{*} \in I$ such that the interpolating polynomial of f in $0, x^{*}$ and 1 is equal to $p_{2}(x)$, previously computed. Finally, write down the interpolation error bound.
9. Let $f, g:[a, b] \mapsto \mathbb{R}$ and $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be two functions and different points of the interval $[a, b]$. Moreover, let p_{n} and q_{n} be the interpolating polynomials of f and g in these points, respectively.
a) Is $\alpha p_{n}+\beta q_{n}$, with $\alpha, \beta \in \mathbb{R}$, the interpolating polynomial of $\alpha f+\beta g$ in the points $\left\{x_{0}, \ldots, x_{n}\right\}$?
b) Is $p_{n} q_{n}$ the interpolating polynomial of $f g$ in these same points?
10. Let us consider the so called Tchebycehev polynomials $\left\{T_{n}(x)\right\}_{n=0}^{\infty}$ recursively defined by

$$
\left\{\begin{array}{l}
T_{0}(x)=1, T_{1}(x)=x \\
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), n \in \mathbb{N}
\end{array}\right.
$$

Show that the degree of $T_{n}(x)$ is n and that its director coefficient is 2^{n-1}.
It is also known that for each $n \in \mathbb{N}$ the n roots of $T_{n}(x)$ belong to the interval $[-1,1]$ in the points

$$
x_{k}=\cos \left(\frac{(2 k+1) \pi}{2 n}\right), \quad k=0,1,2, \ldots, n-1
$$

By using a suitable mapping of $I=[-1,1]$ into $J=[a, b]$, find the roots in J.

