Introduction to MATLAB

HOMEWORK 2/SIR model for measles

In epidemiology, comparmental models are largely used to model infection decieses in a population. Simulate the measles epidemic in a population.

Define the compartments S (for susceptible), I (for infectious) and R (for recovered). They are proportions of the population that are in the compartments. The (nonlinear) differential equation describing the epidemiology is (' is for the time derivative)

$$
\left\{\begin{array}{l}
S^{\prime}=\mu-\lambda S-\mu S, \\
I^{\prime}=\lambda S-\eta I-\mu I, \\
R^{\prime}=\eta I-\mu R .
\end{array}\right.
$$

Here, $\mu=1 / 75$ is the mortality rate, corresponding the 75 expected life years. In the first equation, the first μ corresponds to the birth rate. In this way, the population is stable,

$$
(S+I+R)^{\prime}=0 \quad(\text { check }!)
$$

if we set $(S+I+R)(0)=1$. Parameter $\eta=1 /(8 / 360)$ is the recovery rate, and this corresponds to the 8 days long infectivity period of measles. The force of infection

$$
\lambda=\lambda(I)=\beta I
$$

describes how much infectious contacts there are in the population, and $\beta=200$ describes how much potentially infectious contacts there are overall (per year) [β is just an estimate]. To take into account the back-ground force of infection (from foreign populations), set

$$
\lambda=\max (\lambda I, 1 e-4) .
$$

Write a function for the epidemic differential equation. You can write the parameter values into the function as fixed parameters. Compute the solution at time interval $[0,50]$. You can use the initial values

$$
S(0)=0, \quad I(0)=0, \quad R(0)=1 .
$$

Plot the functions

$$
t \mapsto S(t), \quad t \mapsto I(t), \quad t \mapsto R(t) .
$$

Can you explain the periodicity of I ?

Remark. To make a more realistic epidemic model, one should sturcture the population also in age.

