Department of Mathematics and Statistics, University of Helsinki Numerical methods and the C language, fall 2010

Workshop 2

Mon 20.9. at 16-18 B322

For the exercise 5 the program mybisect.cpp in the package myexamples.zip on the www-page of the course may be helpful.

- 1. Use the Monte Carlo method to compute the area between the curves $y = \sin(x)$ and $y = \cos(x)$ in the rectangle $\{(x,y): 0 < x < 2\pi, -1 < y < 1\}$.
- 2. The LSQ solution of the linear system Ax = b where A is $m \times n$, m > n, is given according to Linear Algebra I by $x = (A^TA)^{-1}A^Tb$ if $(A^TA)^{-1}$ exists. Use this to fit the LSQ line $y = x_1 + x_2t$ to the data $\{(2,1), (5,2), (7,3), (8,3)\}$.
- 3. Suppose that P and R are invertible $p \times p$ and $r \times r$ matrices, resp., and let

$$A = \begin{pmatrix} P & 0 \\ 0 & R \end{pmatrix}, B = \begin{pmatrix} P^{-1} & 0 \\ 0 & R^{-1} \end{pmatrix}$$

Show (e.g. by experiments) that $B = A^{-1}$.

- 4. (a) Make a function which takes a matrix as an argument and zeros all its entries below the diagonal. Write then a program that uses the function and ranmat to generates a random upper triangular matrix. Is it true that the product / inverse of an upper triangular matrix is again triangular?
 - (b) Make a function which takes a matrix $A=(\alpha_{ij})$ as an argument and makes all $\alpha_{i,j}=0$ for |i-j|>1. Write then a program using the function and ranmat to generate a random tridiagonal matrix. Is it true that the product / inverse of a tridiagonal matrix is again tridiagonal?
- 5. Let $f(x) = \int_0^x \sin^2(t) dt$. Use the inverse function algorithm (see the www-page) to find a x such that f(x) = 5.